Binary Central Stars of Planetary Nebulae
Abstract
:1. Introduction
2. Making the Case for Binaries (and Perhaps Planets?)
2.1. Common-Envelope Evolution
2.1.1. Pre-Common Envelope Evolution
- They are the only systems where one can directly study the ejection morphology and kinematics3.
- The short-lived nature of the nebulae means that the central star systems have not yet had time to relax (the thermal timescales of both components are much longer than the visibility time of a PN), and are thus “fresh-out-of-the-oven” of the CE.
2.1.2. The Abundance Discrepancy Problem
2.1.3. Ionised Masses
2.1.4. Double-Degenerates and Type ia Supernovae
2.2. Wider Binaries
3. Pre-Planetary Nebulae
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- De Marco, O.; Izzard, R.G. Dawes Review 6: The Impact of Companions on Stellar Evolution. Publ. Astron. Soc. Aust. 2017, 34, e001. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, D.; McAlister, H.A.; Henry, T.J.; Latham, D.W.; Marcy, G.W.; Mason, B.D.; Gies, D.R.; White, R.J.; ten Brummelaar, T.A. A Survey of Stellar Families: Multiplicity of Solar-type Stars. Astrophys. J. Suppl. 2010, 190, 1–42. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [Green Version]
- Moe, M.; Di Stefano, R. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars. Astrophys. J. Suppl. 2017, 230, 15. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O.; Soker, N. The Role of Planets in Shaping Planetary Nebulae. Publ. Astron. Soc. Pac. 2011, 123, 402. [Google Scholar] [CrossRef] [Green Version]
- Sabach, E.; Soker, N. Accounting for planet-shaped planetary nebulae. Mon. Not. R. Astron. Soc. 2018, 473, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Boyle, L.A. Planet Engulfment and the Planetary Nebula Morphology Mystery. Ph.D. Thesis, National University of Ireland, Galway, Ireland, 2018. [Google Scholar]
- Yang, J.Y.; Xie, J.W.; Zhou, J.L. Occurrence and Architecture of Kepler Planetary Systems as Functions of Stellar Mass and Effective Temperature. arXiv 2020, arXiv:2002.02840. [Google Scholar] [CrossRef] [Green Version]
- Boffin, H.M.J.; Jones, D. The Importance of Binaries in the Formation and Evolution of Planetary Nebulae; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Nordhaus, J.; Blackman, E.G. Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2006, 370, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Jones, D. Observational Constraints on the Common Envelope Phase. arXiv 2020, arXiv:2001.03337. [Google Scholar]
- Moe, M.; Kratter, K.M.; Badenes, C. The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophys. J. 2019, 875, 61. [Google Scholar] [CrossRef]
- Miszalski, B.; Acker, A.; Moffat, A.F.J.; Parker, Q.A.; Udalski, A. Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 2009, 496, 813–825. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O. The Origin and Shaping of Planetary Nebulae: Putting the Binary Hypothesis to the Test. Publ. Astron. Soc. Pac. 2009, 121, 316. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, T.; Steffen, W.; Tylenda, R.; Young, K.H.; Patel, N.A.; Menten, K.M. Submillimeter-wave emission of three Galactic red novae: Cool molecular outflows produced by stellar mergers. Astron. Astrophys. 2018, 617, A129. [Google Scholar] [CrossRef] [Green Version]
- Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; et al. V1309 Scorpii: Merger of a contact binary. Astron. Astrophys. 2011, 528, A114. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Avendano Nandez, J.L.; Lombardi, J.C. Identification of the Long-Sought Common-Envelope Events. Science 2013, 339, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillwig, T.C.; Jones, D.; De Marco, O.; Bond, H.E.; Margheim, S.; Frew, D. Observational Confirmation of a Link Between Common Envelope Binary Interaction and Planetary Nebula Shaping. Astrophys. J. 2016, 832, 125. [Google Scholar] [CrossRef] [Green Version]
- Huckvale, L.; Prouse, B.; Jones, D.; Lloyd, M.; Pollacco, D.; López, J.A.; O’Brien, T.J.; Sabin, L.; Vaytet, N.M.H. Spatio-kinematic modelling of Abell 65, a double-shelled planetary nebula with a binary central star. Mon. Not. R. Astron. Soc. 2013, 434, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Miszalski, B.; Jones, D.; Rodríguez-Gil, P.; Boffin, H.M.J.; Corradi, R.L.M.; Santand er-García, M. Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778. Astron. Astrophys. 2011, 531, A158. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Boffin, H.M.J.; Rodríguez-Gil, P.; Wesson, R.; Corradi, R.L.M.; Miszalski, B.; Mohamed, S. The post-common envelope central stars of the planetary nebulae Henize 2-155 and Henize 2-161. Astron. Astrophys. 2015, 580, A19. [Google Scholar] [CrossRef] [Green Version]
- Miszalski, B.; Boffin, H.M.J.; Corradi, R.L.M. A carbon dwarf wearing a Necklace: First proof of accretion in a post-common-envelope binary central star of a planetary nebula with jets. Mon. Not. R. Astron. Soc. 2013, 428, L39–L43. [Google Scholar] [CrossRef] [Green Version]
- Corradi, R.L.M.; Sabin, L.; Miszalski, B.; Rodríguez-Gil, P.; Santander-García, M.; Jones, D.; Drew, J.E.; Mampaso, A.; Barlow, M.J.; Rubio-Díez, M.M.; et al. The Necklace: Equatorial and polar outflows from the binary central star of the new planetary nebula IPHASX J194359.5+170901. Mon. Not. R. Astron. Soc. 2011, 410, 1349–1359. [Google Scholar] [CrossRef]
- Boffin, H.M.J.; Miszalski, B.; Rauch, T.; Jones, D.; Corradi, R.L.M.; Napiwotzki, R.; Day-Jones, A.C.; Köppen, J. An Interacting Binary System Powers Precessing Outflows of an Evolved Star. Science 2012, 338, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesson, R.; Jones, D.; García-Rojas, J.; Boffin, H.M.J.; Corradi, R.L.M. Confirmation of the link between central star binarity and extreme abundance discrepancy factors in planetary nebulae. Mon. Not. R. Astron. Soc. 2018, 480, 4589–4613. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; García-Rojas, J.; Jones, D.; Rodríguez-Gil, P. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae. Astrophys. J. 2015, 803, 99. [Google Scholar] [CrossRef]
- García-Rojas, J.; Corradi, R.L.M.; Monteiro, H.; Jones, D.; Rodríguez-Gil, P.; Cabrera-Lavers, A. Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778. Astrophys. J. Lett. 2016, 824, L27. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Wesson, R.; García-Rojas, J.; Corradi, R.L.M.; Boffin, H.M.J. NGC 6778: Strengthening the link between extreme abundance discrepancy factors and central star binarity in planetary nebulae. Mon. Not. R. Astron. Soc. 2016, 455, 3263–3272. [Google Scholar] [CrossRef] [Green Version]
- Wesson, R.; Barlow, M.J.; Liu, X.W.; Storey, P.J.; Ercolano, B.; De Marco, O. The hydrogen-deficient knot of the ‘born-again’ planetary nebula Abell 58 (V605 Aql). Mon. Not. R. Astron. Soc. 2008, 383, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
- Richer, M.G.; Georgiev, L.; Arrieta, A.; Torres-Peimbert, S. The Discrepant Kinematics of ORLs and CELs in NGC 7009 as a Function of Ionization Structure. Astrophys. J. 2013, 773, 133. [Google Scholar] [CrossRef] [Green Version]
- Richer, M.G.; Suárez, G.; López, J.A.; García Díaz, M.T. The Kinematics of the Permitted C II λ6578 Line in a Large Sample of Planetary Nebulae. Astron. J. 2017, 153, 140. [Google Scholar] [CrossRef] [Green Version]
- Frew, D.J.; Parker, Q.A.; Bojičić, I.S. The Hα surface brightness-radius relation: A robust statistical distance indicator for planetary nebulae. Mon. Not. R. Astron. Soc. 2016, 455, 1459–1488. [Google Scholar] [CrossRef] [Green Version]
- Villaver, E.; Manchado, A.; García-Segura, G. The Dynamical Evolution of the Circumstellar Gas around Low- and Intermediate-Mass Stars. II. The Planetary Nebula Formation. Astrophys. J. 2002, 581, 1204–1224. [Google Scholar] [CrossRef] [Green Version]
- Santander-García, M.; Jones, D.; Alcolea, J.; Wesson, R.; Bujarrabal, V. The missing mass conundrum of post-common-envelope planetary nebulae. In Highlights on Spanish Astrophysics X; Montesinos, B., Asensio Ramos, A., Buitrago, F., Schödel, R., Villaver, E., Pérez-Hoyos, S., Ordóñez-Etxeberria, I., Eds.; Sociedad Española de Astronomía: Salamanca, Spain, 2019; pp. 392–396. [Google Scholar]
- Soker, N. Close Stellar Binary Systems by Grazing Envelope Evolution. Astrophys. J. 2015, 800, 114. [Google Scholar] [CrossRef] [Green Version]
- Pejcha, O.; Metzger, B.D.; Tyles, J.G.; Tomida, K. Pre-explosion Spiral Mass Loss of a Binary Star Merger. Astrophys. J. 2017, 850, 59. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Boffin, H.M.J. Binary stars as the key to understanding planetary nebulae. Nat. Astron. 2017, 1, 0117. [Google Scholar] [CrossRef]
- Hillwig, T.C.; Bond, H.E.; Afşar, M.; De Marco, O. Binary Central Stars of Planetary Nebulae Discovered Through Photometric Variability. II. Modeling the Central Stars of NGC 6026 and NGC 6337. Astron. J. 2010, 140, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Nelemans, G.; Tout, C.A. Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. R. Astron. Soc. 2005, 356, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Woods, T.E.; Ivanova, N.; van der Sluys, M.V.; Chaichenets, S. On the Formation of Double White Dwarfs through Stable Mass Transfer and a Common Envelope. Astrophys. J. 2012, 744, 12. [Google Scholar] [CrossRef] [Green Version]
- Maoz, D.; Mannucci, F.; Nelemans, G. Observational Clues to the Progenitors of Type Ia Supernovae. Annu. Rev. Astron. Astrophys. 2014, 52, 107–170. [Google Scholar] [CrossRef] [Green Version]
- Santander-García, M.; Rodríguez-Gil, P.; Corradi, R.L.M.; Jones, D.; Miszalski, B.; Boffin, H.M.J.; Rubio-Díez, M.M.; Kotze, M.M. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. Nature 2015, 519, 63–65. [Google Scholar] [CrossRef] [Green Version]
- Soker, N.; García-Berro, E.; Althaus, L.G. The explosion of supernova 2011fe in the frame of the core-degenerate scenario. Mon. Not. R. Astron. Soc. 2014, 437, L66–L70. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Gil, P.; Santander-García, M.; Knigge, C.; Corradi, R.L.M.; Gänsicke, B.T.; Barlow, M.J.; Drake, J.J.; Drew, J.; Miszalski, B.; Napiwotzki, R.; et al. The orbital period of V458 Vulpeculae, a post-double common-envelope nova. Mon. Not. R. Astron. Soc. 2010, 407, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Tsebrenko, D.; Soker, N. The fraction of type Ia supernovae exploding inside planetary nebulae (SNIPs). Mon. Not. R. Astron. Soc. 2015, 447, 2568–2574. [Google Scholar] [CrossRef] [Green Version]
- Livio, M.; Mazzali, P. On the progenitors of Type Ia supernovae. Phys. Rep. 2018, 736, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Blackman, E.G.; Nordhaus, J.; Frank, A.; Carroll-Nellenback, J. Wind-accelerated orbital evolution in binary systems with giant stars. Mon. Not. R. Astron. Soc. 2018, 473, 747–756. [Google Scholar] [CrossRef]
- Boffin, H.M.J. Mass Transfer by Stellar Wind. In Ecology of Blue Straggler Stars; Springer Nature: Berlin/Heidelberg, Germany, 2015; Volume 413, p. 153. [Google Scholar] [CrossRef] [Green Version]
- Tout, C.A.; Eggleton, P.P. Tidal enhancement by a binary companion of stellar winds from cool giants. Mon. Not. R. Astron. Soc. 1988, 231, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Van Winckel, H.; Jorissen, A.; Exter, K.; Raskin, G.; Prins, S.; Perez Padilla, J.; Merges, F.; Pessemier, W. Binary central stars of planetary nebulae with long orbits: The radial velocity orbit of BD+33 2642 (PN G052.7+50.7) and the orbital motion of HD 112313 (PN LoTr5). Astron. Astrophys. 2014, 563, L10. [Google Scholar] [CrossRef]
- Ciardullo, R.; Bond, H.E.; Sipior, M.S.; Fullton, L.K.; Zhang, C.Y.; Schaefer, K.G. A HUBBLE SPACE TELESCOPE Survey for Resolved Companions of Planetary Nebula Nuclei. Astron. J. 1999, 118, 488–508. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5. Astron. Astrophys. 2017, 600, L9. [Google Scholar] [CrossRef] [Green Version]
- Ressler, M.E.; Cohen, M.; Wachter, S.; Hoard, D.W.; Mainzer, A.K.; Wright, E.L. The Discovery of Infrared Rings in the Planetary Nebula NGC 1514 During the WISE All-sky Survey. Astron. J. 2010, 140, 1882–1890. [Google Scholar] [CrossRef] [Green Version]
- Boffin, H.M.J.; Jorissen, A. Can a barium star be produced by wind accretion in a detached binary? Astron. Astrophys. 1988, 205, 155–163. [Google Scholar]
- Miszalski, B.; Boffin, H.M.J.; Jones, D.; Karakas, A.I.; Köppen, J.; Tyndall, A.A.; Mohamed, S.S.; Rodríguez-Gil, P.; Santand er-García, M. SALT reveals the barium central star of the planetary nebula Hen 2-39. Mon. Not. R. Astron. Soc. 2013, 436, 3068–3081. [Google Scholar] [CrossRef] [Green Version]
- Tyndall, A.A.; Jones, D.; Boffin, H.M.J.; Miszalski, B.; Faedi, F.; Lloyd, M.; Boumis, P.; López, J.A.; Martell, S.; Pollacco, D.; et al. Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. Mon. Not. R. Astron. Soc. 2013, 436, 2082–2095. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Gil de Paz, A.; Sahai, R. The Companion to the Central Mira Star of the Protoplanetary Nebula OH 231.8+4.2. Astrophys. J. 2004, 616, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Hrivnak, B.J.; Lu, W.; Bohlender, D.; Morris, S.C.; Woodsworth, A.W.; Scarfe, C.D. Are Proto-planetary Nebulae Shaped by a Binary? Results of a Long-term Radial Velocity Study. Astrophys. J. 2011, 734, 25. [Google Scholar] [CrossRef] [Green Version]
- Hrivnak, B.J.; Van de Steene, G.; Van Winckel, H.; Sperauskas, J.; Bohlender, D.; Lu, W. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae. Astrophys. J. 2017, 846, 96. [Google Scholar] [CrossRef]
- Olofsson, H.; Vlemmings, W.H.T.; Maercker, M.; Humphreys, E.M.L.; Lindqvist, M.; Nyman, L.; Ramstedt, S. ALMA view of the circumstellar environment of the post-common-envelope-evolution binary system HD 101584. Astron. Astrophys. 2015, 576, L15. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, H.; Khouri, T.; Maercker, M.; Bergman, P.; Doan, L.; Tafoya, D.; Vlemmings, W.H.T.; Humphreys, E.M.L.; Lindqvist, M.; Nyman, L.; et al. HD 101584: Circumstellar characteristics and evolutionary status. Astron. Astrophys. 2019, 623, A153. [Google Scholar] [CrossRef] [Green Version]
- Bakker, E.J.; Lamers, H.J.G.L.M.; Waters, L.B.F.M.; Waelkens, C. The 218-day period of the peculiar late B-type star HD 101584. Astron. Astrophys. 1996, 310, 861–871. [Google Scholar]
- Díaz, F.; Hearnshaw, J.; Rosenzweig, P.; Guzman, E.; Sivarani, T.; Parthasarathy, M. Radial-Velocity Analysis of the Post-AGB Star, HD101584. In Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, Prague, Czech Republic; Hartkopf, W.I., Harmanec, P., Guinan, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 240, IAU Symposium; p. 127. [Google Scholar]
- Hrivnak, B.J.; Van de Steene, G.; Van Winckel, H.; Lu, W.; Sperauskas, J. Variability in Proto-planetary Nebulae. V. Velocity and Light Curve Analysis of IRAS 17436+5003, 18095+2704, and 19475+3119. Astron. J. 2018, 156, 300. [Google Scholar] [CrossRef] [Green Version]
- Hrivnak, B.J.; Henson, G.; Hillwig, T.C.; Lu, W.; Murphy, B.W.; Kaitchuck, R.H. Variability in Proto-planetary Nebulae. VI. Multitelescope Light Curve Studies of Several Medium-bright (V = 13-15), Carbon-rich Objects. Astron. J. 2020, 159, 21. [Google Scholar] [CrossRef]
- Sahai, R.; Nyman, L.Å. The Boomerang Nebula: The Coldest Region of the Universe? Astrophys. J. Lett. 1997, 487, L155–L159. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 2014, 440, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R. Planetary Nebulae, Morphology and Binarity, and the relevance to AGB Stars. In Why Galaxies Care About AGB Stars: A Continuing Challenge through Cosmic Time, Vienna, Austria; Kerschbaum, F., Groenewegen, M., Olofsson, H., Eds.; Cambridge University Press: Cambridge, UK, 2019; Volume 343, IAU Symposium; pp. 164–173. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; Balick, B.; Santander-García, M. The evolution of M 2-9 from 2000 to 2010. Astron. Astrophys. 2011, 529, A43. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | This fraction is extremely dependent on both mass [4] and metallicity [12] but, even accounting for more massive progenitor stars which are more likely to be found in binaries close enough to experience a CE, the total fraction probably doesn’t increase that much given that such stars are less abundant. |
3. | One might also say that the envelope ejection can also be studied directly in stellar mergers (e.g., luminous red novae [15]). However, these represent “failed” CEs, in which the envelope was not completely ejected and thus led to a merger [16,17]. Post-CE PNe are instead the products of “successful” CE ejections. |
4. | Wind Roche lobe overflow could even cause the orbital separation to reduce, possibly leading to a CE phase [47]. |
5. | A number of further wide-binary central stars have been found, either via chemical contamination of their companions (for example, the Barium stars as mentioned later) or via companions resolved with space-based observations [51], for which the orbital periods have not been measured. |
6. | The central star of the Calabash nebula (OH 231.8+4.2) likely has an A-type companion, but the orbital characteristics are uncertain [57]. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D. Binary Central Stars of Planetary Nebulae. Galaxies 2020, 8, 28. https://doi.org/10.3390/galaxies8020028
Jones D. Binary Central Stars of Planetary Nebulae. Galaxies. 2020; 8(2):28. https://doi.org/10.3390/galaxies8020028
Chicago/Turabian StyleJones, David. 2020. "Binary Central Stars of Planetary Nebulae" Galaxies 8, no. 2: 28. https://doi.org/10.3390/galaxies8020028
APA StyleJones, D. (2020). Binary Central Stars of Planetary Nebulae. Galaxies, 8(2), 28. https://doi.org/10.3390/galaxies8020028