A List of the Most Prospective Eclipsing Cataclysmic Variables According to the TESS
Abstract
1. Introduction
- 1.
- Eclipsing nature: The presence of deep and well-resolved eclipses in the light curve, clearly visible in TESS full-frame image (FFI) data.
- 2.
- Data quality: Availab ility of high-quality photometric time-series data, primarily from TESS, with a sufficient signal-to-noise ratio (S/N ≥ 20) to allow for reliable eclipse profile analysis and phase-folded light curves.
- 3.
- Data coverage: Observation in at least one full TESS sector, preferably more, to ensure adequate temporal coverage for orbital period confirmation.
- 4.
2. Catalog
2.1. HS 0728+6738
2.2. SW Sex
2.3. HS 0805+3822
2.4. OZ Dra
2.5. WX Ari
2.6. V 1315 Aql
2.7. TT Tri
2.8. CM Del
2.9. DW UMa
2.10. ASASSN-14ix
2.11. VZ Scl
2.12. PX And (PG 0027+260)
2.13. HS 0455+8315 (V 1024 Cep)
2.14. HS 0220+0603
2.15. GS Pav
2.16. BH Lyn
2.17. LX Ser
2.18. NS Cnc (SDSS J081256.85+191157.8)
2.19. UU Aqr
2.20. HBHA 4705-03
2.21. HS 2325+8205
2.22. V 416 Dra
2.23. V 539 Vel (2MASS J09440940-5617117)
2.24. DQ Her
2.25. UX UMa
2.26. V 345 Pav
2.27. FO Aqr
2.28. IPHAS J051814.34+294113.2
2.29. TV Col
2.30. IPHAS J225608.45+595430.0 (2MASSJ22560844+5954299)
2.31. RW Tri
2.32. V 347 Pup
2.33. DO Leo
2.34. AC Cnc
2.35. V 363 Aur
2.36. V 902 Mon
2.37. QS UMa
Name | RA J2000,0 | DEC J2000,0 | Mag G | Type | Ref. | |
---|---|---|---|---|---|---|
HS 0728+6738 | 07 33 41.4 | +67 32 15 | 16.03 | 3.21 h | SW Sex | [9] |
SW Sex | 10 15 09.3 | −03 08 32 | 14.37 | 3.24 h | SW Sex | [10] |
HS 0805+3822 | 08 09 08.3 | +38 14 06 | 15.24 | 3.2 h | SW Sex | [14] |
OZ Dra | 13 27 23.3 | +65 28 54 | 18.34 | 3.28 h | SW Sex | [16] |
WX Ari | 02 47 36.2 | +10 35 37 | 17.81 | 3.34 h | SW Sex | [18] |
V1315 Aql | 19 13 54.5 | +12 18 03 | 14.30 | 3.35 h | SW Sex | [20] |
TT Tri | 01 31 59.8 | +29 49 22 | 15.26 | 3.36 h | SW Sex | [22] |
CM Del | 20 24 56.9 | +17 17 54 | 13.88 | 3.38 h | SW Sex | [25] |
DW UMa | 10 33 52.8 | +58 46 54 | 14.25 | 3.27 h | SW Sex | [27] |
ASASSN-14ix | 22 55 04.1 | −34 49 17 | 16.84 | 3.46 h | - | [29] |
VZ Scl | 23 50 09.2 | −26 22 52 | 15.43 | 3.47 h | - | [30] |
PX And | 00 30 05.8 | +26 17 26 | 14.85 | 3.51 h | - | [10] |
HS 0455+8315 | 05 06 48.2 | +83 19 23 | 15.14 | 3.57 h | SW Sex | [23] |
HS 0220+0603 | 02 23 01.6 | +06 16 49 | 16.89 | 3.58 h | - | [34] |
GS Pav | 20 08 07.6 | −69 48 58 | 16.21 | 3.72 h | - | [35] |
BH Lyn | 08 22 36.0 | +51 05 24 | 15.17 | 3.74 h | - | [10] |
LX Ser | 15 38 00.0 | +18 52 03 | 14.89 | 3.48 h | - | [40] |
NS Cnc | 08 12 56.8 | +19 11 57 | 16.08 | 3.84 h | - | [43] |
UU Aqr | 22 09 05.7 | −03 46 17 | 13.51 | 3.92 h | SW Sex | [46] |
HBHA 4705-03 | 22 16 50.3 | +46 46 41 | 14.92 | 4.12 h | - | [48] |
HS 2325+8205 | 23 26 50.2 | +82 22 11 | 16.22 | 4.45 h | Z Cam | [49] |
V416 Dra | 18 57 20.3 | +71 31 18 | 16.23 | 4.5 h | U Gem | [52] |
V539 Vel | 09 44 09.3 | −56 17 11 | 16.81 | 4.51 h | - | [54] |
DQ Her | 18 07 30.2 | +45 51 32 | 14.59 | 4.64 h | - | [56] |
UX UMa | 13 36 40.9 | +51 54 49 | 12.93 | 4.72 h | - | [59] |
V345 Pav | 19 35 42.9 | −59 08 22 | 13.42 | 4.75 h | - | [63] |
FO Aqr | 22 17 55.3 | −08 21 03 | 13.86 | 4.84 h | - | [64] |
IPHAS J051814.34+294113.2 | 05 18 14.3 | +29 41 13 | 15.81 | 4.95 h | Z Cam | [72] |
TV Col | 05 29 25.5 | −32 49 03 | 13.98 | 5.48 h | - | [74] |
IPHAS J225608.45+595430.0 | 22 56 08.4 | +59 54 30 | 14.50 | 5.48 h | - | [77] |
RW Tri | 02 25 36.1 | +28 05 50 | 13.25 | 5.56 h | - | [79] |
V347 Pup | 06 10 33.6 | −48 44 25 | 13.30 | 5.56 h | - | [80] |
DO Leo | 10 40 51.2 | +15 11 33 | 16.87 | 5.6 h | - | [82] |
AC Cnc | 08 44 27.1 | +12 52 31 | 14.14 | 7.2 h | Z Cam | [84] |
V363 Aur | 05 33 33.4 | +36 59 32 | 14.12 | 7.7 h | SW Sex | [88] |
V902 Mon | 06 27 46.4 | +01 48 11 | 16.79 | 8.16 h | - | [91] |
QS UMa | 09 32 14.8 | +49 50 54 | 16.47 | 10.04 h | - |
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Cataclysmic Variable |
References
- Warner, B. On the general properties of the secondaries of cataclysmic variable stars. Astrophys. Space Sci. 1995, 232, 89–97. [Google Scholar] [CrossRef]
- Patterson, J. The Evolution of Cataclysmic and Low-Mass X-Ray Binaries. Am. Astron. Soc. 1983, 15, 991. [Google Scholar] [CrossRef]
- Downes, R.A.; Webbink, R.F.; Shara, M.M.; Ritter, H.; Kolb, U.; Duerbeck, H.W. A catalog and atlas of cataclysmic variables: The living edition. Publ. Astron. Soc. Pac. 2001, 113, 764. [Google Scholar] [CrossRef]
- Belczyński, K.; Mikołajewska, J.; Munari, U.; Ivison, R.; Friedjung, M. A catalogue of symbiotic stars. Astron. Astrophys. Suppl. Ser. 2000, 146, 407–435. [Google Scholar] [CrossRef]
- Ritter, H.; Kolb, U. Catalogue of cataclysmic binaries, low–mass X-ray binaries and related objects. Astron. Astrophys. Suppl. Ser. 1998, 129, 83–85. [Google Scholar] [CrossRef]
- Hernández, M.; Tovmassian, G.; Zharikov, S.; Gänsicke, B.; Steeghs, D.; Aungwerojwit, A.; Rodríguez-Gil, P. BG Tri: An example of a low-inclination RW Sex-type nova-like. Mon. Not. R. Astron. Soc. 2021, 503, 1431–1441. [Google Scholar] [CrossRef]
- Subebekova, G.; Zharikov, S.; Tovmassian, G.; Neustroev, V.; Wolf, M.; Hernandez, M.; Kučáková, H.; Khokhlov, S. Structure of accretion flows in the nova-like cataclysmic variable RW Tri. Mon. Not. R. Astron. Soc. 2020, 497, 1475–1487. [Google Scholar] [CrossRef]
- Thorstensen, J.R.; Ringwald, F.; Wade, R.A.; Schmidt, G.D.; Norsworthy, J.E. PG0027+ 260—An example of a class of cataclysmic binaries with mysterious, but consistent, behavior. Astron. J. 1991, 102, 272–283. [Google Scholar] [CrossRef]
- Rodriguez-Gil, P.; Gänsicke, B.; Barwig, H.; Hagen, H.J.; Engels, D. Time-resolved photometry and spectroscopy of the new deeply-eclipsing SW Sextantis star HS 0728+ 6738. Astron. Astrophys. 2004, 424, 647–655. [Google Scholar] [CrossRef]
- Green, R.F.; Ferguson, D.H.; Liebert, J.; Schmidt, M. Cataclysmic variable candidates from the Palomar Green Survey. Publ. Astron. Soc. Pac. 1982, 94, 560. [Google Scholar] [CrossRef]
- Honeycutt, R.; Schlegel, E.; Kaitchuck, R. Evidence for a bipolar wind in the cataclysmic variable PG 1012-029. Astrophys. J. 1986, 302, 388–402. [Google Scholar] [CrossRef]
- Ashoka, B.; Seetha, S.; Marar, T.; Kasturirangan, K.; Rao, U.; Bhattacharyya, J. High speed photometry of PG 1012-029. Astron. Astrophys. 1994, 283, 455–462. [Google Scholar]
- Groot, P.J.; Rutten, R.; van Paradijs, J. SW Sextantis in an excited, low state. Astron. Astrophys. 2001, 368, 183–196. [Google Scholar] [CrossRef]
- Szkody, P.; Fraser, O.; Silvestri, N.; Henden, A.; Anderson, S.F.; Frith, J.; Lawton, B.; Owens, E.; Raymond, S.; Schmidt, G.; et al. Cataclysmic Variables from the Sloan Digital Sky Survey. II. TheSecond Year. Astron. J. 2003, 126, 1499. [Google Scholar] [CrossRef]
- Linnell, A.P.; Hoard, D.W.; Szkody, P.; Long, K.S.; Hubeny, I.; Gänsicke, B.; Sion, E.M. An illustration of modeling cataclysmic variables: HST, FUSE, and sdss spectra of SDSS J080908.39+381406.2. Astrophys. J. 2007, 654, 1036. [Google Scholar] [CrossRef]
- Wolfe, M.A.; Szkody, P.; Fraser, O.J.; Homer, L.; Skinner, S.; Silvestri, N.M. Investigating the Sloan Digital Sky Survey Cataclysmic Variable SDSS J132723. 39+ 652854.21. Publ. Astron. Soc. Pac. 2003, 115, 1118. [Google Scholar] [CrossRef]
- Bruch, A. TESS Light Curves of Cataclysmic Variables. V. Improved or Corrected Orbital Periods of 53 Systems. Astron. J. 2024, 168, 121. [Google Scholar] [CrossRef]
- Beuermann, K.; Thorstensen, J.; Schwope, A.; Ringwald, F.; Sahin, H. A spectroscopic study of the cataclysmic variable WX ARIETIS = PG0244+103. Astron. Astrophys. 1992, 256, 442–446. [Google Scholar]
- Rodríguez-Gil, P.; Casares, J.; Dhillon, V.; Martínez-Pais, I. Long-term photometry of WX Arietis: Evidence for eclipses and dips. arXiv 1999, arXiv:astro-ph/9911303. [Google Scholar]
- Downes, R.A.; Mateo, M.; Szkody, P.; Jenner, D.C.; Margon, B. Discovery of a new short-period, eclipsing cataclysmic variable. Astrophys. J. 1986, 301, 240–251. [Google Scholar] [CrossRef]
- Dhillon, V.; Marsh, T.; Jones, D. A spectrophotometric study of the eclipsing nova-like variable V1315 Aquilae. Mon. Not. R. Astron. Soc. 1991, 252, 342–356. [Google Scholar] [CrossRef]
- Romano, G. New variable stars in Triangulum. Inf. Bull. Var. Stars. 1978, 1433. [Google Scholar]
- Rodriguez-Gil, P. The role of the SW Sextantis stars in the picture of CV evolution. arXiv 2004, arXiv:astro-ph/0409667. [Google Scholar]
- Warren, S.R.; Shafter, A.; Reed, J. Modeling eclipses of the novalike variable TT triangulum. Publ. Astron. Soc. Pac. 2006, 118, 1373. [Google Scholar] [CrossRef]
- Bond, H.E. A spectroscopic survey of high-latitude blue variables. II. Publ. Astron. Soc. Pac. 1978, 90, 526. [Google Scholar] [CrossRef]
- Shafter, A.W. Spectroscopic orbits for the cataclysmic binaries CM Delphini, V380 Ophiuchi, and VW Vulpeculae. Astron. J. 1985, 90, 643–646. [Google Scholar] [CrossRef]
- Knigge, C.; Long, K.S.; Hoard, D.; Szkody, P.; Dhillon, V. A Self-occulting Accretion Disk in the SW Sextantis StarDW Ursae Majoris. Astrophys. J. 2000, 539, L49. [Google Scholar] [CrossRef]
- Boyd, D.; de Miguel, E.; Patterson, J.; Wood, M.; Barrett, D.; Boardman, J.; Brettman, O.; Cejudo, D.; Collins, D.; Cook, L.; et al. A 16-yr photometric campaign on the eclipsing novalike variable DW Ursae Majoris. Mon. Not. R. Astron. Soc. 2017, 466, 3417–3433. [Google Scholar] [CrossRef]
- Bruch, A. TESS light curves of cataclysmic variables–III–More superhump systems among old novae and nova-like variables. Mon. Not. R. Astron. Soc. 2023, 525, 1953–1975. [Google Scholar] [CrossRef]
- Krzeminski, W. Ton S 120: A New Very Short-Period Eclipsing Binary. Inf. Bull. Var. Stars. 1966, 160. [Google Scholar]
- Donoghue, D.; Fairall, A.; Warner, B. Photometry and spectroscopy of the nova-like variable VZ Sculptoris during eclipse. Mon. Not. R. Astron. Soc. 1987, 225, 43–54. [Google Scholar] [CrossRef]
- Stanishev, V.; Kraicheva, Z.; Boffin, H.; Genkov, V. PX Andromedae: Superhumps and variable eclipse depth. Astron. Astrophys. 2002, 394, 625–632. [Google Scholar] [CrossRef]
- Rodríguez-Gil, P.; Gänsicke, B.; Hagen, H.J.; Araujo-Betancor, S.; Aungwerojwit, A.; Allende Prieto, C.; Boyd, D.; Casares, J.; Engels, D.; Giannakis, O.; et al. SW Sextantis stars: The dominant population of cataclysmic variables with orbital periods between 3 and 4 h. Mon. Not. R. Astron. Soc. 2007, 377, 1747–1762. [Google Scholar] [CrossRef]
- Rodríguez-Gil, P.; Schmidtobreick, L.; Long, K.; Shahbaz, T.; Gänsicke, B.; Torres, M. The low states of CVs at the upper edge of the period gap. arXiv 2011, arXiv:1112.0902. [Google Scholar]
- Hoffmeister, C. Neue veränderliche Sterne. Astron. Nachrichten 1963, 287, 169–182. [Google Scholar] [CrossRef]
- Groot, P.J.; Augusteijn, T.; Barziv, O.; van Paradijs, J. The eclipsing cataclysmic variable GS Pavonis: Evidence for disk radius changes. arXiv 1998, arXiv:astro-ph/9810357. [Google Scholar]
- Andronov, I.; Kimeridze, G.; Richter, G.; Smykov, V. Detection of the 224-min Orbital Period of the Cataclysmic Variable PG 0818+513. Inf. Bull. Var. Stars. 1989, 3388. [Google Scholar]
- Thorstensen, J.R.; Davis, M.K.; Ringwald, F. A spectroscopic study of the eclipsing cataclysmic binary star PG0818+ 513—A puzzling novalike variable. Astron. J. 1991, 102, 683–687. [Google Scholar] [CrossRef]
- Stanishev, V.; Kraicheva, Z.; Genkov, V. Photometry of the SW Sextantis-type nova-like BH Lyncis in high state. Astron. Astrophys. 2006, 455, 223–226. [Google Scholar] [CrossRef]
- Stepanian, J. A Noteworthy Star in Serpens. Inf. Bull. Var. Stars. 1979, 1630. [Google Scholar]
- Eason, E.L.; Worden, S.P.; Klimke, A.; Africano, J.L. A photometric study of the cataclysmic variable, LX Serpentis. Publ. Astron. Soc. Pac. 1984, 96, 372. [Google Scholar] [CrossRef]
- Marin, E.; Shafter, A.; Misselt, K. Modeling the Eclipses of the Classical Nova QU Vulpeculae and the Novalike Variable LX Serpentis. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2007; Volume 39, p. 816. [Google Scholar]
- Szkody, P.; Henden, A.; Fraser, O.J.; Silvestri, N.M.; Schmidt, G.D.; Bochanski, J.J.; Wolfe, M.A.; Agüeros, M.; Anderson, S.F.; Mannikko, L.; et al. Cataclysmic variables from Sloan Digital Sky Survey. IV. the fourth year (2003). Astron. J. 2005, 129, 2386. [Google Scholar] [CrossRef]
- Gülsecen, H.; Esenoglu, H. A photometric study of SDSS J081256.85+191157.8: Detection of orbital and negative superhump periods. New Astron. 2014, 28, 49–53. [Google Scholar] [CrossRef]
- Thorstensen, J.R.; Taylor, C.J.; Peters, C.S.; Skinner, J.N.; Southworth, J.; Gänsicke, B.T. Spectroscopic orbital periods for 29 cataclysmic variables from the Sloan Digital Sky Survey. Astron. J. 2015, 149, 128. [Google Scholar] [CrossRef]
- Volkov, I.; Shugarov, S.Y.; Seregina, T. UU Aquarii-eclipsing cataclysmic variable. Astron. Tsirkulyar 1986, 1418, 3–5. [Google Scholar]
- Baptista, R.; Silveira, C.; Steiner, J.E.; Horne, K. Spatially resolved spectra of the accretion disc of the nova-like variable UU Aquarii. Mon. Not. R. Astron. Soc. 2000, 314, 713–726. [Google Scholar] [CrossRef]
- Yakin, D.; Suleimanov, V.; Vlasyuk, V.; Spiridonova, O. HBHA 4705-03: A new cataclysmic variable. Astron. Lett. 2013, 39, 38–53. [Google Scholar] [CrossRef]
- Aungwerojwit, A.; Gänsicke, B.; Rodríguez-Gil, P.; Hagen, H.J.; Harlaftis, E.; Papadimitriou, C.; Lehto, H.; Araujo-Betancor, S.; Heber, U.; Fried, R.; et al. HS 0139+0559, HS 0229+8016, HS 0506+7725, and HS 0642+5049: Four new long-period cataclysmic variables. Astron. Astrophys. 2005, 443, 995–1005. [Google Scholar] [CrossRef]
- Shears, J.; Poyner, G.; Januszewski, R.; Miller, I. HS2325+8205-a frequently outbursting dwarf nova. J. Br. Astron. Assoc. 2011, 121, 273–275. [Google Scholar]
- Sun, Q.B.; Qian, S.B.; Zhu, L.Y.; Dong, A.J.; Zhi, Q.J.; Liao, W.P.; Zhao, E.G.; Han, Z.T.; Liu, W.; Zang, L.; et al. First discovery of quasi-periodic oscillations in the dwarf nova HS 2325+ 8205 based on TESS photometry. Mon. Not. R. Astron. Soc. 2023, 518, 3901–3907. [Google Scholar] [CrossRef]
- Szkody, P.; Henden, A.; Fraser, O.; Silvestri, N.; Bochanski, J.; Wolfe, M.A.; Agüeros, M.; Warner, B.; Woudt, P.; Tramposch, J.; et al. Cataclysmic Variables from the Sloan Digital Sky Survey. III. The Third Year. Astron. J. 2004, 128, 1882. [Google Scholar] [CrossRef]
- Joshi, A.; Catelan, M.; Scaringi, S.; Schwope, A.; Anupama, G.; Rawat, N.; Sahu, D.K.; Singh, M.; Dastidar, R.; Subramanian, R.V.; et al. Unveiling the nature of two dwarf novae: CRTS J080846.2+313106 and V416 Dra. Astron. Astrophys. 2024, 689, A158. [Google Scholar] [CrossRef]
- Pretorius, M.L.; Knigge, C. An Hα-selected sample of cataclysmic variables–I. Observations of newly discovered systems. Mon. Not. R. Astron. Soc. 2008, 385, 1471–1484. [Google Scholar] [CrossRef]
- Silva, K.; Rodrigues, C.; Jablonski, F.; D’Amico, F.; Cieslinski, D.; Baptista, R.; De Almeida, R.B. Differential photometry of 2MASS J09440940-5617117. arXiv 2011, arXiv:1102.2809. [Google Scholar]
- Duerbeck, H.W. A reference catalogue and atlas of galactic novae. Space Sci. Rev. 1987, 45, 1–14. [Google Scholar] [CrossRef]
- Toalá, J.; Guerrero, M.A.; Santamaría, E.; Ramos-Larios, G.; Sabin, L. Extended X-ray emission from the classic nova DQ Her–on the possible presence of a magnetized jet. Mon. Not. R. Astron. Soc. 2020, 495, 4372–4379. [Google Scholar] [CrossRef]
- Dmitrienko, E.; Ibragimov, M.; Savanov, I.; Satovskii, B.; Egamberdiev, S.A.; Burkhanov, O. BVRI photometry of DQ Herculis in 2014. Astron. Rep. 2015, 59, 873–878. [Google Scholar] [CrossRef]
- Kukarkin, B. Period changes of UX Ursae Majoris. Mon. Not. R. Astron. Soc. 1977, 180, 5P–10P. [Google Scholar] [CrossRef]
- Knigge, C.; Drew, J.E. Eclipse mapping of the accretion disk wind in the cataclysmic variable UX Ursae Majoris. Astrophys. J. 1997, 486, 445. [Google Scholar] [CrossRef]
- Baptista, R.; Horne, K.; Hilditch, R.; Mason, K.; Drew, J. Hubble space telescope and R-band eclipse maps of the UX Ursae Majoris accretion disk. Astrophys. J. 1995, 448, 395. [Google Scholar] [CrossRef]
- Smak, J. Eclipses in Cataclysmic Variables with Stationary Accretion Disks. II. UX UMa. Acta Astron. 1994, 44, 59–74. [Google Scholar]
- Buckley, D.; O’Donoghue, D.; Kilkenny, D.; Stobie, R.; Remillard, R. EC 19314–5915: A bright, eclipsing cataclysmic variable from the Edinburgh–Cape Blue Object Survey. Mon. Not. R. Astron. Soc. 1992, 258, 285–295. [Google Scholar] [CrossRef]
- Patterson, J.; Steiner, J. H2215-086-King of the DQ Herculis stars. Astrophys. J. 1983, 264, L61–L64. [Google Scholar] [CrossRef]
- Littlefield, C.; Garnavich, P.; Kennedy, M.R.; Aadland, E.; Terndrup, D.M.; Calhoun, G.V.; Callanan, P.; Abe, L.; Bendjoya, P.; Rivet, J.P.; et al. Return of the King: Time-series photometry of FO Aquarii’s initial recovery from its unprecedented 2016 low state. Astrophys. J. 2016, 833, 93. [Google Scholar] [CrossRef]
- Hellier, C.; Mason, K.O.; Cropper, M. An eclipse in FO Aquarii. Mon. Not. R. Astron. Soc. 1989, 237, 39P–44P. [Google Scholar] [CrossRef]
- Yuasa, T.; Nakazawa, K.; Makishima, K.; Saitou, K.; Ishida, M.; Ebisawa, K.; Mori, H.; Yamada, S. White dwarf masses in intermediate polars observed with the Suzaku satellite. Astron. Astrophys. 2010, 520, A25. [Google Scholar] [CrossRef]
- Cropper, M.; Ramsay, G.; Wu, K. White dwarf masses in magnetic cataclysmic variables: Multi-temperature fits to Ginga data. Mon. Not. R. Astron. Soc. 1998, 293, 222–232. [Google Scholar] [CrossRef]
- Brunschweiger, J.; Greiner, J.; Ajello, M.; Osborne, J. Intermediate polars in the Swift/BAT survey: Spectra and white dwarf masses. Astron. Astrophys. 2009, 496, 121–127. [Google Scholar] [CrossRef]
- Hameury, J.M.; Lasota, J.P. The disappearance and reformation of the accretion disc during a low state of FO Aquarii. Astron. Astrophys. 2017, 606, A7. [Google Scholar] [CrossRef]
- Knigge, C. The donor stars of cataclysmic variables. Mon. Not. R. Astron. Soc. 2006, 373, 484–502. [Google Scholar] [CrossRef]
- Witham, A.; Knigge, C.; Aungwerojwit, A.; Drew, J.; Gänsicke, B.; Greimel, R.; Groot, P.; Roelofs, G.H.; Steeghs, D.; Woudt, P. Newly discovered cataclysmic variables from the INT/WFC photometric Hα survey of the northern Galactic plane. Mon. Not. R. Astron. Soc. 2007, 382, 1158–1168. [Google Scholar] [CrossRef]
- Han, Z.T.; Soonthornthum, B.; Qian, S.B.; Fang, X.H.; Wang, Q.S.; Sarotsakulchai, T.; Zhu, L.Y.; Dong, A.J.; Zhi, Q.J. TESS and ZTF Observations of an Eclipsing Z Cam-type Dwarf Nova IPHAS J051814. 34+ 294113.2. Astron. J. 2021, 162, 205. [Google Scholar] [CrossRef]
- Cooke, B.; Ricketts, M.; Maccacaro, T.; Pye, J.; Elvis, M.; Watson, M.; Griffiths, R.; Pounds, K.; McHardy, I.; Maccagni, D.; et al. The Ariel V/SSI/catalogue of high galactic latitude/absolute value of B greater than 10 deg/X-ray sources. Mon. Not. R. Astron. Soc. 1978, 182, 489–515. [Google Scholar] [CrossRef]
- Motch, C. A photometric study of 2A 0526-328. Astron. Astrophys. 1981, 100, 277–283. [Google Scholar]
- Retter, A.; Hellier, C.; Augusteijn, T.; Naylor, T.; Bedding, T.; Bembrick, C.; McCormick, J.; Velthuis, F. A 6.3-h superhump in the cataclysmic variable TV Columbae: The longest yet seen. Mon. Not. R. Astron. Soc. 2003, 340, 679–686. [Google Scholar] [CrossRef]
- Gröbel, R. Eine etwas andere Anwendung einer CCD Kamera. BAV Rundbr. 2009, 58, 80. [Google Scholar]
- Kjurkchieva, D.; Khruzina, T.; Dimitrov, D.; Groebel, R.; Ibryamov, S.; Nikolov, G. 2MASS J22560844+5954299: The newly discovered cataclysmic star with the deepest eclipse. Astron. Astrophys. 2015, 584, A40. [Google Scholar] [CrossRef]
- Africano, J.L.; Nather, R.E.; Patterson, J.; Robinson, E.L.; Warner, B. Eclipse timings of RW Trianguli. Publ. Astron. Soc. Pac. 1978, 90, 568. [Google Scholar] [CrossRef]
- Buckley, D.; Sullivan, D.; Remillard, R.; Tuohy, I.; Clark, M. LB 1800-A bright eclipsing cataclysmic variable and a transient X-ray source. Astrophys. J. 1990, 355, 617–626. [Google Scholar] [CrossRef]
- Thoroughgood, T.D.; Dhillon, V.; Steeghs, D.; Watson, C.; Buckley, D.; Littlefair, S.; Smith, D.; Still, M.; Van Der Heyden, K.; Warner, B. The component masses of the cataclysmic variable V347 Puppis. Mon. Not. R. Astron. Soc. 2005, 357, 881–894. [Google Scholar] [CrossRef]
- Green, R.F.; Schmidt, M.; Liebert, J. The Palomar-Green catalog of ultraviolet-excess stellar objects. Astrophys. J. Suppl. Ser. 1986, 61, 305–352. [Google Scholar] [CrossRef]
- Abbott, T.; Shafter, A.; Wood, J.; Tomaney, A.; Haswell, C. Do Leonis: A new eclipsing cataclysmic variable. Publ. Astron. Soc. Pac. 1990, 102, 558. [Google Scholar] [CrossRef]
- Kurochkin, N.; Shugarov, S.Y. AC CNC-Unique eclipsing system. Astron. Tsirkulyar 1980, 1114, 1–3. [Google Scholar]
- Shugarov, S.Y. Is AC-Cancri an EX Nova. Sov. Astron. 1981, 25, 332–333. [Google Scholar]
- Schlegel, E.M.; Kaitchuck, R.H.; Honeycutt, R.K. A spectroscopic study and mass determination for the cataclysmic variable AC Cancri. Astrophys. J. 1984, 280, 235–246. [Google Scholar] [CrossRef]
- Qian, S.B.; Dai, Z.B.; He, J.J.; Yuan, J.; Xiang, F.; Zejda, M. Orbital period changes of the nova-like cataclysmic variable AC Cancri: Evidence of magnetic braking and an unseen companion. Astron. Astrophys. 2007, 466, 589–594. [Google Scholar] [CrossRef]
- Lanning, H.H. A Finding List of Faint UV-Bright Stars in the Galactic Plane. Publ. Astron. Soc. Pac. 1973, 85, 70. [Google Scholar] [CrossRef]
- Horne, K.; Lanning, H.H.; Gomer, R.H. A first look at the eclipsing cataclysmic variable Lanning 10. Astrophys. J. 1982, 252, 681–689. [Google Scholar] [CrossRef]
- Schlegel, E.; Honeycutt, R.; Kaitchuck, R. A spectrophotometric study and mass determination for the cataclysmic variable Lanning 10. Astrophys. J. 1986, 307, 760–767. [Google Scholar] [CrossRef]
- Aungwerojwit, A.; Gänsicke, B.; Wheatley, P.; Pyrzas, S.; Staels, B.; Krajci, T.; Rodríguez-Gil, P. IPHAS J062746.41+014811.3: A deeply eclipsing intermediate polar. Astrophys. J. 2012, 758, 79. [Google Scholar] [CrossRef]
- Rawat, N.; Pandey, J.; Joshi, A.; Yadava, U. A step towards unveiling the nature of three cataclysmic variables: LS Cam, V902 Mon, and SWIFT J0746.3-1608. Mon. Not. R. Astron. Soc. 2022, 512, 6054–6066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subebekova, G.; Adil, M.; Khokhlov, S.; Agishev, A.; Agishev, A. A List of the Most Prospective Eclipsing Cataclysmic Variables According to the TESS. Galaxies 2025, 13, 92. https://doi.org/10.3390/galaxies13040092
Subebekova G, Adil M, Khokhlov S, Agishev A, Agishev A. A List of the Most Prospective Eclipsing Cataclysmic Variables According to the TESS. Galaxies. 2025; 13(4):92. https://doi.org/10.3390/galaxies13040092
Chicago/Turabian StyleSubebekova, Gulnur, Makhabbat Adil, Serik Khokhlov, Aldiyar Agishev, and Almansur Agishev. 2025. "A List of the Most Prospective Eclipsing Cataclysmic Variables According to the TESS" Galaxies 13, no. 4: 92. https://doi.org/10.3390/galaxies13040092
APA StyleSubebekova, G., Adil, M., Khokhlov, S., Agishev, A., & Agishev, A. (2025). A List of the Most Prospective Eclipsing Cataclysmic Variables According to the TESS. Galaxies, 13(4), 92. https://doi.org/10.3390/galaxies13040092