Successes and Difficulties in Calculating Atomic Oscillator Strengths and Transition Rates
Abstract
:1. Introduction
2. Methods
2.1. The Inadequacy of Very Simple Calculations
2.2. Towards More Accurate Wave Functions
2.3. Indicators of Accuracy
- Calculated energy separations
- Length/velocity comparison
- Convergence of results
- Extrapolation processes
- Comparison with other work
3. Resolution of Differences between Sets of Data
4. Remaining Challenges in the Calculation of Oscillator Strengths
4.1. The 2507.552, 2509.097 Å Lines in Fe II
Transition | |
2507.552Å | c F–x F |
2509.097Å | c F–w G |
4.2. Correlation in Open 3d Subshells
4.3. Open d-Subshells with Differing Seniority
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Hilborn, R.C. Einstein coefficients, cross sections, f values, dipole moments and all that. Am. J. Phys. 1982, 50, 982–986. [Google Scholar] [CrossRef]
- Burke, P.G.; Hibbert, A.; Robb, W.D. Wave functions and oscillator strengths for the beryllium sequence. J. Phys. B At. Mol. Phys. 1972, 5, 37–43. [Google Scholar] [CrossRef]
- Fleming, J.; Hibbert, A.; Stafford, R.P. The 1909 Å intercombination line in C III. Phys. Scr. 1994, 49, 316–322. [Google Scholar] [CrossRef]
- Fleming, J.; Brage, T.; Bell, K.L.; Vaeck, N.; Hibbert, A.; Godefroid, M.R.; Froese Fischer, C. Systematic studies of N IV transitions of astrophysical importance. Astrophys. J. 1995, 455, 758–768. [Google Scholar] [CrossRef]
- Fleming, J.; Vaeck, N.; Hibbert, A.; Bell, K.L.; Godefroid, M.R. Oscillator strengths for the resonance line of ions in the beryllium isoelectronic sequence. Phys. Scr. 1996, 53, 446–453. [Google Scholar] [CrossRef]
- Ynnerman, A.; Froese Fischer, C. Multiconfigurational-Dirac-Fock calculation of the 2s2 1S0–2s2p 3P1 spin-forbidden transition for the Be-like isoelectronic sequence. Phys. Rev. A 1995, 51, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.6); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Hibbert, A. A General program to calculate configuration interaction wavefunctions and oscillator strengths of many-electron atoms. Comp. Phys. Commun. 1975, 9, 141–172. [Google Scholar] [CrossRef]
- Froese Fischer, C. A general Multi-configurational Hartree-Fock program. Comput. Phys. Commun. 1991, 64, 431–454. [Google Scholar] [CrossRef]
- Weiss, A.W. Superposition of Configurations and Atomic Oscillator Strengths—Carbon I and II. Phys. Rev. 1967, 162, 71–80. [Google Scholar] [CrossRef]
- Weiss, A.W. Superposition of Configurations and Atomic Oscillator Strengths-Boron Isoelectronic Sequence. Phys. Rev. 1969, 188, 119–130. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Los Angeles, CA, USA, 1981; p. 650. ISBN 9780520038219. [Google Scholar]
- Cowan, R.D.; Griffin, D.C. Approximate relativistic corrections to atomic radial wave functions. J. Opt. Soc. Am. 1976, 66, 1010–1014. [Google Scholar] [CrossRef]
- Hibbert, A. Estimation of inaccuracies in oscillator strength calculations. Phys. Scr. 1996, T65, 104–109. [Google Scholar] [CrossRef]
- Brage, T.; Hibbert, A.; Leckrone, D.S. Transition Rates of the Intercombination UV0.01 Multiplet in N II. Astrophys. J. 1997, 478, 423–429. [Google Scholar] [CrossRef]
- Musielok, J.; Bridges, J.M.; Djurović, S.; Wiese, W.L. Oscillator strengths for N II lines, including intersystem lines, and tests of the spectroscopic coupling scheme. Phys. Rev. A 1996, 53, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Träbert, E.; Wolf, A.; Pinnington, E.H.; Linkemann, J.; Knystautas, E.J.; Curtis, A.; Battacharya, N.; Berry, H.G. Measurement of the N+ 2s2p3 5S2o level lifetime using a heavy-ion storage ring. Phys. Rev. A 1998, 58, 4449–4452. [Google Scholar] [CrossRef]
- Bridges, J.M.; Wiese, W.L.; Griesmann, U. An accurate branching ratio measurement of astrophysically important N II intercombination lines in the UV. In The Scientific Impact of the Goddard High Resolution Spectrograph ASP Conference Series; Brandt, J.C., Ake, T.B., III, Petersen, C.C., Eds.; The Astronomical Society of the Pacific: San Francisco, CA, USA, 1998; Volumn 143, pp. 399–402. [Google Scholar]
- Hibbert, A.; Glass, R.; Fischer, C.F. A general program for calculating angular integrals of the Breit-Pauli Hamiltonian. Comput. Phys. Commun. 1991, 64, 455–472. [Google Scholar] [CrossRef]
- Drake, G.W.F. Relativistic corrections to spin-forbidden electric-dipole transitions. J. Phys. B At. Mol. Phys. 1976, 9, L169–L171. [Google Scholar] [CrossRef] [Green Version]
- Bennett, W.R., Jr.; Kindlmann, P.J.; Mercer, G.N. Measurement of excited state relaxation rates. In Chemical Lasers: Applied Optics Supplement 2; Howard, J.N., Ed.; The Optical Society of America: Washington, DC, USA, 1965. [Google Scholar]
- Rudko, R.I.; Tang, C.L. Spectroscopic studies of the Ar+ laser. J. Appl. Phys. 1967, 38, 4731–4739. [Google Scholar] [CrossRef]
- Belmonte, M.T.; Djurović, S.; Peláez, R.J.; Aparicio, J.A.; Mar, S. Improved and expanded measurements of transition probabilities in UV Ar II spectral lines. Mon. Not. R. Astron. Soc. 2014, 445, 3345–3351. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, J.A.; Gigosos, M.A.; Mar, S. Transition probability measurement in an Ar II plasma. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 3141–3157. [Google Scholar] [CrossRef]
- Hibbert, A. Calculation of Rates of 4p–4d Transitions in Ar II. Atoms 2017, 5, 8. [Google Scholar] [CrossRef]
- Verner, E.M.; Gull, T.R.; Bruhweiler, F.; Johansson, S.; Ishibashi, K.; Davidson, K. The origin of Fe II and [Fe II] emission lines in the 4000–10000 Å range in the BD Weigelt blobs of η Carinae. Astrophys. J. 2002, 581, 1154–1167. [Google Scholar] [CrossRef]
- Kurucz, R.L. Atomic Line Data For Fe II: File gf2601.pos. Available online: http://kurucz.harvard.edu/atoms/2601/gf2601 (accessed on 31 May 2010).
- Raassen, A.J.J.; Uylings, P.H.M. Critical evaluation of calculated and experimental transition probabilities and lifetimes for singly ionized iron group elements. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 3137–3146. [Google Scholar] [CrossRef]
- Corrégé, G.; Hibbert, A. The Oscillator Strengths of Fe II λλ2507,2509. Astrophys. J. 2005, 627, L157–L159. [Google Scholar] [CrossRef]
- Deb, N.C.; Hibbert, A. log gf values for astrophysically important transitions Fe II. Astron. Astrophys. 2014, 561, A32. [Google Scholar] [CrossRef] [Green Version]
- Deb, N.C.; Hibbert, A. Calculation of intensity ratios of observed infrared [Fe II] lines. Astrophys. J. Lett. 2010, 711, L104–L107. [Google Scholar] [CrossRef]
- Deb, N.C.; Hibbert, A. Importance of level mixing on accurate [Fe II] transition rates. Astron. Astrophys. 2010, 524, A54. [Google Scholar] [CrossRef]
- Deb, N.C.; Hibbert, A. Radiative transition rates for the forbidden lines in Fe II. Astron. Astrophys. 2011, 536, A74. [Google Scholar] [CrossRef]
- Nave, G.; Johansson, S. The Spectrum of Fe II. Astrophys. J. Suppl. Ser. 2013, 204, 1. [Google Scholar] [CrossRef]
C III | N IV | O V | ||
---|---|---|---|---|
Single configuration [2] | 1.0746 | 0.8569 | 0.7055 | |
0.5627 | 0.3713 | 0.3039 | ||
(a.u.) | 0.4494 | 0.5607 | 0.6756 | |
Valence Correlation [2] | 0.7930 | 0.6293 | 0.5250 | |
0.8047 | 0.5954 | 0.4922 | ||
(a.u.) | 0.4773 | 0.6055 | 0.7334 | |
Valence + Core Correlation CIV3 [3,4,5] | 0.759 | 0.609 | 0.511 | |
0.757 | 0.610 | 0.510 | ||
(a.u.) | 0.5972 | 0.7253 | ||
Valence + Core Correlation MCHF [4] | 0.6085 | |||
0.6086 | ||||
(a.u.) | 0.5960 | |||
Valence + Core Correlation MCDF [6] | 0.757 | 0.610 | 0.508 | |
0.753 | 0.608 | 0.507 | ||
(a.u.) | 0.4681 | 0.5974 | 0.7264 | |
Experiment [7] | (a.u.) | 0.4664 | 0.5955 | 0.7235 |
Method | Orbitals | A-Values—Transition Rates (s) | Lifetime (in ms) | ||
---|---|---|---|---|---|
S–P | S–P | Ratio of A-Values | |||
ab initio | 43.8 | 106.5 | 2.432 | 6.65 | |
46.9 | 114.8 | 2.448 | 6.18 | ||
49.2 | 120.1 | 2.441 | 5.91 | ||
fine-tuned | 52.6 | 127.9 | 2.432 | 5.54 | |
51.4 | 125.6 | 2.444 | 5.65 | ||
50.9 | 124.1 | 2.438 | 5.71 | ||
“Converged” | 2.44 | 5.75 | |||
Experiment | 2.24 ± 0.06 [16] | 5.88 ± 0.03 [17] | |||
2.45 ± 0.07 [18] |
Transition | Hibbert [25] | Reference [23] | Reference [21] | Reference [22] | ||
---|---|---|---|---|---|---|
4p | 4d | |||||
P | F | 0.074 | 0.066 | 0.086 | 0.236 | |
P | F | 0.105 | 0.094 | 0.13 | 0.155 | 0.348 |
P | F | 0.0031 | 0.0026 | 0.002 | ||
P | P | 0.625 | 0.551 | 0.49 | 0.52 | 1.00 |
P | P | 0.524 | 0.455 | 0.43 | 0.49 | 0.817 |
P | P | 0.469 | 0.421 | 0.36 | 0.37 | 0.627 |
P | P | 1.18 | 1.05 | 1.07 | 1.1 | 1.99 |
P | P | 0.763 | 0.678 | 0.60 | 0.63 | 1.00 |
P | P | 0.459 | 0.405 | 0.41 | 0.42 | 0.733 |
D | D | 0.258 | 0.235 | 0.19 | 0.269 | 0.267 |
D | D | 0.051 | 0.046 | 0.049 | 0.048 | 0.047 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hibbert, A. Successes and Difficulties in Calculating Atomic Oscillator Strengths and Transition Rates. Galaxies 2018, 6, 77. https://doi.org/10.3390/galaxies6030077
Hibbert A. Successes and Difficulties in Calculating Atomic Oscillator Strengths and Transition Rates. Galaxies. 2018; 6(3):77. https://doi.org/10.3390/galaxies6030077
Chicago/Turabian StyleHibbert, Alan. 2018. "Successes and Difficulties in Calculating Atomic Oscillator Strengths and Transition Rates" Galaxies 6, no. 3: 77. https://doi.org/10.3390/galaxies6030077
APA StyleHibbert, A. (2018). Successes and Difficulties in Calculating Atomic Oscillator Strengths and Transition Rates. Galaxies, 6(3), 77. https://doi.org/10.3390/galaxies6030077