Predicting Galactic OH Masers from Dense Clump Properties with Neural Networks and Generalized Linear Models
Abstract
1. Introduction
2. Methods
2.1. Catalogs of Clump Physical Parameters and Maser Detections
2.2. Generalized Linear Model (GLM)
2.3. Neural Network for Binary Classification
2.4. Metrics and Cross-Validation
- Single split: Random 70/30 train/validation partition (fixed seed for reproducibility).
- Stratified 5-fold CV: The dataset is partitioned into five folds preserving class proportions; each fold serves once as validation while the model trains on the remaining four. We report mean and standard deviation of metrics across folds.
3. Results
3.1. Metrics
3.2. Precision-Recall Curves
3.3. Feature Importance
4. Discussion
5. Practical Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AG | ATLASGAL 2018 catalog |
| AG2 | ATLASGAL 2022 catalog |
| AIC | Akaike Information Criterion |
| ATLASGAL | APEX Telescope Large Area Survey of the Galaxy |
| BNN | Binary Neural Network |
| DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
| FIR | Far-Infrared |
| GLM | Generalized Linear Model |
| GLMsw | Generalized Linear Model with stepwise refinement |
| HG3 | Hi-GAL 360 catalog |
| Hi-GAL | Herschel Infrared Galactic Plane Survey |
| HOPS | H2O southern Galactic Plane Survey |
| LOCO | Leave-One-Covariate-Out |
| MYSO | Massive Young Stellar Object |
| OH | Hydroxyl |
| PR | Precision-Recall |
| ROC | Receiver Operating Characteristic |
| SED | Spectral Energy Distribution |
| SPLASH | Southern Parkes Large-Area Survey in Hydroxyl |
| THOR | The HI/OH/Recombination line survey of the Milky Way |
| UC H II | Ultracompact H II region |
References
- Cragg, D.M.; Sobolev, A.M.; Godfrey, P.D. Models of class II methanol masers based on improved molecular data. Mon. Not. R. Astron. Soc. 2002, 331, 521–546. [Google Scholar] [CrossRef]
- Gray, M.D. Dust radiation fields and pumping of excited state OH masers in W3(OH). Mon. Not. R. Astron. Soc. 2001, 324, 57–67. [Google Scholar] [CrossRef]
- Beuther, H.; Walsh, A.; Wang, Y.; Rugel, M.; Soler, J.; Linz, H.; Klessen, R.S.; Anderson, L.D.; Urquhart, J.S.; Glover, S.C.O.; et al. OH maser emission in the THOR survey of the northern Milky Way. Astron. Astrophys. 2019, 628, A90. [Google Scholar] [CrossRef]
- Dawson, J.R.; Jones, P.A.; Purcell, C.R.; Walsh, A.J.; Breen, S.L.; Brown, C.; Carretti, E.; Cunningham, M.R.; Dickey, J.M.; Ellingsen, S.P.; et al. SPLASH: The Southern Parkes Large-Area Survey in Hydroxyl - data description and release. Mon. Not. R. Astron. Soc. 2022, 512, 3345–3364. [Google Scholar] [CrossRef]
- Urquhart, J.S.; König, C.; Giannetti, A.; Leurini, S.; Moore, T.J.T.; Eden, D.J.; Pillai, T.; Thompson, M.A.; Braiding, C.; Burton, M.G.; et al. ATLASGAL—Properties of a complete sample of Galactic massive star-forming clumps. Mon. Not. R. Astron. Soc. 2018, 473, 1059–1082. [Google Scholar] [CrossRef]
- Urquhart, J.S.; Wells, M.R.A.; Pillai, T.; Leurini, S.; Giannetti, A.; Moore, T.J.T.; Thompson, M.A.; Figura, C.; Colombo, D.; Yang, A.Y.; et al. ATLASGAL—Evolutionary trends in high-mass star formation. Mon. Not. R. Astron. Soc. 2022, 510, 3389–3407. [Google Scholar] [CrossRef]
- Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Pezzuto, S.; Merello, M.; Noriega-Crespo, A.; Moore, T.J.T.; Russeil, D.; Mottram, J.C.; et al. The Hi-GAL compact source catalogue—I. The physical properties of the clumps in the inner Galaxy (−71.0° < ℓ < 67.0°). Mon. Not. R. Astron. Soc. 2017, 471, 100–143. [Google Scholar] [CrossRef]
- Breen, S.L.; Ellingsen, S.P.; Caswell, J.L.; Green, J.A.; Fuller, G.A.; Voronkov, M.A.; Quinn, L.J.; Avison, A. Statistical Properties of 12.2 GHz Methanol Masers Associated with a Complete Sample of 6.7 GHz Methanol Masers. Astrophys. J. 2011, 733, 80–97. [Google Scholar] [CrossRef]
- Ladeyschikov, D.A.; Gong, Y.; Sobolev, A.M.; Menten, K.M.; Urquhart, J.S.; Breen, S.L.; Shakhvorostova, N.N.; Bayandina, O.S.; Tsivilev, A.P. Water Masers as an Early Tracer of Star Formation. Astrophys. J. Suppl. Ser. 2022, 261, 14. [Google Scholar] [CrossRef]
- Titmarsh, A.M.; Ellingsen, S.P.; Breen, S.L.; Caswell, J.L.; Voronkov, M.A. A search for water masers associated with class II methanol masers— I. Longitude range 6°–20°. Mon. Not. R. Astron. Soc. 2014, 443, 2923–2939. [Google Scholar] [CrossRef]
- Lieu, M. A Comprehensive Guide to Interpretable AI-Powered Discoveries in Astronomy. Universe 2025, 11, 187. [Google Scholar] [CrossRef]
- Hesar, F.F.; Raouf, M.; Soltani, P.; Foing, B.; de Dood, M.J.A.; Verbeek, F.J. Using Machine Learning for Lunar Mineralogy I: Hyperspectral Imaging of Volcanic Samples. Universe 2025, 11, 117. [Google Scholar] [CrossRef]
- Ruan, W.; Wang, H.; Liu, C.; Guo, Z. Parameter Inference for Coalescing Massive Black Hole Binaries Using Deep Learning. Universe 2023, 9, 407. [Google Scholar] [CrossRef]
- Petrovay, K. Predicting Solar Cycles with a Parametric Time Series Model. Universe 2024, 10, 364. [Google Scholar] [CrossRef]
- Singh, K.K.; Tolamatti, A.; Godiyal, S.; Pathania, A.; Yadav, K.K. A Machine Learning Approach for Predicting Black Hole Mass in Blazars Using Broadband Emission Model Parameters. Universe 2022, 8, 539. [Google Scholar] [CrossRef]
- Breen, S.L.; Ellingsen, S.P.; Johnston-Hollitt, M.; Wotherspoon, S.; Bains, I.; Burton, M.G.; Cunningham, M.; Lo, N.; Senkbeil, C.E.; Wong, T. A search for 22-GHz water masers within the giant molecular cloud associated with RCW 106. Mon. Not. R. Astron. Soc. 2007, 377, 491–506. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 23 November 2025).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Ladeyschikov, D.A.; Bayandina, O.S.; Sobolev, A.M. Online Database of Class I Methanol Masers. Astron. J. 2019, 158, 233. [Google Scholar] [CrossRef]
- Ladeyschikov, D.A.; Sobolev, A.M.; Bayandina, O.S.; Shakhvorostova, N.N. Online Database of Multiwavelength Water Masers in Galactic Star-forming Regions. Astron. J. 2022, 163, 124. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA, 2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231. [Google Scholar]
- Ladeyschikov, D.A.; Urquhart, J.S.; Sobolev, A.M.; Breen, S.L.; Bayandina, O.S. The Physical Parameters of Clumps Associated with Class I Methanol Masers. Astron. J. 2020, 160, 213. [Google Scholar] [CrossRef]
- Paulson, S.T.; Pandian, J.D. Probing the early phases of high-mass star formation with 6.7 GHz methanol masers. Mon. Not. R. Astron. Soc. 2020, 492, 1335–1347. [Google Scholar] [CrossRef]
- Edris, K.A.; Fuller, G.A.; Cohen, R.J. A survey of OH masers towards high mass protostellar objects. Astron. Astrophys. 2007, 465, 865–877. [Google Scholar] [CrossRef]
- Breen, S.L.; Ellingsen, S.P.; Caswell, J.L.; Lewis, B.E. 12.2-GHz methanol masers towards 1.2-mm dust clumps: Quantifying high-mass star formation evolutionary schemes. Mon. Not. R. Astron. Soc. 2010, 401, 2219–2244. [Google Scholar] [CrossRef]
- Ellingsen, S.P.; Breen, S.L.; Caswell, J.L.; Quinn, L.J.; Fuller, G.A. Masers associated with high-mass star formation regions in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2010, 404, 779–791. [Google Scholar] [CrossRef]
- Csengeri, T.; Urquhart, J.S.; Schuller, F.; Motte, F.; Bontemps, S.; Wyrowski, F.; Menten, K.M.; Bronfman, L.; Beuther, H.; Henning, T.; et al. The ATLASGAL survey: A catalog of dust condensations in the Galactic plane. Astron. Astrophys. 2014, 565, A75. [Google Scholar] [CrossRef]
- Elia, D.; Merello, M.; Molinari, S.; Schisano, E.; Zavagno, A.; Russeil, D.; Mège, P.; Martin, P.G.; Olmi, L.; Pestalozzi, M.; et al. The Hi-GAL compact source catalogue—II. The 360° catalogue of clump physical properties. Mon. Not. R. Astron. Soc. 2021, 504, 2742–2766. [Google Scholar] [CrossRef]
- Qiao, H.H.; Walsh, A.J.; Green, J.A.; Breen, S.L.; Dawson, J.R.; Ellingsen, S.P.; Gómez, J.F.; Jordan, C.H.; Shen, Z.Q.; Lowe, V.; et al. Accurate OH Maser Positions from the SPLASH Pilot Region. Astrophys. J. Suppl. Ser. 2016, 227, 26. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lei, J.; G’Sell, M.; Rinaldo, A.; Tibshirani, R.J.; Wasserman, L. Distribution-Free Predictive Inference for Regression. J. Am. Stat. Assoc. 2018, 113, 1094–1111. [Google Scholar] [CrossRef]
- Molinari, S.; Pezzuto, S.; Cesaroni, R.; Brand, J.; Faustini, F.; Testi, L. The evolution of the spectral energy distribution in massive young stellar objects. Astron. Astrophys. 2008, 481, 345–363. [Google Scholar] [CrossRef]
- Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.S.; Csengeri1, T.; Menten, K.M.; König, C.; Güsten, R. ATLASGAL-selected massive clumps in the inner Galaxy. Astron. Astrophys. 2017, 603, A33. [Google Scholar] [CrossRef]
- Shchekinov, Y.A.; Nath, B.B. Dust at the Cosmic Dawn. Galaxies 2025, 13, 64. [Google Scholar] [CrossRef]
- Uscanga, L. Millimetre Observations of Maser-Emitting Planetary Nebulae. Galaxies 2022, 10, 48. [Google Scholar] [CrossRef]
- Avison, A.; Quinn, L.J.; Fuller, G.A.; Caswell, J.L.; Green, J.A.; Breen, S.L.; Ellingsen, S.P.; Gray, M.D.; Pestalozzi, M.; Thompson, M.A.; et al. Excited-state hydroxyl maser catalogue from the methanol multibeam survey—I. Positions and variability. Mon. Not. R. Astron. Soc. 2016, 461, 136–155. [Google Scholar] [CrossRef]
- Cesaroni, R.; Walmsley, C.M. OH maser models revisited. Astron. Astrophys. 1991, 241, 537. [Google Scholar]
- Gray, M.D.; Field, D.; Doel, R.C. An analysis of intense OH maser emission in star-forming regions. Astron. Astrophys. 1992, 262, 555–569. [Google Scholar]
- Caswell, J.L. Spectra of OH masers at 6035 and 6030 MHz. Mon. Not. R. Astron. Soc. 2003, 341, 551–568. [Google Scholar] [CrossRef]
- Pavlakis, K.G.; Kylafis, N.D. 5 Centimeter OH Masers as Diagnostics of Physical Conditions in Star-forming Regions. Astrophys. J. 2000, 534, 770–780. [Google Scholar] [CrossRef]
- Cragg, D.M.; Sobolev, A.M.; Godfrey, P.D. Modelling methanol and hydroxyl masers in star-forming regions. Mon. Not. R. Astron. Soc. 2002, 331, 521–536. [Google Scholar] [CrossRef]
- Ouyang, X.J.; Chen, X.; Shen, Z.Q.; Li, B.; Wu, Y.J.; Chen, H.Y.; Li, X.Q.; Yang, K.; Song, S.M.; Qiao, H.H. An Excited-state OH Maser Survey toward WISE Point Sources. Astrophys. J. Suppl. Ser. 2022, 260, 51. [Google Scholar] [CrossRef]
- Breen, S.L.; Lovell, J.E.J.; Ellingsen, S.P.; Horiuchi, S.; Beasley, A.J.; Marvel, K. Discovery of four water masers in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2013, 432, 1382–1395. [Google Scholar] [CrossRef]
- Dawson, J.R.; Breen, S.L.; Gaskap-Oh Team. GASKAP-OH: A New Deep Survey of Ground-State OH Masers and Absorption in the Southern Sky. In Cosmic Masers: Proper Motion Toward the Next-Generation Large Projects; Hirota, T., Imai, H., Menten, K., Pihlström, Y., Eds.; IAU Symposium; Cambridge University Press: Cambridge, UK, 2024; Volume 380, pp. 486–490. [Google Scholar] [CrossRef]
- Mroczkowski, T.; Gallardo, P.A.; Timpe, M.; Kiselev, A.; Groh, M.; Kaercher, H.; Reichert, M.; Cicone, C.; Puddu, R.; Dubois-dit-Bonclaude, P.; et al. The conceptual design of the 50-meter Atacama Large Aperture Submillimeter Telescope (AtLAST). Astron. Astrophys. 2025, 694, A142. [Google Scholar] [CrossRef]
- Betti, S.K.; Gutermuth, R.; Offner, S.; Wilson, G.; Sokol, A.; Pokhrel, R. The Robustness of Synthetic Observations in Producing Observed Core Properties: Predictions for the TolTEC Clouds to Cores Legacy Survey. Astrophys. J. 2021, 923, 25. [Google Scholar] [CrossRef]
- Ade, P.; Aguirre, J.; Ahmed, Z.; Aiola, S.; Ali, A.; Alonso, D.; Alvarez, M.A.; Arnold, K.; Ashton, P.; Austermann, J.; et al. The Simons Observatory: Science goals and forecasts. J. Cosmol. Astropart. Phys. 2019, 2019, 056. [Google Scholar] [CrossRef]
- Padmanabh, P.V.; Barr, E.D.; Sridhar, S.S.; Rugel, M.R.; Damas-Segovia, A.; Jacob, A.M.; Balakrishnan, V.; Berezina, M.; Bernadich, M.C.; Brunthaler, A.; et al. The MPIfR-MeerKAT Galactic Plane Survey—I. System set-up and early results. Mon. Not. R. Astron. Soc. 2023, 524, 1291–1315. [Google Scholar] [CrossRef]



| Survey | 1612 | 1665 | 1667 | 1720 | 6031 | 6035 |
|---|---|---|---|---|---|---|
| AG | 82/1449 | 269/1422 | 214/1463 | 61/1466 | 58/1661 | 108/1659 |
| AG2 | 77/1793 | 274/1727 | 214/1787 | 60/1793 | 60/1999 | 110/1992 |
| HG3 | 65/4858 | 245/4821 | 185/4864 | 43/4852 | 47/5081 | 92/5072 |
| Cat. | Method | Full Sample | Validation Sample | 5 Folds Validation | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| P | R | pA | P | R | pA | P () | R () | pA () | ||
| 1612 MHz | ||||||||||
| HG3 | BNN | 13.5 | 90.8 | 14.7 | 4.3 | 89.5 | 6.7 | 2.8 (0.8) | 92.3 | 5.1 (3.7) |
| GLM | 6.2 | 90.8 | 7.2 | 3.2 | 90.0 | 4.9 | 5.0 (2.9) | 92.3 | 6.3 (4.2) | |
| GLMsw | 4.1 | 90.8 | 5.7 | 5.1 | 90.0 | 5.1 | 4.1 (2.0) | 92.3 | 5.6 (3.3) | |
| AG | BNN | 16.2 | 90.2 | 19.1 | 7.3 | 90.9 | 8.6 | 5.9 (1.0) | 87.8 (0.4) | 7.7 (1.7) |
| GLM | 7.9 | 90.2 | 9.1 | 5.7 | 92.0 | 6.6 | 6.5 (1.3) | 87.8 (0.4) | 8.8 (2.4) | |
| GLMsw | 6.2 | 90.2 | 8.3 | 5.9 | 92.0 | 6.4 | 7.2 (2.2) | 87.8 (0.4) | 8.2 (2.0) | |
| AG2 | BNN | 12.0 | 89.6 | 14.7 | 4.3 | 89.5 | 4.6 | 7.3 (4.9) | 91.0 (3.2) | 7.5 (3.0) |
| GLM | 7.0 | 89.6 | 7.8 | 4.4 | 91.3 | 5.0 | 6.0 (3.1) | 91.0 (3.2) | 6.7 (2.5) | |
| GLMsw | 5.6 | 89.6 | 7.3 | 6.3 | 91.3 | 11.2 | 7.8 (6.8) | 91.0 (3.2) | 8.5 (5.8) | |
| 1665 MHz | ||||||||||
| HG3 | BNN | 53.0 | 90.2 | 57.7 | 36.4 | 89.5 | 43.0 | 41.1 (11.4) | 89.8 (0.0) | 45.9 (10.0) |
| GLM | 45.5 | 90.2 | 51.2 | 28.6 | 90.5 | 37.4 | 44.5 (13.0) | 89.8 (0.0) | 49.4 (10.7) | |
| GLMsw | 46.0 | 90.2 | 47.3 | 30.7 | 90.5 | 38.0 | 44.1 (8.2) | 89.8 (0.0) | 47.0 (8.7) | |
| AG | BNN | 57.8 | 90.0 | 61.5 | 53.2 | 90.2 | 56.5 | 43.9 (7.0) | 90.7 (0.1) | 54.3 (4.0) |
| GLM | 45.1 | 90.0 | 53.6 | 57.5 | 90.1 | 54.8 | 40.9 (6.8) | 90.7 (0.1) | 51.6 (4.3) | |
| GLMsw | 44.2 | 90.0 | 49.2 | 48.7 | 90.1 | 49.9 | 38.0 (5.9) | 90.7 (0.1) | 49.1 (2.1) | |
| AG2 | BNN | 58.4 | 90.2 | 62.6 | 50.3 | 90.5 | 54.0 | 47.0 (2.0) | 90.9 (0.1) | 55.1 (4.6) |
| GLM | 47.4 | 90.2 | 54.0 | 43.5 | 90.2 | 50.9 | 47.1 (8.0) | 90.9 (0.1) | 53.0 (6.7) | |
| GLMsw | 43.6 | 90.2 | 51.6 | 44.6 | 90.2 | 50.3 | 42.5 (6.0) | 90.9 (0.1) | 51.4 (6.5) | |
| 1667 MHz | ||||||||||
| HG3 | BNN | 51.2 | 90.3 | 53.1 | 44.7 | 90.2 | 43.5 | 40.1 (8.2) | 89.2 | 42.6 (6.9) |
| GLM | 46.4 | 90.3 | 47.5 | 33.8 | 89.3 | 39.4 | 40.7 (7.1) | 89.2 | 45.7 (6.1) | |
| GLMsw | 40.8 | 90.3 | 45.0 | 35.2 | 89.3 | 40.2 | 42.1 (7.5) | 89.2 | 45.3 (7.3) | |
| AG | BNN | 61.9 | 90.2 | 66.5 | 52.3 | 90.3 | 54.6 | 48.5 (9.3) | 90.7 (0.1) | 54.9 (5.6) |
| GLM | 53.3 | 90.2 | 56.8 | 46.4 | 90.6 | 51.6 | 47.8 (12.1) | 90.7 (0.1) | 53.7 (7.6) | |
| GLMsw | 47.3 | 90.2 | 53.7 | 46.0 | 90.6 | 49.6 | 46.0 (11.7) | 90.7 (0.1) | 51.9 (7.2) | |
| AG2 | BNN | 58.1 | 90.2 | 62.9 | 53.9 | 90.2 | 55.5 | 50.3 (7.3) | 90.7 (0.1) | 54.0 (7.2) |
| GLM | 52.6 | 90.2 | 56.0 | 51.3 | 90.6 | 59.0 | 45.7 (11.9) | 90.7 (0.1) | 54.0 (7.7) | |
| GLMsw | 52.6 | 90.2 | 55.4 | 53.2 | 90.6 | 57.3 | 44.9 (13.9) | 90.7 (0.1) | 54.0 (7.3) | |
| 1720 MHz | ||||||||||
| HG3 | BNN | 15.7 | 90.7 | 16.2 | 2.8 | 92.9 | 9.4 | 3.4 (1.4) | 88.3 (0.8) | 3.9 (1.3) |
| GLM | 6.9 | 90.7 | 7.8 | 4.5 | 92.3 | 6.1 | 4.7 (3.0) | 88.3 (0.8) | 6.6 (2.2) | |
| GLMsw | 4.0 | 90.7 | 7.1 | 7.1 | 92.3 | 9.4 | 5.3 (3.0) | 88.3 (0.8) | 6.2 (2.7) | |
| AG | BNN | 20.8 | 90.2 | 22.5 | 9.4 | 88.9 | 13.5 | 7.0 (2.8) | 91.8 (0.3) | 10.9 (2.9) |
| GLM | 12.1 | 90.2 | 14.5 | 10.7 | 88.9 | 12.8 | 6.3 (2.6) | 91.8 (0.3) | 12.1 (2.9) | |
| GLMsw | 13.0 | 90.2 | 14.2 | 9.8 | 88.9 | 15.4 | 8.2 (3.8) | 91.8 (0.3) | 12.7 (4.6) | |
| AG2 | BNN | 18.9 | 90.0 | 22.3 | 7.3 | 91.3 | 15.3 | 9.0 (7.0) | 91.7 | 11.8 (6.1) |
| GLM | 9.8 | 90.0 | 14.1 | 8.6 | 88.9 | 17.5 | 7.5 (6.2) | 91.7 | 12.5 (6.2) | |
| GLMsw | 11.7 | 90.0 | 12.8 | 11.6 | 88.9 | 17.4 | 8.4 (7.9) | 91.7 | 13.3 (5.9) | |
| 6031 MHz | ||||||||||
| HG3 | BNN | 18.5 | 89.4 | 20.0 | 2.9 | 88.9 | 3.5 | 3.5 (2.7) | 89.3 (0.6) | 6.3 (2.5) |
| GLM | 12.7 | 89.4 | 13.5 | 7.7 | 92.9 | 11.8 | 5.5 (1.8) | 89.3 (0.6) | 8.4 (3.1) | |
| GLMsw | 6.6 | 89.4 | 8.8 | 4.2 | 92.9 | 8.2 | 8.8 (7.5) | 89.3 (0.6) | 9.8 (7.5) | |
| AG | BNN | 30.4 | 89.7 | 33.3 | 6.1 | 90.0 | 7.8 | 9.5 (6.4) | 91.4 (0.4) | 14.8 (5.7) |
| GLM | 14.2 | 89.7 | 17.9 | 7.4 | 88.2 | 9.9 | 9.2 (4.9) | 91.4 (0.4) | 14.3 (4.7) | |
| GLMsw | 10.7 | 89.7 | 15.8 | 7.1 | 88.2 | 11.4 | 10.1 (4.2) | 91.4 (0.4) | 13.5 (4.7) | |
| AG2 | BNN | 23.7 | 90.0 | 28.8 | 7.0 | 93.3 | 11.0 | 6.7 (2.4) | 91.7 | 12.9 (5.9) |
| GLM | 15.0 | 90.0 | 17.9 | 10.5 | 88.9 | 15.1 | 9.8 (4.6) | 91.7 | 15.9 (6.7) | |
| GLMsw | 10.7 | 90.0 | 14.7 | 10.1 | 88.9 | 18.8 | 8.7 (1.8) | 91.7 | 16.4 (9.3) | |
| 6035 MHz | ||||||||||
| HG3 | BNN | 23.4 | 90.2 | 25.8 | 10.6 | 91.3 | 13.1 | 12.1 (7.3) | 89.1 (0.3) | 14.7 (5.4) |
| GLM | 17.2 | 90.2 | 18.3 | 9.5 | 89.3 | 12.2 | 15.8 (6.6) | 89.1 (0.3) | 15.7 (5.8) | |
| GLMsw | 14.0 | 90.2 | 16.0 | 12.8 | 89.3 | 12.9 | 14.9 (6.6) | 89.1 (0.3) | 16.2 (7.1) | |
| AG | BNN | 28.0 | 89.8 | 29.1 | 14.5 | 90.3 | 16.4 | 12.0 (3.3) | 90.7 (0.2) | 17.4 (4.0) |
| GLM | 19.5 | 89.8 | 20.8 | 12.5 | 90.6 | 17.4 | 13.6 (3.5) | 90.7 (0.2) | 19.9 (4.4) | |
| GLMsw | 17.7 | 89.8 | 20.6 | 14.1 | 90.6 | 17.9 | 14.8 (5.4) | 90.7 (0.2) | 20.1 (3.5) | |
| AG2 | BNN | 22.4 | 90.0 | 24.1 | 16.2 | 90.0 | 18.1 | 14.6 (3.5) | 90.9 (0.0) | 17.8 (4.0) |
| GLM | 19.1 | 90.0 | 21.0 | 18.0 | 90.9 | 20.8 | 16.6 (3.6) | 90.9 (0.0) | 18.8 (2.6) | |
| GLMsw | 19.0 | 90.0 | 20.1 | 20.7 | 90.9 | 20.2 | 15.7 (3.4) | 90.9 (0.0) | 18.7 (3.9) | |
| AG Survey | ||||||
| Freq. | ||||||
| 1612 | +0.92 ± 0.06 | |||||
| 1665 | +0.55 ± 0.05 | +1.14 ± 0.06 | +0.91 ± 0.05 | |||
| 1667 | +0.78 ± 0.05 | +1.08 ± 0.09 | +0.87 ± 0.06 | |||
| 1720 | +0.66 ± 0.05 | +0.97 ± 0.03 | ||||
| 6031 | +0.47 ± 0.09 | +0.98 ± 0.10 | +0.89 ± 0.07 | |||
| 6035 | +0.46 ± 0.05 | +0.85 ± 0.08 | +0.77 ± 0.05 | |||
| AG2 Survey | ||||||
| Freq. | ||||||
| 1612 | +0.93 ± 0.08 | +0.37 ± 0.03 | ||||
| 1665 | +0.59 ± 0.05 | +1.49 ± 0.06 | +1.13 ± 0.04 | |||
| 1667 | +0.82 ± 0.06 | +1.35 ± 0.07 | +0.98 ± 0.08 | |||
| 1720 | +0.99 ± 0.07 | +0.84 ± 0.05 | ||||
| 6031 | +1.65 ± 0.05 | +0.68 ± 0.06 | ||||
| 6035 | +0.43 ± 0.04 | +1.28 ± 0.07 | +0.60 ± 0.06 | |||
| HG3 Survey | ||||||
| Freq. | ||||||
| 1612 | +1.54 ± 0.05 | −0.47 ± 0.06 | ||||
| 1665 | +0.30 ± 0.02 | +1.61 ± 0.08 | +2.00 ± 0.06 | |||
| 1667 | +0.41 ± 0.02 | +1.49 ± 0.08 | +1.98 ± 0.02 | |||
| 1720 | +1.07 ± 0.17 | +0.84 ± 0.11 | ||||
| 6031 | +0.30 ± 0.04 | +1.88 ± 0.18 | ||||
| 6035 | +0.25 ± 0.03 | +1.20 ± 0.16 | +0.71 ± 0.11 | |||
| Survey | Freq. | G1 | pA | G2 | pA | G3 | pA |
|---|---|---|---|---|---|---|---|
| AG | 1665 | 10.69 | 6.06 | l | 2.33 | ||
| 1667 | 12.45 | 8.32 | l | 6.51 | |||
| 1720 | 7.32 | 7.06 | |||||
| 6031 | 6.26 | l | 1.27 | ||||
| 6035 | 4.48 | 4.37 | l | 2.03 | |||
| AG2 | 1612 | 7.15 | 0.89 | ||||
| 1665 | 27.09 | 6.93 | l | 5.58 | |||
| 1667 | 25.57 | 15.44 | l | 10.16 | |||
| 1720 | 8.60 | 7.91 | |||||
| 6031 | 7.77 | 3.51 | |||||
| 6035 | 11.12 | 3.26 | l | 1.85 | |||
| HG3 | 1612 | 3.95 | 0.35 | ||||
| 1665 | 20.02 | 14.14 | l | 0.49 | |||
| 1667 | 23.35 | 12.75 | l | 7.46 | |||
| 1720 | 1.40 | 1.10 | |||||
| 6031 | 6.35 | l | 0.60 | ||||
| 6035 | 1.62 | l | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladeyschikov, D.A.; Filonova, E.A.; Vasyunin, A.I. Predicting Galactic OH Masers from Dense Clump Properties with Neural Networks and Generalized Linear Models. Galaxies 2025, 13, 130. https://doi.org/10.3390/galaxies13060130
Ladeyschikov DA, Filonova EA, Vasyunin AI. Predicting Galactic OH Masers from Dense Clump Properties with Neural Networks and Generalized Linear Models. Galaxies. 2025; 13(6):130. https://doi.org/10.3390/galaxies13060130
Chicago/Turabian StyleLadeyschikov, Dmitry A., Elena A. Filonova, and Anton I. Vasyunin. 2025. "Predicting Galactic OH Masers from Dense Clump Properties with Neural Networks and Generalized Linear Models" Galaxies 13, no. 6: 130. https://doi.org/10.3390/galaxies13060130
APA StyleLadeyschikov, D. A., Filonova, E. A., & Vasyunin, A. I. (2025). Predicting Galactic OH Masers from Dense Clump Properties with Neural Networks and Generalized Linear Models. Galaxies, 13(6), 130. https://doi.org/10.3390/galaxies13060130

