Nucleosynthesis of Cobalt and Copper
Abstract
1. Introduction
2. Production of Co and Cu
3. The Data
4. Chemical Evolution Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woosley, S.E.; Weaver, T.A. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis. Astrophys. J. Suppl. 1995, 101, 181. [Google Scholar] [CrossRef]
- Rauscher, T.; Heger, A.; Hoffman, R.D.; Woosley, S.R. Nucleosyntesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 2002, 576, 323. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The weak-s process in massive stars and its dependence on neutron-capture cross sections. Astrophys. J. 2010, 710, 1557. [Google Scholar] [CrossRef]
- Siqueira-Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; et al. First stars. XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001. Astron. Astrophys. 2013, 550, A122. [Google Scholar] [CrossRef]
- Peterson, R.C.; Barbuy, B.; Spite, M. Trans-iron Ge, As, Se, and heavier elements in the dwarf metal-poor stars HD 19445, HD 84937, HD 94028, HD 140283, and HD 160617. Astron. Astrophys. 2020, 638, A64. [Google Scholar] [CrossRef]
- Yoshida, T.; Umeda, H.; Nomoto, K. ν-Process Nucleosynthesis in Population III Core-Collapse Supernovae. Astrophys. J. 2008, 672, 1043. [Google Scholar] [CrossRef]
- McWilliam, A. The Chemical Composition of the Galactic Bulge and Implications for its Evolution. Publ. Astron. Aust. 2016, 33, e040. [Google Scholar] [CrossRef]
- Barbuy, B.; Friaça, A.C.S.; Da Silveira, C.R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A. Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman-α systems. Astron. Astrophys. 2015, 580, A40. [Google Scholar] [CrossRef]
- Woosley, S.E. The explosive burning of Oxygen and Silicon. Astrophys. J. Suppl. 1973, 26, 231. [Google Scholar] [CrossRef]
- Woosley, S.E.; Hoffman, R.D. The alpha-process and the r-process. Astrophys. J. 1992, 395, 202. [Google Scholar] [CrossRef]
- Sukhbold, T.; Ertl, T.; Woosley, S.E.; Brown, J.M.; Janka, H.T. Core-collapse supernovae from 9 to 120 solar masses on neutrino-powered explosions. Astrophys. J. 2016, 821, 38. [Google Scholar] [CrossRef]
- Romano, D.; Matteucci, F. Contrasting copper evolution in ω Centauri and the Milky Way. Mon. Not. R. Astron. Soc. 2007, 378, L59. [Google Scholar] [CrossRef]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive stars yields. II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832. [Google Scholar] [CrossRef]
- Pérez-Villegas, A.; Barbuy, B.; Kerber, L.O.; Ortolani, S.; Souza, S.O.; Bica, E. Globular clusters in the inner Galaxy classified from dynamical orbital criteria. Mon. Not. R. Astron. Soc. 2020, 491, 3251. [Google Scholar] [CrossRef]
- Bica, E.; Ortolani, S.; Barbuy, B.; Oliveira, R.A.P. A census of new globular clusters in the Galactic bulge. Astron. Astrophys. 2024, 687, A201. [Google Scholar] [CrossRef]
- Razera, R.; Barbuy, B.; Moura, T.C.; Ernandes, H.; Pérez-Villegas, A.; Souza, S.O.; Chiappini, C.; Queiroz, A.B.D.A.; Anders, F.; Fernández-Trincado, J.G.; et al. Abundance analysis of APOGEE spectra for 58 metal-poor stars from the bulge spheroid. Mon. Not. R. Astron. Soc. 2022, 517, 4590. [Google Scholar] [CrossRef]
- Queiroz, A.B.D.A.; Chiappini, C.; Perez-Villegas, A.; Khalatyan, A.; Anders, F.; Barbuy, B.; Santiago, B.X.; Steinmetz, M.; Cunha, K.; Schultheis, M.; et al. The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3. Astron. Astrophys. 2021, 656, A156. [Google Scholar] [CrossRef]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Prieto, C.A.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Barbuy, B.; Friaça, A.; Ernandes, H.; Moura, T.; Masseron, T.; Cunha, K.; Smith, V.V.; Souto, D.; Pérez-Villegas, A.; Souza, S.; et al. Light elements Na and Al in 58 bulge spheroid stars from APOGEE. Mon. R. Astron. Soc. 2023, 526, 2365. [Google Scholar] [CrossRef]
- Barbuy, B.; Friaça, A.C.S.; Ernandes, H.; Da Silva, P.; Souza, S.O.; Fernández-Trincado, J.G.; Cunha, K.; Smith, V.V.; Masseron, T.; Pérez-Villegas, A.; et al. Abundances of iron-peak elements in 58 bulge spheroid stars from APOGEE. Astron. Astrophys. 2024, 691, A296. [Google Scholar] [CrossRef]
- Ishigaki, M.N.; Aoki, W.; Chiba, M. Chemical Abundances of the Milky Way Thick Disk and Stellar Halo. II. Sodium, Iron-peak, and Neutron-capture Elements. Astrophys. J. 2013, 771, 67. [Google Scholar] [CrossRef]
- Cayrel, R.; Depagne, E.; Spite, M.; Hill, V.; Spite, F.; François, P.; Plez, B.; Beers, T.; Primas, F.; Andersen, J.; et al. First stars V-Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 2004, 416, 1117. [Google Scholar] [CrossRef]
- Roederer, I.U.; Barklem, P.S. A New Test of Copper and Zinc Abundances in Late-type Stars Using Ultraviolet Cu II and Zn II Lines. Astrophys. J. 2018, 857, 2. [Google Scholar] [CrossRef]
- Johnson, C.I.; Rich, R.M.; Kobayashi, C.; Kunder, A.; Koch, A. Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge. Astron. J. 2014, 148, 67. [Google Scholar] [CrossRef]
- Zoccali, M.; Hill, V.; Lecureur, A.; Barbuy, B.; Renzini, A.; Minniti, D.; Gómez, A.; Ortolani, S. The metal content of bulge field stars from FLAMES-GIRAFFE spectra. I. Stellar parameters and iron abundances. Astron. Astrophys. 2008, 486, 177. [Google Scholar] [CrossRef]
- Schultheis, M.; Rojas-Arriagada, A.; Pérez, A.G.; Jönsson, H.; Hayden, M.; Nandakumar, G.; Cunha, K.; Prieto, C.A.; Holtzman, J.A.; Beers, T.C.; et al. Baade’s window and APOGEE. Metallicities, ages, and chemical abundances. Astron. Astrophys. 2017, 600, A14. [Google Scholar] [CrossRef]
- Lomaeva, M.; Jönsson, H.; Ryde, N.; Schultheis, M.; Thorsbro, B. Abundances of disk and bulge giants from high-resolution optical spectra. III. Sc, V, Cr, Mn, Co, Ni. Astron. Astrophys. 2019, 625, A141. [Google Scholar] [CrossRef]
- Ernandes, H.; Barbuy, B.; Friaça, A.C.S.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S. Cobalt and copper abundances in 56 Galactic bulge red giants. Astron. Astrophys. 2020, 640, A89. [Google Scholar] [CrossRef]
- Lecureur, A.; Hill, V.; Zoccali, M.; Barbuy, B.; Gómez, A.; Minniti, D.; Ortolani, S.; Renzini, A. Oxygen, sodium, magnesium, and aluminium as tracers of the galactic bulge formation. Astron. Astrophys. 2007, 465, 799. [Google Scholar] [CrossRef]
- Jönsson, H.; Ryde, N.; Schultheis, M.; Zoccali, M. Abundances of disk and bulge giants from high-resolution optical spectra. II. O, Mg, Ca, and Ti in the bulge sample. Astron. Astrophys. 2017, 600, 2. [Google Scholar] [CrossRef]
- Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.; Trevisan, M.; Dutra, N. Manganese abundances in Galactic bulge red giants. Astron. Astrophys. 2013, 559, A5. [Google Scholar]
- van der Swaelmen, M.; Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Ortolani, S.; Gómez, A. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants. Astron. Astrophys. 2016, 586, A1. [Google Scholar]
- Friaça, A.C.S.; Barbuy, B. Tracing the evolution of the Galactic bulge with chemodynamical modelling of alpha-elements. Astron. Astrophys. 2017, 598, 121. [Google Scholar] [CrossRef]
- Nandakumar, G.; Ryde, N.; Forsberg, R.; Montelius, M.; Mace, G.; Jönsson, H.; Thorsbro, B. M giants with IGRINS. III. Abundance trends for 21 elements in the solar neighborhood from high-resolution near-infrared spectra. Astrophys. J. 2024, 964, 96. [Google Scholar] [CrossRef]
- Xu, X.D.; Shi, J.R.; Yan, H.L. NLTE Analysis of Copper Abundances in the Galactic Bulge Stars. Astrophys. J. 2019, 875, 142. [Google Scholar] [CrossRef]
- Ernandes, H.; Barbuy, B.; Alves-Brito, A.; Friaça, A.; Siqueira-Mello, C.; Allen, D.M. Iron-peak elements Sc, V, Mn, Cu, and Zn in Galactic bulge globular clusters. Astron. Astrophys. 2018, 616, A18. [Google Scholar] [CrossRef]
- Zoccali, M.; Lecureur, A.; Barbuy, B.; Hill, V.; Renzini, A.; Minniti, D.; Momany, Y.; Gómez, A.; Ortolani, S. Oxygen abundances in the Galactic bulge: Evidence for fast chemical enrichment. Astron. Astrophys. 2006, 457, L1. [Google Scholar] [CrossRef]
- Barbuy, B.; Chiappini, C.; Gerhard, O. Chemodynamical History of the Galactic Bulge. Annu. Rev. Astron. Astrophys. 2018, 56, 223. [Google Scholar] [CrossRef]
- Friaça, A.C.S.; Terlevich, R.J. Formation and evolution of elliptical galaxies and QSO activity. Mon. R. Astron. Soc. 1998, 298, 399. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Nomoto, K.; Kobayashi, C.; Tominaga, N. Nucleosynthesis in stars and the chemical evolution of Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 457. [Google Scholar] [CrossRef]
- Iwamoto, K.; Brachwitz, F.; Nomoto, K.I.; Kishimoto, N.; Umeda, H.; Hix, W.R.; Thielemann, F.K. Nucleosynthesis in Chandrasekhar Mass Models for Type IA Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation. Astrophys. J. Suppl. 1999, 125, 439. [Google Scholar] [CrossRef]
- van den Hoek, L.B.; Groenewegen, M.A.T. New theoretical yields of intermediate mass stars. Astron. Astrophys. Suppl. 1997, 123, 305. [Google Scholar] [CrossRef]
- Samland, M. Modeling the Evolution of Disk Galaxies. II. Yields of Massive Stars. Astrophys. J. 1998, 496, 155. [Google Scholar] [CrossRef]
- Timmes, F.-X.; Woosley, S.E.; Weaver, T.A. Galactic Chemical Evolution: Hydrogen through Zinc. Astrophys. J. Suppl. 1995, 98, 617. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A.; Weaver, T.A. The evolution and explosion of massive stars. Rev. Mod. Phys. 2002, 74, 1015–1071. [Google Scholar] [CrossRef]
- Käppeler, F.; Wiescher, M.; Giesen, U.; Goerres, J.; Baraffe, I.; El Eid, M.; Raiteri, C.M.; Busso, M.; Gallino, R.; Limongi, M.; et al. Reaction Rates for 18O(α,γ)22Ne, 22Ne(α,γ)26Mg, and 22Ne(α,n)25Mg in Stellar Helium Burning and s-Process Nucleosynthesis in Massive Stars. Astrophys. J. 1994, 437, 396. [Google Scholar] [CrossRef]
- Souza, S.O.; Ernandes, H.; Valentini, M.; Barbuy, B.; Chiappini, C.; Pérez-Villegas, A.; Ortolani, S.; Friaça, A.C.S.; Queiroz, A.B.A.; Bica, E. Chrono-chemodynamical analysis of the globular cluster NGC 6355: Looking for the fundamental bricks of the Bulge. Astron. Astrophys. 2023, 671, A45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbuy, B.; Friaça, A.C.S.; Ernandes, H. Nucleosynthesis of Cobalt and Copper. Galaxies 2025, 13, 113. https://doi.org/10.3390/galaxies13050113
Barbuy B, Friaça ACS, Ernandes H. Nucleosynthesis of Cobalt and Copper. Galaxies. 2025; 13(5):113. https://doi.org/10.3390/galaxies13050113
Chicago/Turabian StyleBarbuy, Beatriz, Amâncio C. S. Friaça, and Heitor Ernandes. 2025. "Nucleosynthesis of Cobalt and Copper" Galaxies 13, no. 5: 113. https://doi.org/10.3390/galaxies13050113
APA StyleBarbuy, B., Friaça, A. C. S., & Ernandes, H. (2025). Nucleosynthesis of Cobalt and Copper. Galaxies, 13(5), 113. https://doi.org/10.3390/galaxies13050113