Molecular Data Needs for Modelling AGB Stellar Winds and Other Molecular Environments
Abstract
:1. Introduction
2. Required Molecular Data
2.1. Radiative Rates
2.2. Collisional Rates
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Asymptotic Giant Branch |
CDMS | Cologne Database for Molecular Spectroscopy |
HITRAN | High-Resolution Transmission Molecular Absorption Database |
ISM | Interstellar Medium |
JPL | Jet Propulsion Laboratory |
LAMDA | Leiden Atomic and Molecular Database |
LTE | Local Thermodynamic Equilibrium |
NIST | National Institute of Standards and Technology |
NRAO | National Radio Astronomy Observatory |
PDR | Photon Dominated Region |
References
- Endres, C.P.; Schlemmer, S.; Schilke, P.; Stutzki, J.; Müller, H.S.P. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. J. Mol. Spectrosc. 2016, 327, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.S.P.; Thorwirth, S.; Roth, D.A.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 2001, 370, L49–L52. [Google Scholar] [CrossRef]
- Müller, H.S.P.; Schlöder, F.; Stutzki, J.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 2005, 742, 215–227. [Google Scholar] [CrossRef]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Res. 2018, 26, 1. [Google Scholar] [CrossRef]
- Habing, H.J.; Olofsson, H. (Eds.) Asymptotic Giant Branch Stars; Springer: Berlin, Germany, 2003. [Google Scholar]
- Schöier, F.L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J.H.; Marvel, K.B. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type. Astron. Astrophys. 2013, 550, A78. [Google Scholar] [CrossRef]
- Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae. Astron. Astrophys. 2014, 569, A76. [Google Scholar] [CrossRef]
- Ramstedt, S.; Olofsson, H. The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB. Astron. Astrophys. 2014, 566, A145. [Google Scholar] [CrossRef]
- Decin, L.; Richards, A.M.S.; Waters, L.B.F.M.; Danilovich, T.; Gobrecht, D.; Khouri, T.; Homan, W.; Bakker, J.M.; Van de Sande, M.; Nuth, J.A.; et al. Study of the aluminium content in AGB winds using ALMA. Indications for the presence of gas-phase (Al2O3)n clusters. Astron. Astrophys. 2017, 608, A55. [Google Scholar] [CrossRef]
- Schöier, F.L.; Maercker, M.; Justtanont, K.; Olofsson, H.; Black, J.H.; Decin, L.; de Koter, A.; Waters, R. A chemical inventory of the S-type AGB star χ Cygni based on Herschel/HIFI observations of circumstellar line emission. The importance of non-LTE chemical processes in a dynamical region. Astron. Astrophys. 2011, 530, A83. [Google Scholar] [CrossRef]
- Schöier, F.L.; Olofsson, H. Models of circumstellar molecular radio line emission. Mass loss rates for a sample of bright carbon stars. Astron. Astrophys. 2001, 368, 969–993. [Google Scholar] [CrossRef]
- Punzi, K.M.; Hily-Blant, P.; Kastner, J.H.; Sacco, G.G.; Forveille, T. An Unbiased 1.3 mm Emission Line Survey of the Protoplanetary Disk Orbiting LkCa 15. Astrophys. J. 2015, 805, 147. [Google Scholar] [CrossRef]
- Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F.F.S.; Bergin, E.A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface. Astron. Astrophys. 2017, 599, A22. [Google Scholar] [CrossRef]
- Barman, T.S.; Konopacky, Q.M.; Macintosh, B.; Marois, C. Simultaneous Detection of Water, Methane, and Carbon Monoxide in the Atmosphere of Exoplanet HR8799b. Astrophys. J. 2015, 804, 61. [Google Scholar] [CrossRef]
- Fortney, J.J.; Robinson, T.D.; Domagal-Goldman, S.; Skålid Amundsen, D.; Brogi, M.; Claire, M.; Crisp, D.; Hebrard, E.; Imanaka, H.; de Kok, R.; et al. The Need for Laboratory Work to Aid in The Understanding of Exoplanetary Atmospheres. arXiv, 2016; arXiv:astro-ph.EP/1602.06305. [Google Scholar]
- Tennyson, J.; Yurchenko, S.N. Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets. Mol. Astrophys. 2017, 8, 1–18. [Google Scholar] [CrossRef]
- Roueff, E.; Lique, F. Molecular Excitation in the Interstellar Medium: Recent Advances in Collisional, Radiative, and Chemical Processes. Chem. Rev. 2013, 113, 8906–8938. [Google Scholar] [PubMed]
- Rybicki, G.B.; Hummer, D.G. An accelerated lambda iteration method for multilevel radiative transfer. I-Non-overlapping lines with background continuum. Astron. Astrophys. 1991, 245, 171–181. [Google Scholar]
- Van Zadelhoff, G.J.; Dullemond, C.P.; van der Tak, F.F.S.; Yates, J.A.; Doty, S.D.; Ossenkopf, V.; Hogerheijde, M.R.; Juvela, M.; Wiesemeyer, H.; Schöier, F.L. Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics. Astron. Astrophys. 2002, 395, 373–384. [Google Scholar] [Green Version]
- Decin, L.; Hony, S.; de Koter, A.; Justtanont, K.; Tielens, A.G.G.M.; Waters, L.B.F.M. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. I. Theoretical model-Mass-loss history unravelled in VY CMa. Astron. Astrophys. 2006, 456, 549–563. [Google Scholar]
- Ferland, G.J.; Porter, R.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Lykins, M.L.; Shaw, G.; Henney, W.J.; Stancil, P.C. The 2013 Release of Cloudy. Rev. Mexi. Astron. Astrofísica 2013, 49, 137–163. [Google Scholar]
- Mihalas, D.; Kunasz, P.B.; Hummer, D.G. Solution of the comoving frame equation of transfer in spherically symmetric flows. I - Computational method for equivalent-two-level-atom source functions. Astrophys. J. 1975, 202, 465–489. [Google Scholar] [CrossRef]
- Yang, B.; Stancil, P.C.; Balakrishnan, N.; Forrey, R.C. Rotational Quenching of CO due to H2 Collisions. Astrophys. J. 2010, 718, 1062–1069. [Google Scholar] [CrossRef]
- Faure, A.; Josselin, E. Collisional excitation of water in warm astrophysical media. I. Rate coefficients for rovibrationally excited states. Astron. Astrophys. 2008, 492, 257–264. [Google Scholar] [CrossRef]
- Pickett, H.M.; Poynter, R.L.; Cohen, E.A.; Delitsky, M.L.; Pearson, J.C.; Müller, H.S.P. Submillimeter, millimeter and microwave spectral line catalog. J. Q. Spectrosc. Radiat. Transf. 1998, 60, 883–890. [Google Scholar] [CrossRef]
- Schmidt, M.R.; He, J.H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K.M.; et al. Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216. Astron. Astrophys. 2016, 592, A131. [Google Scholar] [CrossRef] [PubMed]
- Buhl, D.; Snyder, L.E.; Lovas, F.J.; Johnson, D.R. Silicon Monoxide: Detection of Maser Emission from the Second Vibrationally Excited State. Astrophys. J. Lett. 1974, 192, L97–L100. [Google Scholar] [CrossRef]
- Desmurs, J.F.; Bujarrabal, V.; Lindqvist, M.; Alcolea, J.; Soria-Ruiz, R.; Bergman, P. SiO masers from AGB stars in the vibrationally excited v = 1, v = 2, and v = 3 states. In Proceedings of the 12th European VLBI Network Symposium and Users Meeting (EVN 2014), Cagliari, Italy, 7–10 October 2014; p. 60. [Google Scholar]
- Ziurys, L.M.; Turner, B.E. Detection of interstellar vibrationally excited HCN. Astrophys. J. Lett. 1986, 300, L19–L23. [Google Scholar] [CrossRef]
- Bieging, J.H. Discovery of Two New HCN Maser Lines in Five Carbon Stars. Astrophys. J. Lett. 2001, 549, L125–L129. [Google Scholar] [CrossRef]
- Menten, K.M.; Wyrowski, F.; Keller, D.; Kamiński, T. Widespread HCN maser emission in carbon-rich evolved stars. arXiv, 2018; arXiv:astro-ph.SR/1803.00943. [Google Scholar] [CrossRef]
- Khouri, T.; Vlemmings, W.H.T.; Ramstedt, S.; Lombaert, R.; Maercker, M.; De Beck, E. ALMA observations of the vibrationally excited rotational CO transition v = 1, J = 3 − 2 towards five AGB stars. Mon. Not. R. Astron. Soc. 2016, 463, L74–L78. [Google Scholar] [CrossRef]
- Justtanont, K.; Khouri, T.; Maercker, M.; Alcolea, J.; Decin, L.; Olofsson, H.; Schöier, F.L.; Bujarrabal, V.; Marston, A.P.; Teyssier, D.; et al. Herschel/HIFI observations of O-rich AGB stars: molecular inventory. Astron. Astrophys. 2012, 537, A144. [Google Scholar] [CrossRef]
- Baudry, A.; Humphreys, E.M.L.; Herpin, F.; Torstensson, K.; Vlemmings, W.H.T.; Richards, A.M.S.; Gray, M.D.; De Breuck, C.; Olberg, M. Vibrationally excited water emission at 658 GHz from evolved stars. Astron. Astrophys. 2018, 609, A25. [Google Scholar] [CrossRef]
- Decin, L.; Richards, A.M.S.; Danilovich, T.; Homan, W.; Nuth, J.A. ALMA spectral line and imaging survey of a low and a high mass-loss rate AGB star between 335 and 362 GHz. Astron. Astrophys. 2018. forthcoming. [Google Scholar] [CrossRef]
- Velilla Prieto, L.; Sánchez Contreras, C.; Cernicharo, J.; Agúndez, M.; Quintana-Lacaci, G.; Bujarrabal, V.; Alcolea, J.; Balança, C.; Herpin, F.; Menten, K.M.; et al. The millimeter IRAM-30 m line survey toward IK Tauri. Astron. Astrophys. 2017, 597, A25. [Google Scholar] [CrossRef] [PubMed]
- Cernicharo, J.; Daniel, F.; Castro-Carrizo, A.; Agundez, M.; Marcelino, N.; Joblin, C.; Goicoechea, J.R.; Guélin, M. Unveiling the Dust Nucleation Zone of IRC+10216 with ALMA. Astrophys. J. Lett. 2013, 778, L25. [Google Scholar] [CrossRef]
- Schöier, F.L.; van der Tak, F.F.S.; van Dishoeck, E.F.; Black, J.H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 2005, 432, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, M.L.; Alexander, M.H.; Ba, Y.A.; Balakrishnan, N.; Balança, C.; Ceccarelli, C.; Cernicharo, J.; Daniel, F.; Dayou, F.; Doronin, M.; et al. BASECOL2012: A collisional database repository and web service within the Virtual Atomic and Molecular Data Centre (VAMDC). Astron. Astrophys. 2013, 553, A50. [Google Scholar] [CrossRef] [Green Version]
- Faure, A.; Varambhia, H.N.; Stoecklin, T.; Tennyson, J. Electron-impact rotational and hyperfine excitation of HCN, HNC, DCN and DNC. Mon. Not. R. Astron. Soc. 2007, 382, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Daniel, F.; Faure, A.; Dagdigian, P.J.; Dubernet, M.L.; Lique, F.; Forêts, G.P.d. Collisional excitation of water by hydrogen atoms. Mon. Not. R. Astron. Soc. 2015, 446, 2312–2316. [Google Scholar] [CrossRef]
- Scribano, Y.; Faure, A.; Wiesenfeld, L. Communication: Rotational excitation of interstellar heavy water by hydrogen molecules. J. Chem. Phys. 2010, 133, 231105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumouchel, F.; Kłos, J.; Toboła, R.; Bacmann, A.; Maret, S.; Hily-Blant, P.; Faure, A.; Lique, F. Fine and hyperfine excitation of NH and ND by He: On the importance of calculating rate coefficients of isotopologues. J. Chem. Phys. 2012, 137, 114306. [Google Scholar] [CrossRef] [PubMed]
- Dubernet, M.L.; Daniel, F.; Grosjean, A.; Faure, A.; Valiron, P.; Wernli, M.; Wiesenfeld, L.; Rist, C.; Noga, J.; Tennyson, J. Influence of a new potential energy surface on the rotational (de)excitation of H2O by H2 at low temperature. Astron. Astrophys. 2006, 460, 323–329. [Google Scholar] [CrossRef]
- Dubernet, M.L.; Daniel, F.; Grosjean, A.; Lin, C.Y. Rotational excitation of ortho-H2O by para-H2 (j2 = 0, 2, 4, 6, 8) at high temperature. Astron. Astrophys. 2009, 497, 911–925. [Google Scholar] [CrossRef]
- Daniel, F.; Dubernet, M.L.; Pacaud, F.; Grosjean, A. Rotational excitation of 20 levels of para-H2O by ortho-H2 (j2 = 1, 3, 5, 7) at high temperature. Astron. Astrophys. 2010, 517, A13. [Google Scholar] [CrossRef]
- Daniel, F.; Dubernet, M.L.; Grosjean, A. Rotational excitation of 45 levels of ortho/para-H2O by excited ortho/para-H2 from 5 K to 1500 K: state-to-state, effective, and thermalized rate coefficients. Astron. Astrophys. 2011, 536, A76. [Google Scholar] [CrossRef]
- Faure, A.; Crimier, N.; Ceccarelli, C.; Valiron, P.; Wiesenfeld, L.; Dubernet, M.L. Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2. Astron. Astrophys. 2007, 472, 1029–1035. [Google Scholar] [CrossRef]
- Van der Tak, F. Radiative Transfer and Molecular Data for Astrochemistry. In The Molecular Universe (IAU S280); Cernicharo, J., Bachiller, R., Eds.; Cambridge University Press: Cambridge, UK, 2011; Volume 280, pp. 449–460. [Google Scholar]
- Danilovich, T.; Van de Sande, M.; De Beck, E.; Decin, L.; Olofsson, H.; Ramstedt, S.; Millar, T.J. Sulphur-bearing molecules in AGB stars. I. The occurrence of hydrogen sulphide. Astron. Astrophys. 2017, 606, A124. [Google Scholar] [CrossRef]
- Lide, D. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Viswanathan, R.; Dyke, T.R. Electric dipole moments and nuclear hyperfine interactions for H2S, HDS, and D2S. J. Mol. Spectrosc. 1984, 103, 231–239. [Google Scholar] [CrossRef]
- Jaber Al-Edhari, A.; Ceccarelli, C.; Kahane, C.; Viti, S.; Balucani, N.; Caux, E.; Faure, A.; Lefloch, B.; Lique, F.; Mendoza, E.; et al. History of the solar-type protostar IRAS 16293-2422 as told by the cyanopolyynes. Astron. Astrophys. 2017, 597, A40. [Google Scholar] [CrossRef]
- Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Castro-Carrizo, A.; Velilla Prieto, L.; Marcelino, N.; Guélin, M.; Joblin, C.; Martín-Gago, J.A.; Gottlieb, C.A.; et al. Growth of carbon chains in IRC +10216 mapped with ALMA. Astron. Astrophys. 2017, 601, A4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, A.; Lique, F. The impact of collisional rate coefficients on molecular hyperfine selective excitation. Mon. Not. R. Astron. Soc. 2012, 425, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Keto, E.; Rybicki, G. Modeling Molecular Hyperfine Line Emission. Astrophys. J. 2010, 716, 1315–1322. [Google Scholar] [CrossRef]
1 | |
2 | |
3 | The NRAO Spectral Line Catalog: www.splatalogue.net. |
4 | Lovas/National Institute of Standards and Technology: http://physics.nist.gov/restfreq. |
5 | The high-resolution transmission molecular absorption database: http://hitran.org. |
6 | High temperature molecular line lists for modelling exoplanet atmospheres: http://exomol.com. |
7 | |
8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilovich, T.; Decin, L.; Van de Sande, M. Molecular Data Needs for Modelling AGB Stellar Winds and Other Molecular Environments. Galaxies 2018, 6, 86. https://doi.org/10.3390/galaxies6030086
Danilovich T, Decin L, Van de Sande M. Molecular Data Needs for Modelling AGB Stellar Winds and Other Molecular Environments. Galaxies. 2018; 6(3):86. https://doi.org/10.3390/galaxies6030086
Chicago/Turabian StyleDanilovich, Taïssa, Leen Decin, and Marie Van de Sande. 2018. "Molecular Data Needs for Modelling AGB Stellar Winds and Other Molecular Environments" Galaxies 6, no. 3: 86. https://doi.org/10.3390/galaxies6030086
APA StyleDanilovich, T., Decin, L., & Van de Sande, M. (2018). Molecular Data Needs for Modelling AGB Stellar Winds and Other Molecular Environments. Galaxies, 6(3), 86. https://doi.org/10.3390/galaxies6030086