Massive Star Formation in the Ultraviolet Observed with the Hubble Space Telescope
Abstract
:1. Introduction—A Brief Retrospective of the Pre-Hubble Times
2. Massive Stars in Nearby Star Clusters in the Era of Hubble
3. Massive Stars in Integrated Star Cluster Spectra
4. Population Synthesis Models for Massive Star Populations
4.1. Star Formation and Related Properties
4.2. Stellar Libraries
- Laboratory data are sometimes incomplete or uncertain, and therefore the quality of the line lists may be insufficient for the computation of model atmospheres.
- The computational effort for producing a large model set can be challenging. This may limit the available parameter space.
- Departures from local thermal equilibrium (LTE) are important for hot stars. This can greatly increase the computational effort.
- Hot luminous stars have outflows and are extended. Therefore, the models must account for sphericity effects and possibly include hydrodynamics.
- Deviations from spherical symmetry can be relevant, in particular if the stars are not single.
- Massive stars are rare and some stellar species (e.g., extremely metal-poor massive stars) are simply not found locally.
- Telescope time is precious, whereas computer time is comparatively inexpensive (and keeps becoming less expensive). Allocating telescope time for generating an extensive stellar library is often not considered high science return.
- Dust reddening for massive stars can be significant. UV data in particular often require large reddening corrections.
- An even more serious issue concerns interstellar absorption lines in the UV. Such lines often contaminate stellar resonance lines.
- An often-neglected issue is the need of a calibration of the spectral-types against temperature when the observed spectra are linked to evolution models. This relation is based on models, so that ultimately observational libraries are model dependent as well.
4.3. Stellar Evolution
4.4. Stellar Multiplicity
4.5. Very Massive Stars
5. II Zw 40—A Case Study
6. The Future—ULLYSES and CLASSY
- Stellar atmospheres and evolution: The UV provides access to P Cygni profiles from hot, luminous stars from which wind properties (velocities, mass-loss rates, clumping, porosity) will be empirically obtained. They strongly influence the evolution of massive stars, yet evolutionary calculations often have to rely on theoretical predictions. Furthermore, photospheric lines from carbon, nitrogen, oxygen and the iron forest provide a direct signature of the ionization conditions of iron and other elements within the stellar atmosphere, which are necessary for evaluating line blanketing and mixing. Such information is essential for deriving reliable relations between spectral type and effective temperature, which are in turn necessary for placing stars in the Hertzsprung-Russell diagram and understanding their evolution. The high-resolution spectra will also yield the projected rotational velocities, which are another vital parameter affecting stellar evolution and Lyman continuum luminosities.
- Spectral templates for stellar population synthesis: The library will provide the much-needed OB and W-R spectroscopic templates for rest-frame UV studies of integrated stellar populations in high-z galaxies with the James Webb Space Telescope and Extremely Large Telescopes. The proximity and low metallicity of the LMC and SMC makes them ideal targets. The atlas will greatly extend the number of high-quality, UV spectroscopic templates in both galaxies, achieving a similar OB and W-R sample to that of the Milky Way from IUE. It will also provide more representative examples, since archival datasets were largely selected based on other criteria, such as being UV-bright for ISM studies, or focused on unusual systems (e.g., magnetic O stars, rapid rotators). Currently, low-metallicity templates are poorly sampled compared to those at solar values, yet the former are essential for interpreting the stellar populations in starburst galaxies such as GPs and Lyman-α emitters.
- Stellar populations at low metallicity: The spectral templates will clarify the IMF, cluster ages, and ionizing SED in massive clusters and local galaxies that serve as analogs of higher redshift objects, which are commonly metal-deficient, especially in iron peak elements. These are critical for estimating star cluster masses and ages, which are the fundamental input parameters for understanding massive-star feedback and evolutionary processes in star-forming galaxies. Indeed, some local, intensely star-forming, metal-poor galaxies are known to be Lyman continuum emitters; identifying their stellar populations is critical to understand the conditions for Lyman continuum escape. In addition, stellar abundances at low metallicity are more accurate in weak-wind populations, and can calibrate nebular diagnostics.
- Multi-phase ISM and dust: The stellar spectra will contain many interstellar metal lines across the UV. This will enable comprehensive studies of the ISM in the Magellanic Clouds, Milky Way, and perhaps the metal-poor galaxies; in particular, element abundances, dust depletion, kinematics, ionization state, and spatial distribution of multi-phase gas. UV continuum studies will further characterize the dust extinction law in a range of metallicities and environments, since the foreground Milky Way component of the extinction is low.
- Circumgalactic medium: The stellar spectra will also reveal absorption lines from the circumgalactic medium of the Magellanic Clouds and the Milky Way. The LMC systemic velocity of +260 km s−1 is large enough to differentiate LMC and Galactic components, while the SMC systemic velocity of +150 km s−1 allows probing a more limited velocity range. This data set can thus be leveraged to study the galaxy-scale gas inflows and outflows, clarifying the baryon and metal cycle of star formation, feedback, galactic chemical evolution, and other evolutionary processes in a system that is currently being dynamically entrained by the Milky Way. Moreover, the high sensitivity of UV wavelengths to small particles and large molecules will enable measuring variations in the particles size distribution, and the connection between the abundance of polycyclic aromatic hydrocarbon and UV irradiation.
- The effects of massive stars on the surrounding gas: The radiation emitted by massive stars influences all aspects of UV spectra in star-forming galaxies, yet their ionizing spectra are not well understood. They determine the shape of the far-UV continuum and their extreme-UV (EUV) radiation fields are reprocessed by the ISM, powering the nebular continuum and emission lines. Uncertainties in the shape of the ionizing spectrum significantly affect the interpretation of UV spectra, including gas properties, stellar feedback, production of H-ionizing photons, and effects of dust. While the implementation of new ingredients in stellar population synthesis, such as rotation or binaries, continues to refine the predicted EUV radiation field, the shape of the ionizing spectrum remains very poorly constrained for the metal-poor stellar populations that come to dominate at high redshift.
- Revealing the physical properties of outflows: The kinematics of the galaxy-scale outflows of gas driven by massive stars are encoded into the Lyman-α profiles and ISM resonant absorption lines observed in the UV. Since these outflows are likely photoionized, the observed stellar population properties help to determine the properties of the outflowing gas. In turn, the ISM absorption lines from multiple ions spanning the UV coverage will determine the outflow’s ionization structure, chemical composition, and gas mass. These measurements are important for determining the total gas mass removed by stellar feedback and constraining the energy injected by the observed massive-star population, and are uniquely probed in the UV.
- UV diagnostics of chemical evolution: Studying the chemistry and physical conditions in star-forming galaxies is key to understanding the principal components of galaxy formation and evolution: outflows, infall, star-formation, and gas enrichment. Traditional optical emission-line diagnostics used to investigate such properties (i.e., the metal content, density, and the strength/shape of ionizing radiation) will not be accessible for the most distant galaxies observed with ELTs and JWST, highlighting the need for well-calibrated tracers at UV wavelengths. Strong UV lines characterize a plethora of gas properties, including temperature, density, and metal abundance, as well as reflecting the properties of the ionizing spectrum.
- Exploring reionization physics: At redshifts between z = 6–10, ionizing photons escaped from galaxies to reionize the universe. Determining the sources of cosmic reionization is one of four key science goals of JWST. However, neither JWST nor ELTs will directly observe the Lyman continuum during the epoch of reionization owing to the increasing opacity of the intergalactic medium. To discern whether star-forming galaxies reionized the universe, indirect indicators must be used to measure: (1) the intrinsic number of ionizing photons produced by massive stars and (2) the fraction of these photons that escape galaxies. The product of these two quantities is the number of ionizing photons emitted by a star-forming galaxy. CLASSY will predict the number of ionizing photons from the massive star features and determine correlations with UV emission lines. Theoretical arguments and small observational samples suggest that UV nebular emission and absorption features trace the escape fraction. CLASSY will indirectly infer escape fractions of a statistically significant sample using UV diagnostics accessible by ELTs and JWST: Lyman-α emission, the depth of low-ionization absorption lines, and the strength of high-ionization emission lines.
Acknowledgments
Conflicts of Interest
References
- Morton, D.C.; Spitzer, L., Jr. Line Spectra of Delta and Pi Scorpii in the Far-Ultraviolet. APJ 1966, 144, 1–12. [Google Scholar] [CrossRef]
- Kinney, A.L.; Bohlin, R.C.; Calzetti, D.; Panagia, N.; Wyse, R.F.G. An Atlas of Ultraviolet Spectra of Star-forming Galaxies. APJS 1993, 86, 5–93. [Google Scholar] [CrossRef]
- Castro, N.; Crowther, P.A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S.; Melnick, J.; Selman, F. Mapping the core of the Tarantula Nebula with VLT-MUSE. I. Spectral and nebular content around R136. Astron. Astrophys. 2018, 614, A147. [Google Scholar] [CrossRef] [Green Version]
- Vacca, W.D.; Robert, C.; Leitherer, C.; Conti, P.S. The Stellar Content of 30 Doradus Derived from Spatially Integrated Ultraviolet Spectra: A Test of Spectral Synthesis Models. APJ 1995, 444, 647–662. [Google Scholar] [CrossRef]
- González Delgado, R.M.; Pérez, E. Multiwavelength analysis of active star forming regions: The case of NGC 604. Mon. Not. R. Astron. Soc. 2000, 317, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, G.; Leitherer, C.; Heckman, T.M.; Lennon, D.J.; de Mello, D.F.; Meurer, G.R.; Martin, C.L. Characterizing the Stellar Population in NGC 1705-1. APJ 2004, 600, 162–181. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Anderson, K.S. The Initial Mass Function for Early-Type Stars in Starburst Galaxies. AJ 1987, 94, 644–650. [Google Scholar] [CrossRef]
- York, D.; Caulet, A.; Rybski, P.; Gallagher, J.; Blades, J.C.; Morton, D.C.; Wamsteker, W. Interstellar absorption lines in the galaxy NGC 1705. APJ 1990, 351, 412–417. [Google Scholar] [CrossRef]
- Shields, G.A. Extragalactic HII regions. ARA&A 1990, 28, 525–560. [Google Scholar]
- Heckman, T.M. Local Starbursts in a Cosmological Context. In Starbursts: From 30 Doradus to Lyman Break Galaxies; de Grijs, R., Delgado, R.M.G., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 3–10. [Google Scholar]
- Crowther, P. Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions. Galaxies 2019, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.J.; Taylor, W.D.; Hénault-Brunet, V.; Sana, H.; de Koter, A.; Simón-Díaz, S.; Carraro, G.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.M.; et al. The VLT-FLAMES Tarantula Survey I: Introduction and observational overview. Astron. Astrophys. 2011, 530, A108. [Google Scholar] [CrossRef]
- Doran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.; Walborn, N.R.; Bastian, N.; Bestenlehner, J.M.; Gräfener, G.; Herrero, A.; et al. The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus. Astron. Astrophys. 2013, 558, A134. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. Properties of Giant H II Regions. In Massive Stars in Starbursts; Leitherer, C., Walborn, N., Heckman, T., Norman, C., Eds.; Cambridge Univ. Press: Cambridge, UK, 1991; pp. 157–167. [Google Scholar]
- Crowther, P.A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Maíz Apellániz, J.; Schneider, F.R.N.; Walborn, N.R.; Angus, C.R.; Brott, I.; Bonanos, A.; de Koter, A.; et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters. Mon. Not. R. Astron. Soc. 2016, 458, 624–659. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F.R.N.; Ramírez-Agudelo, O.H.; Tramper, F.; Bestenlehner, J.M.; Castro, N.; Sana, H.; Evans, C.J.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Langer, N.; et al. The VLT-FLAMES Tarantula Survey. XXIX. Massive star formation in the local 30 Doradus starburst. Astron. Astrophys. 2018, 618, A73. [Google Scholar] [CrossRef]
- Sabbi, E.; Lennon, D.J.; Anderson, J.; Cignoni, M.; van der Marel, R.P.; Zaritsky, D.; De Marchi, G.; Panagia, N.; Gouliermis, D.A.; Grebel, E.K.; et al. Hubble Tarantula Treasury Project. III. Photometric Catalog and Resulting Constraints on the Progression of Star Formation in the 30 Doradus Region. APJS 2016, 222, 11. [Google Scholar] [CrossRef] [Green Version]
- Relaño, M.; Kennicutt, R.C., Jr. Star Formation in Luminous H II Regions in M33. APJ 2009, 699, 1125–1143. [Google Scholar] [CrossRef]
- Hunter, D.A.; Baum, W.A.; O’Neil, E.J., Jr.; Lynds, R. The Intermediate Stellar Mass Population in NGC 604 Determined from Hubble Space Telescope Images. APJ 1996, 456, 174–186. [Google Scholar] [CrossRef]
- Miskey, C.L.; Bruhweiler, F.C. STIS Spectral Imagery of the OB Stars in NGC 604. I. Description of the Extraction Technique for a Crowded Stellar Field. AJ 2003, 125, 3071–3081. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Relaño, M. The red supergiants and Wolf-Rayet stars of NGC 604. Mon. Not. R. Astron. Soc. 2011, 411, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Bruhweiler, F.C.; Miskey, F.C.; Smith Neubig, M. STIS Spectral Imagery of the OB Stars in NGC 604. II. The Most Luminous Stars. AJ 2003, 125, 3082–3096. [Google Scholar] [CrossRef]
- Cerviño, M. The stochastic nature of stellar population modelling. New. Astron. Rev. 2013, 57, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Wofford, A.; Leitherer, C.; Chandar, R. Ultraviolet Spectroscopy of Circumnuclear Star Clusters in M83. APJ 2011, 727, 100. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.S. Mass loss and the evolution of massive stars. New Astron. Rev. 2008, 52, 419–422. [Google Scholar] [CrossRef]
- Brandt, J.C.; Heap, S.R.; Beaver, E.A.; Boggess, A.; Carpenter, K.G.; Ebbets, D.C.; Hutchings, J.B.; Jura, M.; Leckrone, D.S.; Linsky, J.L.; et al. An Ultraviolet Spectral Atlas of 10 Lacertae Obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. AJ 1998, 116, 941–971. [Google Scholar] [CrossRef]
- Rix, S.A.; Pettini, M.; Leitherer, C.; Bresolin, F.; Kudritzki, R.P.; Steidel, C.C. Spectral Modeling of Star-forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High-Redshift Galaxies. APJ 2004, 615, 98–117. [Google Scholar] [CrossRef]
- Halliday, C.; Daddi, E.; Cimatti, A.; Kurk, J.; Renzini, A.; Mignoli, M.; Bolzonella, M.; Pozzetti, L.; Dickinson, M.; Zamorani, G.; et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2. I. The stellar metallicity. Astron. Astrophys. 2008, 479, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.L.; Shapley, A.E.; Reddy, N.A.; Kriek, M.; Siana, B.; Coil, A.L.; Mobasher, B.; Shivaei, I.; Freeman, W.R.; Azadi, M.; et al. The MOSDEF survey: direct-method metallicities and ISM conditions at z ≈ 1.5-3.5. Mon. Not. R. Astron. Soc. 2020, 491, 1427–1455. [Google Scholar] [CrossRef] [Green Version]
- Berg, D.A.; Skillman, E.D.; Henry, R.B.C.; Erb, D.K.; Carigi, L. Carbon and Oxygen Abundances in Low Metallicity Dwarf Galaxies. APJ 2016, 827, 126. [Google Scholar] [CrossRef] [Green Version]
- Leitherer, C.; Tremonti, C.A.; Heckman, T.M.; Calzetti, D. An Ultraviolet Spectroscopic Atlas of Local Starbursts and Star-forming Galaxies: The Legacy of FOS and GHRS. AJ 2011, 141, 37. [Google Scholar] [CrossRef] [Green Version]
- James, B.L.; Aloisi, A.; Heckman, T.; Sohn, S.T.; Wolfe, M.A. Investigating Nearby Star-forming Galaxies in the Ultraviolet with HST/COS Spectroscopy. I. Spectral Analysis and Interstellar Abundance Determinations. APJ 2014, 795, 109. [Google Scholar] [CrossRef] [Green Version]
- Kehrig, C.; Vílchez, J.M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J.D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D. Spatially resolved integral field spectroscopy of the ionized gas in IZw18. Mon. Not. R. Astron. Soc. 2016, 459, 2992–3004. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. SBS 0335-052W: The Lowest Metallicity Star-forming Galaxy Known. APJ 2005, 632, 210–216. [Google Scholar] [CrossRef]
- Thuan, T.X.; Izotov, Y.I.; Foltz, C.B. The Young Age of the Extremely Metal-deficient Blue Compact Dwarf Galaxy SBS 1415+437. APJ 1999, 525, 105–126. [Google Scholar] [CrossRef]
- Aloisi, A.; van der Marel, R.P.; Mack, J.; Leitherer, C.; Sirianni, M.; Tosi, M. Do Young Galaxies Exist in the Local Universe? Red Giant Branch Detection in the Metal-poor Dwarf Galaxy SBS 1415+437. APJ 2005, 631, L45–L48. [Google Scholar] [CrossRef]
- Kobulnicky, H.A.; Skillman, E.D.; Roy, J.-R.; Walsh, J.R.; Rosa, M.R. Hubble Space Telescope Faint Object Spectroscope Spectroscopy of Localized Chemical Enrichment from Massive Stars in NGC 5253. APJ 1997, 477, 679–692. [Google Scholar] [CrossRef] [Green Version]
- López-Sánchez, Á.R.; Esteban, C.; García-Rojas, J.; Peimbert, M.; Rodríguez, M. The Localized Chemical Pollution in NGC 5253 Revisited: Results from Deep Echelle Spectrophotometry. APJ 2007, 656, 168–185. [Google Scholar] [CrossRef]
- Gehrz, R.D.; Sramek, R.A.; Weedman, D.W. Star bursts and the extraordinary galaxy NGC 3690. APJ 1983, 267, 551–562. [Google Scholar] [CrossRef]
- Elmegreen, D.M.; Chromey, F.R.; Warren, A.R. Discovery of a Double Circumnuclear Ring and Minibar in the Starburst Galaxy M83. AJ 1998, 116, 2834–2840. [Google Scholar] [CrossRef]
- Chisholm, J.; Rigby, J.R.; Bayliss, M.; Berg, D.A.; Dahle, H.; Gladders, M.; Sharon, K. Constraining the Metallicities, Ages, Star Formation Histories, and Ionizing Continua of Extragalactic Massive Star Populations. APJ 2019, 882, 182. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.M. Evolution of the Stars and Gas in Galaxies. Fund. Cosmic Phys. 1980, 5, 287–388. [Google Scholar] [CrossRef]
- Conroy, C. Modeling the Panchromatic Spectral Energy Distributions of Galaxies. ARA&A 2013, 51, 393–455. [Google Scholar]
- Dale, D.A.; Gil de Paz, A.; Gordon, K.D.; Hanson, H.M.; Armus, L.; Bendo, G.J.; Bianchi, L.; Block, M.; Boissier, S.; Boselli, A.; et al. An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies. APJ 2007, 655, 863–884. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Stanway, E.R.; Xiao, L.; McClelland, L.A.S.; Taylor, G.; Ng, M.; Greis, S.M.L.; Bray, J.C. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. PASA 2017, 34, e058. [Google Scholar] [CrossRef] [Green Version]
- Noll, S.; Burgarella, D.; Giovannoli, E.; Buat, V.; Marcillac, D.; Muñoz-Mateos, J.C. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 2009, 507, 1793–1813. [Google Scholar] [CrossRef] [Green Version]
- Kotulla, R.; Fritze, U.; Weilbacher, P.; Anders, P. GALEV evolutionary synthesis models - I. Code, input physics and web interface. Mon. Not. R. Astron. Soc. 2009, 396, 462–484. [Google Scholar] [CrossRef] [Green Version]
- Bruzual, G.; Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 2003, 344, 1000–1028. [Google Scholar] [CrossRef] [Green Version]
- Vazdekis, A.; Ricciardelli, E.; Cenarro, A.J.; Rivero-González, J.G.; Díaz-García, L.A.; Falcón-Barroso, J. MIUSCAT: extended MILES spectral coverage - I. Stellar population synthesis models. Mon. Not. R. Astron. Soc. 2012, 424, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Fioc, M.; Rocca-Volmerange, B. PÉGASE.3: A code for modeling the UV-to-IR/submm spectral and chemical evolution of galaxies with dust. Astron. Astrophys. 2019, 623, A143. [Google Scholar] [CrossRef] [Green Version]
- Leitherer, C.; Ekström, S.; Meynet, G.; Schaerer, D.; Agienko, K.B.; Levesque, E.M. The Effects of Stellar Rotation. II. A Comprehensive Set of Starburst99 Models. APJS 2014, 212, 14. [Google Scholar] [CrossRef] [Green Version]
- Walcher, J.; Groves, B.; Budavári, T.; Dale, D. Fitting the integrated spectral energy distributions of galaxies. Astrophys. Space Sci. 2011, 331, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C.; Evans, N.J. Star Formation in the Milky Way and Nearby Galaxies. ARA&A 2012, 50, 531–608. [Google Scholar]
- Bastian, N.; Covey, K.R.; Meyer, M.R. A Universal Stellar Initial Mass Function? A Critical Look at Variations. ARA&A 2010, 48, 339–389. [Google Scholar]
- Leitherer, C. The Upper Initial Mass Function from Ultraviolet Spectral Lines. In UP2010: Have Observations Revealed A Variable Upper End of the Initial Mass Function; Treyer, M., Lee, J.C., Seibert, M.H., Wyder, T., Neill, D., Eds.; ASP: San Francisco, CA, USA, 2011; pp. 309–316. [Google Scholar]
- Georgy, C.; Ekström, S.; Eggenberger, P.; Meynet, G.; Haemmerlé, L.; Maeder, A.; Granada, A.; Groh, J.H.; Hirschi, R.; Mowlavi, N.; et al. Grids of stellar models with rotation. III. Models from 0.8 to 120 M☉ at a metallicity Z = 0.002. Astron. Astrophys. 2013, 558, A103. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.P.; Coelho, P. Testing the accuracy of synthetic stellar libraries. Mon. Not. R. Astron. Soc. 2007, 381, 1329–1346. [Google Scholar] [CrossRef] [Green Version]
- Puls, J. Physical and Wind Properties of OB-Stars. In IAU Symp. 250, Massive Stars As Cosmic Engines; Bresolin, F., Crowther, P.A., Puls, J., Eds.; Cambridge Univ. Press: Cambridge, UK, 2008; pp. 25–38. [Google Scholar]
- Leitherer, C.; Ortiz Otálvaro, P.A.; Bresolin, F.; Kudritzki, R.P.; Lo Faro, B.; Pauldrach, A.W.A.; Pettini, M.; Rix, S.A. A Library of Theoretical Ultraviolet Spectra of Massive, Hot Stars for Evolutionary Synthesis. APJS 2010, 189, 309–335. [Google Scholar] [CrossRef] [Green Version]
- Meynet, G.; Maeder, A.; Georgy, C.; Ekström, S.; Eggenberger, P.; Barblan, F.; Song, H.F. Massive stars, successes and challenges. In IAU Symp. 329, The Lives and Death Throes of Massive Stars; Eldridge, J.J., Bray, J.C., McClelland, L.A.S., Xiao, L., Eds.; Cambridge Univ. Press: Cambridge, UK, 2017; pp. 3–14. [Google Scholar]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. ARA&A 2014, 52, 487–528. [Google Scholar]
- Brott, I.; de Mink, S.E.; Cantiello, M. Rotating massive main-sequence stars. II. Simulating a population of LMC early B-type stars as a test of rotational mixing. Astron. Astrophys. 2011, 530, A115. [Google Scholar] [CrossRef]
- Ekström, S.; Eggenberger, P.; Meynet, G.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M☉ at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar] [CrossRef] [Green Version]
- Chieffi, A.; Limongi, M. Pre-supernova Evolution of Rotating Solar Metallicity Stars in the Mass Range 13-120 M☉ and their Explosive Yields. APJ 2013, 764, 21. [Google Scholar] [CrossRef]
- Groh, J.H.; Ekström, S.; Georgy, C.; Meynet, G.; Choplin, A.; Eggenberger, P.; Hirschi, R.; Maeder, A.; Murphy, L.J.; Boian, I.; et al. Grids of stellar models with rotation. IV. Models from 1.7 to 120 M☉ at a metallicity Z = 0.0004. Astron. Astrophys. 2019, 627, A24. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, G.; Kraus, A. Stellar Multiplicity. ARA&A 2013, 51, 269–310. [Google Scholar]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.-B. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sana, H.; de Koter, A.; de Mink, S.E.; Dunstall, P.R.; Evans, C.J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O.H.; Taylor, W.D.; Walborn, N.R.; et al. The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 2013, 550, A107. [Google Scholar] [CrossRef] [Green Version]
- Götberg, Y.; de Mink, S.E.; Groh, J.H.; Leitherer, C.; Norman, C. The impact of stars stripped in binaries on the integrated spectra of stellar populations. Astron. Astrophys. 2019, 629, A134. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.J.; Crowther, P.A.; Calzetti, D.; Sidoli, F. The Very Massive Star Content of the Nuclear Star Clusters in NGC 5253. APJ 2016, 823, 38. [Google Scholar] [CrossRef] [Green Version]
- Yusof, N.; Hirschi, R.; Meynet, G.; Crowther, P.A.; Ekström, S.; Frischknecht, U.; Georgy, C.; Abu Kassim, H.; Schnurr, O. Evolution and fate of very massive stars. Mon. Not. R. Astron. Soc. 2013, 433, 1114–1132. [Google Scholar] [CrossRef] [Green Version]
- Sargent, W.L.W.; Searle, L. Isolated Extragalactic H II Regions. APJ 1970, 162, L155–L160. [Google Scholar] [CrossRef]
- Gil de Paz, A.; Madore, B.F. Palomar/Las Campanas Imaging Atlas of Blue Compact Dwarf Galaxies. II. Surface Photometry and the Properties of the Underlying Stellar Population. APJS 2005, 156, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C.; Lee, J.C.; Funes, J.G.; Sakai, S.; Akiyama, S. An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume. APJS 2008, 178, 247–279. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Kennicutt, R.C., Jr.; Funes, S.J.J.G.; Sakai, S.; Akiyama, S. Dwarf Galaxy Starburst Statistics in the Local Volume. APJ 2009, 692, 1305–1320. [Google Scholar] [CrossRef]
- Leitherer, C.; Byler, N.; Lee, J.C.; Levesque, E.M. Physical Properties of II Zw 40′s Super Star Cluster and Nebula: New Insights and Puzzles from UV Spectroscopy. APJ 2018, 865, 55. [Google Scholar] [CrossRef] [Green Version]
- Kepley, A.A.; Reines, A.E.; Johnson, K.E.; Walker, L.M. High Resolution Radio and Optical Observations of the Central Starburst in the Low-metallicity Dwarf Galaxy II Zw 40. AJ 2014, 147, 43. [Google Scholar] [CrossRef] [Green Version]
- Vacca, W.D.; Conti, P.S. Optical Spectrophotometry of Wolf-Rayet Galaxies. APJ 1992, 401, 543–558. [Google Scholar] [CrossRef]
- Rigby, J.R.; Bayliss, M.B.; Gladders, M.D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Peña-Guerrero, M. C III] Emission in Star-forming Galaxies Near and Far. APJ 2015, 814, L6. [Google Scholar] [CrossRef] [Green Version]
- Pauldrach, A.W.A.; Lennon, M.; Hoffmann, T.L.; Sellmaier, F.; Kudritzki, R.-P.; Puls, J. Realistic Models for Expanding Atmospheres. In Properties of Hot Luminous Stars; Howarth, I., Ed.; ASP: San Francisco, CA, USA, 1998; pp. 258–277. [Google Scholar]
- Sander, A.; Shenar, T.; Hainich, R.; Gímenez-García, A.; Todt, H.; Hamann, W.-R. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars. Astron. Astrophys. 2015, 577, A13. [Google Scholar] [CrossRef] [Green Version]
- Guseva, N.G.; Izotov, Y.I.; Thuan, T.X. A Spectroscopic Study of a Large Sample Of Wolf-Rayet Galaxies. APJ 2000, 531, 776–803. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.L.; Consiglio, S.M.; Beck, S.C.; Goss, W.M.; Ho, P.T.P.; Meier, D.S.; Silich, S.; Zhao, J.H. ALMA Detects CO(3-2) within a Super Star Cluster in NGC 5253. APJ 2017, 846, 73. [Google Scholar] [CrossRef] [Green Version]
- De Grijs, R.; Lépine, J.R.D. IAU Symp. 266, Star Clusters: Basic Galactic Building Blocks Throughout Time and Space; Cambridge Univ. Press: Cambridge, UK, 2010. [Google Scholar]
- Whitmore, B.C.; Chandar, R.; Schweizer, F.; Rothberg, B.; Leitherer, C.; Rieke, M.; Rieke, G.; Blair, W.P.; Mengel, S.; Alonso-Herrero, A. The Antennae Galaxies (NGC 4038/4039) Revisited: Advanced Camera for Surveys and NICMOS Observations of a Prototypical Merger. AJ 2010, 140, 75–109. [Google Scholar] [CrossRef]
- Gnedin, O.Y.; Ostriker, J.P. Reheating and Reionization of the Universe. APJ 1997, 474, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Drew, J.E. On star wind temperatures, Si IV λ1397 absorption and H I Hα emission. In Properties of Hot Luminous Stars; Garmany, C.D., Ed.; ASP: San Francisco, CA, USA, 1990; pp. 230–241. [Google Scholar]
- Izotov, Y.I.; Thuan, T.X. Near-infrared Spectroscopy of Five Blue Compact Dwarf Galaxies: II Zw 40, Mrk 71, Mrk 930, Mrk 996, and SBS 0335-052E. APJ 2011, 734, 82. [Google Scholar] [CrossRef] [Green Version]
- Calzetti, D. Reddening and Star Formation in Starburst Galaxies. AJ 1997, 113, 162–184. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. PASP 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Kauffmann, G.; Heckman, T.M.; Tremonti, C.; Brinchmann, J.; Charlot, S.; White, S.D.M.; Ridgway, S.E.; Brinkmann, J.; Fukugita, M.; Hall, P.B.; et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 2003, 346, 1055–1077. [Google Scholar] [CrossRef] [Green Version]
- Jaskot, A.E.; Oey, M.S. The Origin and Optical Depth of Ionizing Radiation in the "Green Pea" Galaxies. APJ 2013, 766, 91. [Google Scholar] [CrossRef]
- Micheva, G.; Oey, M.S.; Jaskot, A.E.; James, B.L. Mrk 71/NGC 2366: The Nearest Green Pea Analog. APJ 2017, 845, 165. [Google Scholar] [CrossRef] [Green Version]
- Steidel, C.C.; Rudie, G.C.; Strom, A.L.; Pettini, M.; Reddy, N.A.; Shapley, A.E.; Trainor, R.F.; Erb, D.K.; Turner, M.L.; Konidaris, N.P.; et al. Strong Nebular Line Ratios in the Spectra of z ~ 2-3 Star Forming Galaxies: First Results from KBSS-MOSFIRE. APJ 2014, 795, 165. [Google Scholar] [CrossRef] [Green Version]
- Kewley, L.J.; Heisler, C.A.; Dopita, M.A.; Lumsden, S. Optical Classification of Southern Warm Infrared Galaxies. APJS 2001, 132, 37–71. [Google Scholar] [CrossRef] [Green Version]
- Byler, N.; Dalcanton, J.J.; Conroy, C.; Johnson, B.D.; Levesque, E.M.; Berg, D.A. Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. APJ 2018, 863, 14. [Google Scholar] [CrossRef] [Green Version]
- Stark, D.P.; Richard, J.; Siana, B.; Charlot, S.; Freeman, W.R.; Gutkin, J.; Wofford, A.; Robertson, B.; Amanullah, R.; Watson, D.; et al. Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7. Mon. Not. R. Astron. Soc. 2014, 445, 3200–3220. [Google Scholar] [CrossRef] [Green Version]
- Cardamone, C.; Schawinski, K.; Sarzi, M.; Bamford, S.P.; Bennert, N.; Urry, C.M.; Lintott, C.; Keel, W.C.; Parejko, J.; Nichol, R.C.; et al. Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies. Mon. Not. R. Astron. Soc. 2009, 399, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Izotov, Y.I.; Guseva, N.G.; Thuan, T.X. Green Pea Galaxies and Cohorts: Luminous Compact Emission-line Galaxies in the Sloan Digital Sky Survey. APJ 2011, 728, 161. [Google Scholar] [CrossRef] [Green Version]
- Amorín, R.; Pérez-Montero, E.; Vílchez, J.M.; Papaderos, P. The Star Formation History and Metal Content of the Green Peas. New Detailed GTC-OSIRIS Spectrophotometry of Three Galaxies. APJ 2012, 749, 185. [Google Scholar] [CrossRef] [Green Version]
- Gutkin, J.; Charlot, S.; Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 1757–1774. [Google Scholar] [CrossRef] [Green Version]
- Garnett, D.R.; Skillman, E.D.; Dufour, R.J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G.A. The Evolution of C/O in Dwarf Galaxies from Hubble Space Telescope FOS Observations. APJ 1995, 443, 64–76. [Google Scholar] [CrossRef]
- Shapley, A.E.; Steidel, C.C.; Pettini, M.; Adelberger, K.L. Rest-Frame Ultraviolet Spectra of z~3 Lyman Break Galaxies. APJ 2003, 588, 65–89. [Google Scholar] [CrossRef]
- Erb, D.K.; Pettini, M.; Shapley, A.E.; Steidel, C.C.; Law, D.R.; Reddy, N.A. Physical Conditions in a Young, Unreddened, Low-metallicity Galaxy at High Redshift. APJ 2010, 719, 1168–1190. [Google Scholar] [CrossRef] [Green Version]
1 | |
2 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitherer, C. Massive Star Formation in the Ultraviolet Observed with the Hubble Space Telescope. Galaxies 2020, 8, 13. https://doi.org/10.3390/galaxies8010013
Leitherer C. Massive Star Formation in the Ultraviolet Observed with the Hubble Space Telescope. Galaxies. 2020; 8(1):13. https://doi.org/10.3390/galaxies8010013
Chicago/Turabian StyleLeitherer, Claus. 2020. "Massive Star Formation in the Ultraviolet Observed with the Hubble Space Telescope" Galaxies 8, no. 1: 13. https://doi.org/10.3390/galaxies8010013
APA StyleLeitherer, C. (2020). Massive Star Formation in the Ultraviolet Observed with the Hubble Space Telescope. Galaxies, 8(1), 13. https://doi.org/10.3390/galaxies8010013