Distribution and Evolution of Metals in the Magneticum Simulations
Abstract
:1. Introduction
2. Chemical Enrichment
2.1. Initial Mass Function
2.2. Lifetime Functions
2.3. Stellar Yields
2.4. Modeling the Enrichment Process
2.4.1. Type Ia Supernovae
2.4.2. Supernovae Type II, Low-, and Intermediate-Mass Stars
2.4.3. The Equations of Chemical Enrichment
3. The Magneticum Simulations
4. Metallicities from Magneticum in Comparison to Observations
4.1. Galaxy Clusters: ICM Metallicities
4.2. Galaxies: Gas Metallicities
4.3. Galaxies: Stellar Metallicities
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dolag, K. Hydrodynamic Methods for Cosmological Simulations. In The Encyclopedia of Cosmology; Fazio, G.G., Ed.; World Scientific: Singapore, 2017; Volume 2. [Google Scholar]
- Matteucci, F. The Chemical Evolution of the Galaxy; Springer: Houten, Netherlands, 2003. [Google Scholar]
- Borgani, S.; Fabjan, D.; Tornatore, L.; Schindler, S.; Dolag, K.; Diaferio, A. The Chemical Enrichment of the ICM from Hydrodynamical Simulations. Space Sci. Rev. 2008, 134, 379–403. [Google Scholar] [CrossRef]
- Salpeter, E.E. The Luminosity Function and Stellar Evolution. Astrophys. J. 1955, 121, 161–167. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef]
- Padovani, P.; Matteucci, F. Stellar Mass Loss in Elliptical Galaxies and the Fueling of Active Galactic Nuclei. Astrophys. J. 1993, 416, 26. [Google Scholar] [CrossRef]
- Maeder, A.; Meynet, G. Grids of evolutionary models from 0.85 to 120 solar masses—Observational tests and the mass limits. Astron. Astrophys. 1989, 210, 155–173. [Google Scholar]
- Chiappini, C.; Matteucci, F.; Gratton, R. The Chemical Evolution of the Galaxy: The Two-Infall Model. Astrophys. J. 1997, 477, 765–780. [Google Scholar] [CrossRef]
- Karakas, A.; Lattanzio, J.C. Stellar Models and Yields of Asymptotic Giant Branch Stars. Publ. Astron. Soc. Pac. 2007, 24, 103–117. [Google Scholar] [CrossRef]
- Nomoto, K.; Kobayashi, C.; Tominaga, N. Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies. Ann. Rev. Astron. Astrophys. 2013, 51, 457–509. [Google Scholar] [CrossRef]
- Thielemann, F.K.; Argast, D.; Brachwitz, F.; Hix, W.R.; Höflich, P.; Liebendörfer, M.; Martinez-Pinedo, G.; Mezzacappa, A.; Nomoto, K.; Panov, I. Supernova Nucleosynthesis and Galactic Evolution. In From Twilight to Highlight: The Physics of Supernovae; Hillebrandt, W., Leibundgut, B., Eds.; Springer: Berlin, Germany, 2003; p. 331. [Google Scholar]
- Greggio, L.; Renzini, A. The binary model for type I supernovae—Theoretical rates. Astron. Astrophys. 1983, 118, 217–222. [Google Scholar]
- Greggio, L. The rates of type Ia supernovae. I. Analytical formulations. Astron. Astrophys. 2005, 441, 1055–1078. [Google Scholar] [CrossRef]
- Matteucci, F.; Gibson, B.K. Chemical abundances in clusters of galaxies. Astron. Astrophys. 1995, 304, 11. [Google Scholar]
- Matteucci, F.; Greggio, L. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astron. Astrophys. 1986, 154, 279–287. [Google Scholar]
- Bocquet, S.; Saro, A.; Dolag, K.; Mohr, J.J. Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology. Mon. Not. R. Astron. Soc. 2016, 456, 2361–2373. [Google Scholar] [CrossRef]
- Pollina, G.; Hamaus, N.; Dolag, K.; Weller, J.; Baldi, M.; Moscardini, L. On the linearity of tracer bias around voids. Mon. Not. R. Astron. Soc. 2017, 469, 787–799. [Google Scholar] [CrossRef]
- Teklu, A.F.; Remus, R.S.; Dolag, K.; Beck, A.M.; Burkert, A.; Schmidt, A.S.; Schulze, F.; Steinborn, L.K. Connecting Angular Momentum and Galactic Dynamics: The Complex Interplay between Spin, Mass, and Morphology. Astrophys. J. 2015, 812, 29. [Google Scholar] [CrossRef]
- Remus, R.S.; Dolag, K.; Naab, T.; Burkert, A.; Hirschmann, M.; Hoffmann, T.L.; Johansson, P.H. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies. Mon. Not. R. Astron. Soc. 2017, 464, 3742–3756. [Google Scholar] [CrossRef]
- Hirschmann, M.; Dolag, K.; Saro, A.; Bachmann, L.; Borgani, S.; Burkert, A. Cosmological simulations of black hole growth: AGN luminosities and downsizing. Mon. Not. R. Astron. Soc. 2014, 442, 2304–2324. [Google Scholar] [CrossRef]
- Biffi, V.; Planelles, S.; Borgani, S.; Fabjan, D.; Rasia, E.; Murante, G.; Tornatore, L.; Dolag, K.; Granato, G.L.; Gaspari, M.; et al. The history of chemical enrichment in the intracluster medium from cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 468, 531–548. [Google Scholar] [CrossRef]
- Santini, P.; Maiolino, R.; Magnelli, B.; Lutz, D.; Lamastra, Z.; Li Causi, G.; Eales, S.; Andreani, P.; Berta, S.; Buat, V.; et al. The evolution of the dust and gas content in galaxies. Astron. Astrophys. 2014, 562, A30. [Google Scholar] [CrossRef] [Green Version]
- De Plaa, J.; Werner, N.; Bleeker, J.A.M.; Vink, J.; Kaastra, J.S.; Méndez, M. Constraining supernova models using the hot gas in clusters of galaxies. Astron. Astrophys. 2007, 465, 345–355. [Google Scholar] [CrossRef]
- Teklu, A.F.; Remus, R.S.; Dolag, K.; Burkert, A. The Morphology-Density-Relation: Impact on the Satellite Fraction. ArXiv, 2017; arXiv:1702.06546. [Google Scholar]
- Sanders, R.L.; Shapley, A.E.; Kriek, M.; Reddy, N.A.; Freeman, W.R.; Coil, A.L.; Siana, B.; Mobasher, B.; Shivaei, I.; Price, S.H.; et al. The MOSDEF Survey: Mass, Metallicity, and Star-formation Rate at z ∼ 2.3. Astrophys. J. 2015, 799, 138. [Google Scholar] [CrossRef]
- Bresolin, F.; Kudritzki, R.; Urbaneja, M.A.; Gieren, W.; Ho, I.; Pietrzyński, G. Young stars and ionized nebulae in M83: Comparing chemical abundances at high metallicity. Astrophys. J. 2016, 830, 64–85. [Google Scholar] [CrossRef]
- González Delgado, R.M.; Cid Fernandes, R.; Garcia-Benito, R.; Perez, E.; de Amorim, A.L.; Cortijo-Ferrero, C.; Lacerda, E.A.D.; Lopez Fernandez, R.; Sanchez, S.F.; Vale Asari, N.; et al. Insights on the Stellar Mass-Metallicity Relation from the CALIFA Survey. Astrophys. J. 2014, 791, L16. [Google Scholar] [CrossRef]
- Remus, R.S.; Dolag, K.; Bachmann, L.K.; Beck, A.M.; Burkert, A.; Hirschmann, M.; Teklu, A. Disk Galaxies in the Magneticum Pathfinder Simulations. In Galaxies in 3D across the Universe, Proceedings of the International Astronomical Union (IAU) Symposium, Vienna, Austria, 7–11 July 2014; Ziegler, B.L., Combes, F., Dannerbauer, H., Verdugo, M., Eds.; Cambridge University Press: Cambridge, UK, 2015; Volume 309, pp. 145–148. [Google Scholar]
- Pastorello, N.; Forbes, D.A.; Foster, C.; Brodie, J.P.; Usher, C.; Romanowsky, A.J.; Strader, J.; Arnold, J.A. The SLUGGS survey: exploring the metallicity gradients of nearby early-type galaxies to large radii. Mon. Not. R. Astron. Soc. 2014, 442, 1003–1039. [Google Scholar] [CrossRef]
- La Barbera, F.; Ferreras, I.; de Carvalho, R.R.; Bruzual, G.; Charlot, S.; Pasquali, A.; Merlin, E. SPIDER—VII. Revealing the stellar population content of massive early-type galaxies out to 8Re. Mon. Not. R. Astron. Soc. 2012, 426, 2300–2317. [Google Scholar] [CrossRef]
Simulation | Box0 | Box1 | Box2b | Box2 | Box3 | Box4 | ||
---|---|---|---|---|---|---|---|---|
Size [Mpc] | 3820 | 1300 | 910 | 500 | 180 | 68 | [] | [kpc/h] |
mr | – | 5 | ||||||
hr | – | – | 2 | |||||
uhr | – | – | – | – | (z = 2) | 0.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolag, K.; Mevius, E.; Remus, R.-S. Distribution and Evolution of Metals in the Magneticum Simulations. Galaxies 2017, 5, 35. https://doi.org/10.3390/galaxies5030035
Dolag K, Mevius E, Remus R-S. Distribution and Evolution of Metals in the Magneticum Simulations. Galaxies. 2017; 5(3):35. https://doi.org/10.3390/galaxies5030035
Chicago/Turabian StyleDolag, Klaus, Emilio Mevius, and Rhea-Silvia Remus. 2017. "Distribution and Evolution of Metals in the Magneticum Simulations" Galaxies 5, no. 3: 35. https://doi.org/10.3390/galaxies5030035
APA StyleDolag, K., Mevius, E., & Remus, R. -S. (2017). Distribution and Evolution of Metals in the Magneticum Simulations. Galaxies, 5(3), 35. https://doi.org/10.3390/galaxies5030035