Performance Test of QU-Fitting
Abstract
:1. Introduction
2. Model and Calculation
2.1. RM Synthesis
2.2. QU-Fitting
2.3. Method and Models
- Gap: 0.5 (g1), 1.0 (g2), 2.0 (g3), 5.0 (g4), and 10.0 (g5) in units of FWHM of the RMSF ( is fixed).
- Width: = = 0.25 (w1) and = 0.5, and = 0.25 (w2) in units of FWHM of the RMSF.
3. Results
- Criterion (i), convergence of MCMC: This criterion checks whether all of the model parameters with the G2 fitting model satisfy Geweke’s diagnostics. Note that in the failure case, the MCMC reaches the maximum regulation number (100,000).
- Criterion (ii), calculated chi-squared values : We check whether for the G2 fitting model is smaller than 2389 (within 3 of the chi-squared distribution with degrees of freedom); in other words, this criterion checks whether the fitting model matches the mock data spectrum.
- Criterion (iii), model selection: This criterion checks whether AIC/BIC can select the G2 fitting model (correct fitting model).
- Criterion (iv), parameter estimation: We check whether all eight true parameters for the G2 fitting model (, , , , i = 1, 2) are within 3 of their calculated . We regard parameter estimation to be not successful if any one of the eight correct parameters are out of 3 of their .
- Class (A): All four criteria satisfy the success line.
- Class (B): Criteria (i), (ii), and (iii) are satisfied, but Criterion (iv) does not satisfy the success line.
- Class (C): Criteria (i) and (ii) are satisfied, but Criteria (iii) and (iv) do not satisfy the success line.
- Class (D): Criteria (i) is satisfied, but Criteria (ii), (iii), and (iv) do not satisfy the success line.
- Class (E): None of the four criteria satisfy the success line.
4. Discussion
4.1. Success Cases within an FWHM Structure
4.2. Failure Case of the Large Gap Model
4.3. QU-Fitting Simulation Using the Delta Function Fitting Model
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RM | Rotation Measure |
FDF | Faraday Dispersion Function |
LOS | Line Of Sight |
MCMC | Markov Chain Monte Carlo |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
RMSF | Rotation Measure Spread Function |
FWHM | Full Width at Half Maximum |
POSSUM | Polarization Sky Survey of the Universe’s Magnetism |
ASKAP | Australian SKA Pathfinder |
References
- Miyashita, Y.; Ideguchi, S.; Nakagawa, S.; Akahori, T.; Takahashi, K. Faraday dispersion function of disk galaxies with axisymmetric global magnetic fields I. arXiv 2019, arXiv:1903.10162. [Google Scholar]
- Burn, B.J. On the depolarization of discrete radio sources by Faraday dispersion. Mon. Not. R. Astron. Soc. 1966, 133, 67–83. [Google Scholar] [CrossRef]
- Brentjens, M.A.; de Bruyn, A.G. Faraday rotation measure synthesis. Astron. Astrophys. 2005, 441, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Ideguchi, S.; Aoki, T.; Takefuji, K.; Ujihara, H.; Takahashi, K. Optimum Frequency of Faraday Tomography to Explore the Inter-Galactic Magnetic Field in Filaments of Galaxies. arXiv 2018, arXiv:1808.10546v2. [Google Scholar]
- Högbom, J.A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 1974, 15, 417. [Google Scholar]
- Heald, G.; Braun, R.; Edmonds, R. The Westerbork SINGS survey-II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 2009, 503, 409–435. [Google Scholar] [CrossRef]
- Kumazaki, K.; Akahori, T.; Ideguchi, S.; Kurayama, T.; Takahashi, K. Properties of intrinsic polarization angle ambiguities in Faraday tomography. Publ. Astron. Soc. Jpn. 2014, 66, 61. [Google Scholar] [CrossRef]
- Miyashita, Y.; Ideguchi, S.; Takahashi, K. Performance test of RM CLEAN and its evaluation with chi-square value. Publ. Astron. Soc. Jpn. 2016, 68, 44. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, S.P.; Brown, S.; Robishaw, T.; Schnitzeler, D.H.F.M.; McClure-Griffiths, N.M.; Feain, I.J.; Taylor, A.R.; Gaensler, B.M.; Landecker, T.L.; Harvey-Smith, L.; et al. Complex Faraday depth structure of active galactic nuclei as revealed by broad-band radio polarimetry. Mon. Not. R. Astron. Soc. 2012, 421, 3300–3315. [Google Scholar] [CrossRef]
- Ideguchi, S.; Takahashi, K.; Akahori, T.; Kumazaki, K.; Ryu, D. Fisher analysis on wide-band polarimetry for probing the intergalactic magnetic field. Publ. Astron. Soc. Jpn. 2014, 66, 5. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, T.; Nakanishi, H.; Akahori, T.; Anraku, K.; Takizawa, M.; Takahashi, I.; Onodera, S.; Tsuda, Y.; Sofue, Y. JVLA S-and X-band polarimetry of the merging cluster Abell 2256. Publ. Astron. Soc. Jpn. 2015, 67, 110. [Google Scholar] [CrossRef]
- Kaczmarek, J.F.; Purcell, C.R.; Gaensler, B.M.; McClure-Griffiths, N.M.; Stevens, J. Detection of a coherent magnetic field in the Magellanic Bridge through Faraday rotation. Mon. Not. R. Astron. Soc. 2017, 467, 1776–1794. [Google Scholar] [CrossRef]
- Schnitzeler, D.H.F.M. Finding a complex polarized signal in wide-band radio data. Mon. Not. R. Astron. Soc. 2018, 474, 300–312. [Google Scholar] [CrossRef]
- Li, F.; Cornwell, T.J.; de Hoog, F. The application of compressive sampling to radio astronomy I: Deconvolution. Astron. Astrophys. 2011, 528, 31. [Google Scholar] [CrossRef]
- Li, F.; Brown, S.; Cornwell, T.J.; de Hoog, F. The application of compressive sampling to radio astronomy II: Faraday rotation measure synthesis. Astron. Astrophys. 2011, 531, 126. [Google Scholar] [CrossRef]
- Andrecut, M.; Stil, J.M.; Taylor, A.R. Sparse Faraday rotation measure synthesis. Astron. J. 2012, 143, 33. [Google Scholar] [CrossRef]
- Sun, X.H.; Rudnick, L.; Akahori, T.; Anderson, C.S.; Bell, M.R.; Bray, J.D.; Farnes, J.S.; Ideguchi, I.; Kumazaki, K.; O’Brien, T.; et al. Comparison of algorithms for determination of rotation measure and Faraday structure. I. 1100–1400 MHz. Astron. J. 2015, 149, 60. [Google Scholar] [CrossRef]
- Geweke, J. Bayesian Statistics, 4 ed.; Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M., Eds.; Oxford University Press: New York, NY, USA, 1992; p. 163. [Google Scholar]
- Gaensler, B.M.; Landecker, T.L.; Taylor, A.R. POSSUM Collaboration 2010. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2010; Volume 215, p. 515. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyashita, Y. Performance Test of QU-Fitting. Galaxies 2019, 7, 69. https://doi.org/10.3390/galaxies7030069
Miyashita Y. Performance Test of QU-Fitting. Galaxies. 2019; 7(3):69. https://doi.org/10.3390/galaxies7030069
Chicago/Turabian StyleMiyashita, Yoshimitsu. 2019. "Performance Test of QU-Fitting" Galaxies 7, no. 3: 69. https://doi.org/10.3390/galaxies7030069
APA StyleMiyashita, Y. (2019). Performance Test of QU-Fitting. Galaxies, 7(3), 69. https://doi.org/10.3390/galaxies7030069