The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data
Abstract
:1. Introduction
2. Availability of Results To-Date
2.1. Cross-Matched Literature
2.2. High-Quality Stellar Spectra
2.3. Interactive Online Viewing
2.4. Quality-Assessed Atomic Data
3. Comparisons Between the BRASS Results and Previously Retrieved Literature
4. Summary and Future Plans
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lobel, A.; Royer, P.; Martayan, C.; Laverick, M.; Merle, T.; David, M.; Hensberge, H.; Thienpont, E. The Belgian repository of fundamental atomic data and stellar spectra. Can. J. Phys. 2017, 95, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E. The Belgian repository of fundamental atomic data and stellar spectra (BRASS)-I. Cross-matching atomic databases of astrophysical interest. Astron. Astrophys. 2018, 612, A60. [Google Scholar] [CrossRef]
- Laverick, M.; Lobel, A.; Royer, P.; Martayan, C.; Merle, T.; van Hoof, P.A.M.; van der Swaelmen, M.; David, M.; Hensberge, H.; Thienpont, E. The Belgian repository of fundamental atomic data and stellar spectra (BRASS)-II. Quality assessment of atomic line data for G-type stars. Astron. Astrophys. 2018. submitted. [Google Scholar] [CrossRef]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scripta 2015, 90, 054005. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Version 5.5.6). 2018. Available online: http://physics.nist.gov/asd (accessed on 6 April 2018).
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B Atom. Mol. Opt. Phys. 2016, 49, 074003. [Google Scholar] [CrossRef] [Green Version]
- Raskin, G.; Van Winckel, H.; Hensberge, H.; Jorissen, A.; Lehmann, H.; Waelkens, C.; Avila, G.; De Cuyper, J.-P.; Degroote, P.; Dubosson, R.; et al. HERMES: A high-resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys. 2011, 526, A69. [Google Scholar] [CrossRef]
- Bagnulo, S.; Jehin, E.; Ledoux, C.; Cabanac, R.; Melo, C.; Gilmozzi, R. The ESO Paranal Science Operations Team. Messenger 2003, 114, 10. [Google Scholar]
- Neckel, H.; Labs, D. The solar radiation between 3300 and 12500 Å. Solar Phys. 1984, 90, 205–258. [Google Scholar] [CrossRef]
- Garz, T. Absolute Oscillator Strengths of SI I Lines between 2500 A and 9000 A. Astron. Astrophys. 1973, 26, 471. [Google Scholar]
- O’Brian, T.R.; Lawler, J.E. Radiative lifetimes in Si i from laser-induced fluorescence in the visible, ultraviolet, and vacuum ultraviolet. Phys. Rev. 1991, 44, 7134. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Scott, P.; Grevesse, N.; Asplund, M.; Bergemann, M.; Sauval, A.J. The elemental composition of the Sun-II. The iron group elements Sc to Ni. Astron. Astrophys. 2015, 573, A26. [Google Scholar] [CrossRef]
- Melendez, J.; Barbuy, B. Both accurate and precise gf-values for Fe II lines. Astron. Astrophys. 2009, 497, 611–617. [Google Scholar] [CrossRef]
- Hinkle, K.; Wallace, L.; Valenti, J.; Harmer, D. Visible and Near Infrared Atlas of the Arcturus Spectrum 3727-9300 A; Hinkle, K., Wallace, L., Valenti, J., Harmer, D., Eds.; ASP: San Francisco, CA, USA, 2000; Volume 2, ISBN 1-58381-037-4. [Google Scholar]
- Kostyk, R.I. Oscillator strengths for lines of neutral chromium. Astrom. Astrofiz. 1981, 45, 3–9. (In Russian) [Google Scholar]
- Kostyk, R.I. Oscillator Strengths for Neutral Titanium Lines. Sov. Astron. 1982, 26, 422–426. [Google Scholar]
- Kostyk, R.I. Oscillator strengths of lines of neutral nickel. Astrom. Astrofiz. 1982, 46, 58. [Google Scholar]
- Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P. Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis. Astron. Astrophys. 2017, 598, A102. [Google Scholar] [CrossRef]
- Bard, A.; Kock, A.; Kock, M. Fe I oscillator strengths of lines of astrophysical interest. Astron. Astrophys. 1991, 248, 315–322. [Google Scholar]
- Den Hartog, E.A.; Ruffoni, M.P.; Lawler, J.E.; Pickering, J.C.; Lind, K.; Brewer, N.R. Fe I Oscillator Strengths for Transitions from High-lying Even-parity Levels. Astrophys. J. Suppl. 2014, 215, 23. [Google Scholar] [CrossRef]
- Sobeck, J.S.; Lawler, J.S.; Sneden, C. Improved laboratory transition probabilities for neutral chromium and redetermination of the chromium abundance for the sun and three stars. Astrophys. J. 2007, 667, 1267. [Google Scholar] [CrossRef]
- Blackwell, D.E.; Booth, A.J.; Menon, S.L.R.; Petford, A.D. Measurement of relative oscillator strengths for Ti I–IV. Transitions from levels of excitation energy between 1.42 and 2.31 eV. Mon. Not. Roy. Astron. Soc. 1986, 220, 289–302. [Google Scholar] [CrossRef]
- Grevesse, N.; Blackwell, D.E.; Petford, A.D. Revision of the absolute scale of the Oxford Ti i oscillator strengths and the solar titanium abundance. Astron. Astrophys. 1989, 208, 157. [Google Scholar]
- Lawler, J.E.; Guzman, A.; Wood, M.P.; Sneden, C.; Cowan, J.J. Improved Log (gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I). Astrophys. J. Suppl. 2013, 205, 11. [Google Scholar] [CrossRef]
- Blackwell, D.E.; Petford, A.D.; Shallis, M.J.; Simmons, G.J. Precision measurement of relative oscillator strengths–IX. Measures of Fe i transitions from levels. Mon. Not. Roy. Astron. Soc. 1982, 199, 43–51. [Google Scholar] [CrossRef]
- O’Brian, T.R.; Wickliffe, M.E.; Lawler, J.E.; Whaling, W.; Brault, J.W. Lifetimes, transition probabilities, and level energies in Fe I. J. Opt. Soc. Am. B Opt. Phys. 1991, 8, 1185–1201. [Google Scholar] [CrossRef]
- Bard, A.; Kock, M. Fe I oscillator strengths for lines with excitation energies between 3 and 7 eV. Astron. Astrophys. 1994, 282, 1014–1020. [Google Scholar]
- Blackwell, D.E.; Menon, S.L.R.; Petford, A.D. Measurement of relative oscillator strengths for Cr I lines-I. Measures for transitions from levels a7S3 (0.00 eV), a5S2 (0.94 eV) and a5D0,4 (0.96–1.03 eV). Mon. Not. R. Astron. Soc. 1984, 207, 533–546. [Google Scholar] [CrossRef]
- Lennard, W.N.; Whaling, W.; Scalo, J.M.; Testerman, L. Ni I transition probabilities and the solar nickel abundance. Astrophys. J. 1975, 197, 517–526. [Google Scholar] [CrossRef]
- Smith, G.; O’Neill, J.A. Absolute transition probabilities for some lines of neutral calcium. Astron. Astrophys. 1975, 38, 1–4. [Google Scholar]
- Blackwell, D.E.; Petford, A.D.; Shallis, M.J. Precision measurement of relative oscillator strengths.—VI. Measures of Fe I transitions from levels a5F1,5 (0.86–1.01 eV) with an accuracy of 0.5 per cent. Mon. Not. R. Astron. Soc. 1979, 186, 657–668. [Google Scholar] [CrossRef]
- Ryabchikova, T.A.; Piskunov, N.E.; Stempels, H.C.; Kupka, F.; Weiss, W.W. The Vienna Atomic Line Data Base—A Status Report. Phys. Scr. 1999, T83, 162–173. [Google Scholar] [CrossRef]
- Martin, G.; Fuhr, J.; Wiese, W. Atomic Transition Probabilities Scandium through Manganese. J. Phys. Chem. Ref. Data Suppl. 1988, 17, 3. [Google Scholar]
- Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ni I log (gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. 2014, 211, 20. [Google Scholar] [CrossRef]
- Ruffoni, M.P.; Den Hartog, E.A.; Lawler, J.E.; Brewer, N.R.; Lind, K.; Nave, G.; Pickering, J.C. Fe I oscillator strengths for the Gaia-ESO survey. Mon. Not. R. Astron. Soc. 2014, 441, 3127–3136. [Google Scholar] [CrossRef]
- Raassen, A.; Uylings, P. Critical evaluation of calculated and experimental transition probabilities and lifetimes for singly ionized iron group elements. J. Phys. B 1998, 31, 3137–3146. [Google Scholar] [CrossRef]
- Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ti II log (gf) values and abundance determinations in the photospheres of the sun and metal-poor star HD 84937. Astrophys. J. Suppl. 2013, 208, 27. [Google Scholar] [CrossRef]
- Pickering, J.C.; Thorne, A.P.; Perez, R. Oscillator Strengths of Transitions in Ti II in the Visible and Ultraviolet regions. Astrophys. J. Suppl. 2002, 132, 403. [Google Scholar] [CrossRef]
- Hannaford, F.; Lowe, R.M.; Grevesse, N.; Biemont, E.; Whaling, W. Oscillator strengths for YI and Y II and the solar abundance of yttrium. Astrophys. J. 1982, 261, 736–746. [Google Scholar] [CrossRef]
- Wickliffe, M.E.; Lawler, J.E. Atomic Transition Probabilities in Ni I. Astrophys. J. Suppl. 1997, 110, 163. [Google Scholar] [CrossRef]
- May, M.; Richter, J.; Wichelmann, J. Experimental oscillator strengths of weak FeI lines. Astron. Astrophys. 1974, 18, 405. [Google Scholar]
- Kostyk, R.I.; Orlova, T.V. Oscillator strengths of lines of ionized titanium and chromium. Astrom. Astrofiz. 1983, 49, 39–41. (In Russian) [Google Scholar]
- Blackwell, D.E.; Shallis, M.J.; Simmons, G.J. Oscillator strengths of Fe II lines derived from the solar spectrum-Choice of solar model atmosphere. Astron. Astrophys. 1980, 81, 340–343. [Google Scholar]
- Kurucz, R.L.; Bell, B. Kurucz CD-Rom No. 23. Harvard-Smithsonian Center for Astrophysics: Cambridge, MA, USA, 1995. [Google Scholar]
- Wiese, W.L.; Martin, G.A. Wavelengths and Transition Probabilities for Atoms and Atomic Ions. Available online: http://adsabs.harvard.edu/abs/1980wtpa.book.....W (accessed on 6 April 2018).
- Fuhr, J.R.; Martin, G.A.; Wiese, W.L. Atomic transition probabilities. Iron through Nickel. J. Phys. Chem. Ref. Data Suppl. 1988, 17, 4. [Google Scholar]
- Raassen, A.; Uylings, P. On the determination of the solar iron abundance using Fe II lines. Astron. Astrophys. 1998, 340, 300–304. [Google Scholar]
- Blackwell, D.E.; Menon, S.L.R.; Petford, A.D.; Shallis, M.J. Precision measurement of relative oscillator strengths for Ti I–II. Transitions from levels (1.5–1.07 eV). Mon. Not. R. Astron. Soc. 1982, 201, 611–617. [Google Scholar] [CrossRef]
- Kurucz, R.L.; Robert, L. Kurucz On-Line Database of Observed and Predicted Atomic Transitions. Available online: http://kurucz. harvard. edu/atoms/ (accessed on 6 April 2018).
- Schnabel, R.; Schultz-Johanning, M.; Kock, M. Fe II lifetimes and transition probabilities. Astron. Astrophys. 2004, 414, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Lobel, A. Oscillator strength measurements of atomic absorption lines from stellar spectra. Can. J. Phys. 2011, 89, 395–402. [Google Scholar] [CrossRef]
- Blackwell, D.E.; Menon, S.L.R.; Petford, A.D. Measurement of relative oscillator strengths for Ti I–III. Weak transitions from levels a3F3,4 (0.02 eV, 0.05 eV), a5F1,5 (0.81 eV–0.85 eV), a1D2 (0.90 eV), a3P0,3 (1.05 eV–1.07 eV) with solar analysis. Mon. Not. R. Astron. Soc. 1983, 204, 883–890. [Google Scholar] [CrossRef]
- Biémont, E.; Blagoev, K.; Engstrom, L.; Hartman, H.; Lundberg, H.; Malcheva, G.; Nilsson, H.; Whitehead, R.B.; Palmeri, P.; Quinet, P. Lifetime measurements and calculations in Y+ and Y2+ ions. Mon. Not. R. Astron. Soc. 2011, 414, 3350–3359. [Google Scholar] [CrossRef]
- Doerr, A.; Kock, M. Ni I oscillator strengths. J. Quant. Spectrosc. Radiat. Transf. 1985, 33, 307–318. [Google Scholar] [CrossRef]
- Fuhr, J.R.; Wiese, W.L. CRC Handbook of Chemistry and Physics, 79th ed.; 10-88–10-146; Lide, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Chung, H.-K.; Braams, B.J.; Bartschat, K.; Császár, A.G.; Drake, G.W.F.; Kirchner, Y.; Kokoouline, V.; Tennyson, J. Uncertainty estimates for theoretical atomic and molecular data. J. Phys. D Appl. Phys. 2016, 36, 363002. [Google Scholar]
Literature Source | Species | N | Median || | Standard Deviation |
---|---|---|---|---|
Bard et al. (1991) rescaled using Den Hartog et al. (2014) [20,21] | Fe i | 3 | 0.010 | 0.014 |
Sobeck et al. (2007) [22] | Cr i | 14 | 0.020 | 0.055 |
Kostyk (1982a) [17] | Ti i | 7 | 0.020 | 0.018 |
Garz (1973) rescaled using O’Brian and Lawler (1991) [10,11] | Si i | 7 | 0.020 | 0.033 |
Blackwell et al. (1986) rescaled using Grevesse et al. (1989) [23,24] | Ti i | 3 | 0.020 | 0.037 |
Kostyk (1982b) [18] | Ni i | 30 | 0.025 | 0.034 |
Melendez and Barbuy (2009) [14] | Fe ii | 5 | 0.030 | 0.035 |
Lawler et al. (2013) [25] | Ti i | 26 | 0.030 | 0.048 |
Blackwell et al. (1982) rescaled using O’Brian et al. (1991) [26,27] | Fe i | 6 | 0.030 | 0.028 |
Bridges priv. comm. with NIST (1976) [5] | Cr i | 12 | 0.040 | 0.036 |
Blackwell et al. (1982) [26] | Fe i | 10 | 0.040 | 0.037 |
Bard and Kock (1994) [28] | Fe i | 12 | 0.045 | 0.039 |
Blackwell et al. (1984) [29] | Cr i | 2 | 0.050 | 0.050 |
Rescaled values of Lennard et al. (1975) [30] | Ni i | 3 | 0.050 | 0.087 |
Kostyk (1981) [16] | Cr i | 6 | 0.050 | 0.016 |
Smith and O’Neill (1975) [31] | Ca i | 3 | 0.050 | 0.026 |
Blackwell et al. (1979) [32] | Fe i | 3 | 0.050 | 0.029 |
Ryabchikova et al. (1999) [33] | Fe ii | 3 | 0.050 | 0.049 |
Martin et al. (1988) [34] | Cr i/Ti i/Mn i | 22 | 0.055 | 0.070 |
Den Hartog et al. (2014) [21] | Fe i | 12 | 0.055 | 0.095 |
Wood et al. (2014) [35] | Ni i | 21 | 0.060 | 0.082 |
Bard and Kock (1994) rescaled using O’Brian et al. (1991) [27,28] | Fe i | 3 | 0.060 | 0.025 |
Ruffoni et al. (2014) [36] | Fe i | 11 | 0.070 | 0.083 |
O’Brian et al. (1991) [27] | Fe i | 29 | 0.070 | 0.130 |
Bard et al. (1991) rescaled using O’Brian et al. (1991) [20,27] | Fe i | 2 | 0.070 | 0.040 |
Raassen and Uylings (1998a) [37] | Fe ii | 7 | 0.070 | 0.049 |
Wood et al. (2013) [38] | Ti ii | 9 | 0.070 | 0.039 |
Bard et al. (1991) [20] | Fe i | 3 | 0.070 | 0.037 |
Pickering et al. (2002) [39] | Ti ii | 8 | 0.075 | 0.129 |
Hannaford et al. (1982) [40] | Y ii | 2 | 0.075 | 0.045 |
Wickliffe and Lawler (1997) [41] | Ni i | 3 | 0.080 | 0.038 |
Blackwell et al. (1986) [23] | Ti i | 12 | 0.080 | 0.037 |
May et al. (1974) [42] | Fe i | 82 | 0.080 | 0.096 |
Kostyk and Orlova (1983) [43] | Cr ii/Ti ii | 3 | 0.090 | 0.074 |
Blackwell et al. (1980) [44] | Fe ii | 9 | 0.100 | 0.131 |
Kurucz and Bell (1995) [45] | Si i | 7 | 0.100 | 0.033 |
Garz (1973) [10] | Si i | 7 | 0.100 | 0.033 |
Wiese and Martin (1990) [46] | * | 25 | 0.100 | 0.243 |
Fuhr et al. (1988) [47] | Fe i/Ni i | 112 | 0.100 | 0.116 |
Raassen and Uylings (1998b) [48] | Cr ii/Fe ii | 6 | 0.105 | 0.059 |
NIST (online values before 2004) [5] | * | 63 | 0.110 | 0.119 |
Blackwell et al. (1982) [49] | Ti i | 2 | 0.110 | 0.020 |
Kurucz (1999-2014) [50] | * | 153 | 0.120 | 0.229 |
Schnabel et al. (2004) [51] | Fe ii | 4 | 0.125 | 0.183 |
Lobel (2011) [52] | * | 212 | 0.130 | 0.212 |
Blackwell et al. (1983) [53] | Ti i | 3 | 0.140 | 0.017 |
Biémont et al. (2011) [54] | Y ii | 2 | 0.140 | 0.010 |
Lennard et al. (1975) [30] | Ni i | 2 | 0.145 | 0.145 |
Doerr and Kock (1985) [55] | Ni i | 9 | 0.160 | 0.141 |
Fuhr and Wiese (1998) [56] | Ca i | 3 | 0.190 | 0.179 |
Laverick et al. (2018a) [2] | * | 64 | 0.340 | 1.232 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laverick, M.; Lobel, A.; Royer, P.; Martayan, C.; Merle, T.; Van Hoof, P.A.M.; Van de Swaelmen, M.; David, M.; Hensberge, H.; Thienpont, E. The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data. Galaxies 2018, 6, 78. https://doi.org/10.3390/galaxies6030078
Laverick M, Lobel A, Royer P, Martayan C, Merle T, Van Hoof PAM, Van de Swaelmen M, David M, Hensberge H, Thienpont E. The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data. Galaxies. 2018; 6(3):78. https://doi.org/10.3390/galaxies6030078
Chicago/Turabian StyleLaverick, Mike, Alex Lobel, Pierre Royer, Christophe Martayan, Thibault Merle, Peter A. M. Van Hoof, Mathieu Van de Swaelmen, Marc David, Herman Hensberge, and Emmanuel Thienpont. 2018. "The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data" Galaxies 6, no. 3: 78. https://doi.org/10.3390/galaxies6030078
APA StyleLaverick, M., Lobel, A., Royer, P., Martayan, C., Merle, T., Van Hoof, P. A. M., Van de Swaelmen, M., David, M., Hensberge, H., & Thienpont, E. (2018). The Belgian Repository of Fundamental Atomic Data and Stellar Spectra (BRASS) Identifying Fruitful Methods for Producing Atomic Data. Galaxies, 6(3), 78. https://doi.org/10.3390/galaxies6030078