Unveiling the Origin of the Fermi Bubbles
Abstract
:1. Introduction
2. Observable Properties of the Bubbles
3. Overview of Theoretical Models
3.1. General Considerations
3.2. Hadronic Wind Models
3.3. Leptonic Jet Models
3.4. In Situ Acceleration Models
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GC | Galactic center |
NSF | nuclear star formation |
AGN | active galactic nucleus |
CR | cosmic ray |
S-PASS | S-band polarization all sky survey |
HAWC | high altitude water Cherenkov |
CRp | cosmic ray protons |
IC | inverse Compton |
ISRF | interstellar radiation field |
CRe | cosmic ray electrons |
3D | three-dimensional |
MHD | magnetohydrodynamics |
LOS | line of sight |
TDE | tidal disruption event |
References
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Ackermann, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; et al. The Spectrum and Morphology of the Fermi Bubbles. Astrophys. J. 2014, 793, 64. [Google Scholar] [CrossRef]
- Narayanan, S.A.; Slatyer, T.R. A latitude-dependent analysis of the leptonic hypothesis for the Fermi Bubbles. Mon. Not. R. Astron. Soc. 2017, 468, 3051–3070. [Google Scholar] [CrossRef]
- Su, M.; Finkbeiner, D.P. Evidence for Gamma-Ray Jets in the Milky Way. Astrophys. J. 2012, 753, 61. [Google Scholar] [CrossRef]
- Yang, R.Z.; Aharonian, F.; Crocker, R. The Fermi bubbles revisited. Astron. Astrophys. 2014, 567, A19. [Google Scholar] [CrossRef]
- Keshet, U.; Gurwich, I. Fermi Bubble Edges: Spectrum and Diffusion Function. Astrophys. J. 2017, 840, 7. [Google Scholar] [CrossRef]
- Finkbeiner, D.P. Microwave Interstellar Medium Emission Observed by the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 2004, 614, 186–193. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; et al. Planck intermediate results. IX. Detection of the Galactic haze with Planck. Astron. Astrophys. 2013, 554, A139. [Google Scholar]
- Dobler, G. A Last Look at the Microwave Haze/Bubbles with WMAP. Astrophys. J. 2012, 750, 17. [Google Scholar] [CrossRef]
- Carretti, E.; Crocker, R.M.; Staveley-Smith, L.; Haverkorn, M.; Purcell, C.; Gaensler, B.M.; Bernardi, G.; Kesteven, M.J.; Poppi, S. Giant magnetized outflows from the centre of the Milky Way. Nature 2013, 493, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Bland-Hawthorn, J.; Cohen, M. The Large-Scale Bipolar Wind in the Galactic Center. Astrophys. J. 2003, 582, 246–256. [Google Scholar] [CrossRef]
- Snowden, S.L.; Egger, R.; Freyberg, M.J.; McCammon, D.; Plucinsky, P.P.; Sanders, W.T.; Schmitt, J.H.M.M.; Trümper, J.; Voges, W. ROSAT Survey Diffuse X-Ray Background Maps. II. Astrophys. J. 1997, 485, 125–135. [Google Scholar] [CrossRef]
- Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Takahashi, Y.; Takeuchi, Y.; Tsunemi, H.; Kimura, M.; Takei, Y.; et al. Suzaku Observations of the Diffuse X-Ray Emission across the Fermi Bubbles’ Edges. Astrophys. J. 2013, 779, 57. [Google Scholar] [CrossRef]
- Miller, M.J.; Bregman, J.N. The Structure of the Milky Way’s Hot Gas Halo. Astrophys. J. 2013, 770, 118. [Google Scholar] [CrossRef]
- Fang, T.; Jiang, X. High Resolution X-Ray Spectroscopy of the Local Hot Gas along the 3C 273 Sightline. Astrophys. J. Lett. 2014, 785, L24. [Google Scholar] [CrossRef]
- Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Inoue, Y.; Nakashima, S.; Cheung, C.C. Global Structure of Isothermal Diffuse X-Ray Emission along the Fermi Bubbles. Astrophys. J. 2015, 807, 77. [Google Scholar] [CrossRef]
- Fox, A.J.; Bordoloi, R.; Savage, B.D.; Lockman, F.J.; Jenkins, E.B.; Wakker, B.P.; Bland-Hawthorn, J.; Hernandez, S.; Kim, T.S.; Benjamin, R.A.; et al. Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way’s Biconical Nuclear Outflow. Astrophys. J. Lett. 2015, 799, L7. [Google Scholar] [CrossRef]
- Miller, M.J.; Bregman, J.N. The Interaction of the Fermi Bubbles with the Milky Wayś Hot Gas Halo. Astrophys. J. 2016, 829, 9. [Google Scholar] [CrossRef]
- Bordoloi, R.; Fox, A.J.; Lockman, F.J.; Wakker, B.P.; Jenkins, E.B.; Savage, B.D.; Hernandez, S.; Tumlinson, J.; Bland-Hawthorn, J.; Kim, T.S. Mapping the Nuclear Outflow of the Milky Way: Studying the Kinematics and Spatial Extent of the Northern Fermi Bubble. Astrophys. J. 2017, 834, 191. [Google Scholar] [CrossRef]
- Sarkar, K.C.; Nath, B.B.; Sharma, P. Clues to the origin of Fermi bubbles from O viii/O vii line ratio. Mon. Not. R. Astron. Soc. 2017, 467, 3544–3555. [Google Scholar] [CrossRef]
- Keshet, U.; Gurwich, I. Fermi bubbles: High latitude X-ray supersonic shell. ArXiv, 2017; arXiv:astro-ph.HE/1704.05070. [Google Scholar]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Barber, A.S.; Bautista-Elivar, N.; et al. Search for Very High Energy Gamma Rays from the Northern Fermi Bubble Region with HAWC. ArXiv, 2017; arXiv:1703.01344. [Google Scholar]
- Razzaque, S. Galactic Center origin of a subset of IceCube neutrino events. Phys. Rev. D 2013, 88, 081302. [Google Scholar] [CrossRef]
- Ahlers, M.; Murase, K. Probing the Galactic origin of the IceCube excess with gamma rays. Phys. Rev. D 2014, 90, 023010. [Google Scholar] [CrossRef]
- Fang, K.; Su, M.; Linden, T.; Murase, K. IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles. Phys. Rev. D 2017, 96, 123007. [Google Scholar] [CrossRef]
- Sherf, N.; Keshet, U.; Gurwich, I. IceCube Constraints on the Fermi Bubbles. Astrophys. J. 2017, 847, 95. [Google Scholar] [CrossRef]
- Crocker, R.M.; Aharonian, F. Fermi Bubbles: Giant, Multibillion-Year-Old Reservoirs of Galactic Center Cosmic Rays. Phys. Rev. Lett. 2011, 106, 101102. [Google Scholar] [CrossRef] [PubMed]
- Crocker, R.M.; Bicknell, G.V.; Taylor, A.M.; Carretti, E. A Unified Model of the Fermi Bubbles, Microwave Haze, and Polarized Radio Lobes: Reverse Shocks in the Galactic Center’s Giant Outflows. Astrophys. J. 2015, 808, 107. [Google Scholar] [CrossRef]
- Mou, G.; Yuan, F.; Bu, D.; Sun, M.; Su, M. Fermi Bubbles Inflated by Winds Launched from the Hot Accretion Flow in Sgr A*. Astrophys. J. 2014, 790, 109. [Google Scholar] [CrossRef]
- Mou, G.; Yuan, F.; Gan, Z.; Sun, M. The Accretion Wind Model of Fermi Bubbles. II. Radiation. Astrophys. J. 2015, 811, 37. [Google Scholar] [CrossRef]
- Zubovas, K.; Nayakshin, S. Fermi bubbles in the Milky Way: The closest AGN feedback laboratory courtesy of Sgr A*? Mon. Not. R. Astron. Soc. 2012, 424, 666–683. [Google Scholar] [CrossRef]
- Totani, T. A RIAF Interpretation for the Past Higher Activity of the Galactic Center Black Hole and the 511 keV Annihilation Emission. Publ. Astron. Soc. Jpn. 2006, 58, 965–977. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A.; Ko, C.M. Multi-wavelength Emission from the Fermi Bubble. II. Secondary Electrons and the Hadronic Model of the Bubble. Astrophys. J. 2015, 799, 112. [Google Scholar] [CrossRef]
- Guo, F.; Mathews, W.G. The Fermi Bubbles. I. Possible Evidence for Recent AGN Jet Activity in the Galaxy. Astrophys. J. 2012, 756, 181. [Google Scholar] [CrossRef]
- Guo, F.; Mathews, W.G.; Dobler, G.; Oh, S.P. The Fermi Bubbles. II. The Potential Roles of Viscosity and Cosmic-Ray Diffusion in Jet Models. Astrophys. J. 2012, 756, 182. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Ricker, P.M.; Zweibel, E.; Lee, D. The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. Astrophys. J. 2012, 761, 185. [Google Scholar] [CrossRef]
- Barkov, M.V.; Bosch-Ramon, V. Formation of large-scale magnetic structures associated with the Fermi bubbles. Astron. Astrophys. 2014, 565, A65. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Zweibel, E. The Fermi bubbles: Gamma-ray, microwave and polarization signatures of leptonic AGN jets. Mon. Not. R. Astron. Soc. 2013, 436, 2734–2746. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M. The Spatially Uniform Spectrum of the Fermi Bubbles: The Leptonic Active Galactic Nucleus Jet Scenario. Astrophys. J. 2017, 850, 1. [Google Scholar] [CrossRef]
- Bland-Hawthorn, J.; Maloney, P.R.; Sutherland, R.S.; Madsen, G.J. Fossil Imprint of a Powerful Flare at the Galactic Center along the Magellanic Stream. Astrophys. J. 2013, 778, 58. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A.; Ko, C.M.; Ip, W.H. Origin of the Fermi Bubble. Astrophys. J. Lett. 2011, 731, L17. [Google Scholar] [CrossRef]
- Fujita, Y.; Ohira, Y.; Yamazaki, R. The Fermi Bubbles as a Scaled-up Version of Supernova Remnants. Astrophys. J. Lett. 2013, 775, L20. [Google Scholar] [CrossRef]
- Lacki, B.C. The Fermi bubbles as starburst wind termination shocks. Mon. Not. R. Astron. Soc. 2014, 444, L39–L43. [Google Scholar] [CrossRef]
- Fujita, Y.; Ohira, Y.; Yamazaki, R. A Hadronic-leptonic Model for the Fermi Bubbles: Cosmic-Rays in the Galactic Halo and Radio Emission. Astrophys. J. 2014, 789, 67. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A.; Ko, C.M. Multi-wavelength Emission from the Fermi Bubble. III. Stochastic (Fermi) Re-acceleration of Relativistic Electrons Emitted by SNRs. Astrophys. J. 2015, 804, 135. [Google Scholar] [CrossRef]
- Mertsch, P.; Sarkar, S. Fermi Gamma-Ray “Bubbles” from Stochastic Acceleration of Electrons. Phys. Rev. Lett. 2011, 107, 091101. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A.; Ko, C.M. Multi-wavelength Emission from the Fermi Bubbles. I. Stochastic Acceleration from Background Plasma. Astrophys. J. 2014, 790, 23. [Google Scholar] [CrossRef]
- Sasaki, K.; Asano, K.; Terasawa, T. Time-dependent Stochastic Acceleration Model for Fermi Bubbles. Astrophys. J. 2015, 814, 93. [Google Scholar] [CrossRef]
- Sarkar, K.C.; Nath, B.B.; Sharma, P. Multiwavelength features of Fermi bubbles as signatures of a Galactic wind. Mon. Not. R. Astron. Soc. 2015, 453, 3827–3838. [Google Scholar] [CrossRef]
- Zubovas, K.; King, A.R.; Nayakshin, S. The Milky Way’s Fermi bubbles: Echoes of the last quasar outburst? Mon. Not. R. Astron. Soc. 2011, 415, L21–L25. [Google Scholar] [CrossRef]
- Takahashi, T.; Mitsuda, K.; Kelley, R.; Aarts, H.; Aharonian, F.; Akamatsu, H.; Akimoto, F.; Allen, S.; Anabuki, N.; Angelini, L.; et al. The ASTRO-H X-ray Observatory. In Proceedings of the Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray; SPIE: Bellingham, WA, USA, 2012; Volume 8443, p. 1. [Google Scholar]
- Nandra, K.; Barret, D.; Barcons, X.; Fabian, A.; den Herder, J.W.; Piro, L.; Watson, M.; Adami, C.; Aird, J.; Afonso, J.M.; et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. ArXiv, 2013; arXiv:astro-ph.HE/1306.2307. [Google Scholar]
- Inoue, Y.; Nakashima, S.; Tahara, M.; Kataoka, J.; Totani, T.; Fujita, Y.; Sofue, Y. Metal enrichment in the Fermi bubbles as a probe of their origin. Publ. Astron. Soc. Jpn. 2015, 67, 56. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-Y.K.; Ruszkowski, M.; Zweibel, E.G. Unveiling the Origin of the Fermi Bubbles. Galaxies 2018, 6, 29. https://doi.org/10.3390/galaxies6010029
Yang H-YK, Ruszkowski M, Zweibel EG. Unveiling the Origin of the Fermi Bubbles. Galaxies. 2018; 6(1):29. https://doi.org/10.3390/galaxies6010029
Chicago/Turabian StyleYang, H.-Y. Karen, Mateusz Ruszkowski, and Ellen G. Zweibel. 2018. "Unveiling the Origin of the Fermi Bubbles" Galaxies 6, no. 1: 29. https://doi.org/10.3390/galaxies6010029
APA StyleYang, H. -Y. K., Ruszkowski, M., & Zweibel, E. G. (2018). Unveiling the Origin of the Fermi Bubbles. Galaxies, 6(1), 29. https://doi.org/10.3390/galaxies6010029