Red Supergiants in the Milky Way and Nearby Galaxies
Abstract
1. Introduction
2. Selection Criteria
3. RSG Population of the Milky Way
4. RSG Population of the Local Group
5. RSGs Beyond the Local Group
6. Insights from Extragalactic RSGs
6.1. The Humphreys–Davidson Limit for RSGs
6.2. Extreme RSGs
6.3. Dimming Events and Other Photometric Variability
6.4. RSGs in Binary Systems
6.5. Red Stragglers
7. Future Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2MASS | Two-Micron All Sky Survey |
AAVSO | American Association of Variable Star Observers |
AI | Artificial Intelligence |
ALMA | Atacama Large Millimeter/submillimeter Array |
CHARA | Center for High Angular Resolution Astronomy |
CMD | Color–Magnitude Diagram |
ELT | Extremely Large Telescope |
HST | Hubble Space Telescope |
IR | Infrared |
JWST | James Webb Space Telescope |
LMC | Large Magellanic Cloud |
LSST | Legacy Survey of Space and Time |
MARCS | Model Atmospheres with a Radiative and Convective Scheme |
MERLIN | Multi-Element Radio Linked Interferometer Network |
MMT | Multiple Mirror Telescope |
OGLE | Optical Gravitational Lensing Experiment |
POSYDON | POpulation SYnthesis with Detailed binary-evolution simulatiONs |
RSG | Red Supergiant |
SED | Spectral Energy Distribution |
SMC | Small Magellanic Cloud |
WISE | Wide-field Infrared Survey Explorer |
VLA | Very Large Array |
VLT | Very Large Telescope |
YHG | Yellow Hypergiant |
ZAMS | Zero-Age Main Sequence |
References
- Humphreys, R.M.; Davidson, K. Studies of luminous stars in nearby galaxies. III. Comments on the evolution of the most massive stars in the Milky Way and the Large Magellanic Cloud. Astrophys. J. 1979, 232, 409–420. [Google Scholar] [CrossRef]
- Humphreys, R.W. M Supergiants in the Perseus Arm. Astrophys. J. 1970, 160, 1149. [Google Scholar] [CrossRef]
- Humphreys, R.M. Studies of luminous stars in nearby galaxies. II. M supergiants in the Large Magellanic Cloud. Astrophys. J. Suppl. Ser. 1979, 39, 389–403. [Google Scholar] [CrossRef]
- Massey, P. Evolved Massive Stars in the Local Group. I. Identification of Red Supergiants in NGC 6822, M31, and M33. Astrophys. J. 1998, 501, 153–174. [Google Scholar] [CrossRef]
- Massey, P. A UBVR CCD Survey of the Magellanic Clouds. Astrophys. J. Suppl. Ser. 2002, 141, 81–122. [Google Scholar] [CrossRef]
- Massey, P.; McNeill, R.T.; Olsen, K.A.G.; Hodge, P.W.; Blaha, C.; Jacoby, G.H.; Smith, R.C.; Strong, S.B. A Survey of Local Group Galaxies Currently Forming Stars. III. A Search for Luminous Blue Variables and Other Hα Emission-Line Stars. Astron. J. 2007, 134, 2474–2503. [Google Scholar] [CrossRef]
- Brunish, W.M.; Gallagher, J.S.; Truran, J.W. Blue-to-red ratios as tests for theoretical models of massive stars. Astron. J. 1986, 91, 598–601. [Google Scholar] [CrossRef]
- Rayner, J.T.; Cushing, M.C.; Vacca, W.D. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars. Astrophys. J. Suppl. Ser. 2009, 185, 289–432. [Google Scholar] [CrossRef]
- Massey, P.; Olsen, K.A.G. The Evolution of Massive Stars. I. Red Supergiants in the Magellanic Clouds. Astron. J. 2003, 126, 2867–2886. [Google Scholar] [CrossRef]
- Negueruela, I.; Schurch, M.P.E. A search for counterparts to massive X-ray binaries using photometric catalogues. Astron. Astrophys. 2007, 461, 631–639. [Google Scholar] [CrossRef]
- Messineo, M.; Zhu, Q.; Menten, K.M.; Ivanov, V.D.; Figer, D.F.; Kudritzki, R.P.; Chen, C.H.R. Discovery of an Extraordinary Number of Red Supergiants in the Inner Galaxy. Astrophys. J. Lett. 2016, 822, L5. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.W.; Gao, J.; Gavras, P.; Maravelias, G.; Ren, Y.; Wang, S.; Xue, M.Y.; Tramper, F.; et al. Evolved massive stars at low-metallicity. I. A source catalog for the Small Magellanic Cloud. Astron. Astrophys. 2019, 629, A91. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.; Lam, M.I.; Gao, J.; Gavras, P.; Maravelias, G.; Wang, S.; Chen, X.D.; Tramper, F.; et al. Evolved massive stars at low-metallicity. IV. Using the 1.6 μm H-bump to identify red supergiant stars: Case study of NGC 6822. Astron. Astrophys. 2021, 647, A167. [Google Scholar] [CrossRef]
- Li, Z.w.; Yang, M.; Jiang, B.; Ren, Y. A New Approach to Identifying Red Supergiant Stars in Metal-poor Galaxies: A Case Study of NGC 6822. Astrophys. J. 2025, 979, 208. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, B.; Jiang, B.; Gao, J.; Ren, Y.; Wang, S.; Lam, M.I.; Tian, H.; Luo, C.; Chen, B.; et al. Evolved Massive Stars at Low Metallicity. VII. The Lower Mass Limit of the Red Supergiant Population in the Large Magellanic Cloud. Astrophys. J. 2024, 965, 106. [Google Scholar] [CrossRef]
- Meixner, M.; Gordon, K.D.; Indebetouw, R.; Hora, J.L.; Whitney, B.; Blum, R.; Reach, W.; Bernard, J.; Meade, M.; Babler, B.; et al. Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy’s Evolution (SAGE). I. Overview and Initial Results. Astron. J. 2006, 132, 2268–2288. [Google Scholar] [CrossRef]
- Gordon, K.D.; Meixner, M.; Meade, M.R.; Whitney, B.; Engelbracht, C.; Bot, C.; Boyer, M.L.; Lawton, B.; Sewiło, M.; Babler, B.; et al. Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview. Astron. J. 2011, 142, 102. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; Meixner, M.; Babler, B.L.; Bracker, S.; Meade, M.R.; et al. Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud. Astron. J. 2009, 138, 1003–1021. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Lennon, D.J.; Köhlinger, F.; van Loon, J.T.; Massa, D.L.; Sewilo, M.; Evans, C.J.; Panagia, N.; Babler, B.L.; Block, M.; et al. Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud. Astron. J. 2010, 140, 416–429. [Google Scholar] [CrossRef]
- Verhoelst, T.; van der Zypen, N.; Hony, S.; Decin, L.; Cami, J.; Eriksson, K. The dust condensation sequence in red supergiant stars. Astron. Astrophys. 2009, 498, 127–138. [Google Scholar] [CrossRef]
- Waters, L.B.F.M. Circumstellar Dust in Massive Stars. Hot Cool. Bridg. Gaps Massive Star Evol. ASP Conf. Ser. 2010, 425, 267. [Google Scholar]
- Messineo, M.; Menten, K.M.; Churchwell, E.; Habing, H. Near- and mid-infrared colors of evolved stars in the Galactic plane. The Q1 and Q2 parameters. Astron. Astrophys. 2012, 537, A10. [Google Scholar] [CrossRef]
- Britavskiy, N.E.; Bonanos, A.Z.; Mehner, A.; Boyer, M.L.; McQuinn, K.B.W. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry. Astron. Astrophys. 2015, 584, A33. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Tramper, F.; de Wit, S.; Christodoulou, E.; Muñoz Sanchez, G.; Antoniadis, K.; Athanasiou, S.; Maravelias, G.; Yang, M.; Zapartas, E. Investigating episodic mass loss in evolved massive stars. I. Spectroscopy of dusty massive stars in ten southern galaxies. Astron. Astrophys. 2024, 686, A77. [Google Scholar] [CrossRef]
- Lee, J.C.; Sandstrom, K.M.; Leroy, A.K.; Thilker, D.A.; Schinnerer, E.; Rosolowsky, E.; Larson, K.L.; Egorov, O.V.; Williams, T.G.; Schmidt, J.; et al. The PHANGS-JWST Treasury Survey: Star Formation, Feedback, and Dust Physics at High Angular Resolution in Nearby GalaxieS. Astrophys. J. Lett. 2023, 944, L17. [Google Scholar] [CrossRef]
- Williams, T.G.; Lee, J.C.; Larson, K.L.; Leroy, A.K.; Sandstrom, K.; Schinnerer, E.; Thilker, D.A.; Belfiore, F.; Egorov, O.V.; Rosolowsky, E.; et al. PHANGS-JWST: Data-processing Pipeline and First Full Public Data Release. Astrophys. J. Suppl. Ser. 2024, 273, 13. [Google Scholar] [CrossRef]
- Levesque, E.M. Red Supergiants in the JWST Era. I. Near-IR Photometric Diagnostics. Astrophys. J. 2018, 867, 155. [Google Scholar] [CrossRef]
- Boyer, M.L.; Pastorelli, G.; Girardi, L.; Marigo, P.; Dolphin, A.E.; McQuinn, K.B.W.; Newman, M.J.B.; Savino, A.; Weisz, D.R.; Williams, B.F.; et al. The JWST Resolved Stellar Populations Early Release Science Program. VI. Identifying Evolved Stars in Nearby Galaxies. Astrophys. J. 2024, 973, 120. [Google Scholar] [CrossRef]
- de Wit, S.; Bonanos, A.Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G.; Munoz-Sanchez, G.; et al. Investigating episodic mass loss in evolved massive stars: II. Physical properties of red supergiants at subsolar metallicity. Astron. Astrophys. 2024, 689, A46. [Google Scholar] [CrossRef]
- Prusti, T. et al. [Gaia Collaboration] The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Vallenari, A. et al. [Gaia Collaboration] Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar] [CrossRef]
- Aadland, E.; Massey, P.; Neugent, K.F.; Drout, M.R. Shedding Light on the Isolation of Luminous Blue Variables. Astron. J. 2018, 156, 294. [Google Scholar] [CrossRef]
- Maravelias, G.; Bonanos, A.Z.; Tramper, F.; de Wit, S.; Yang, M.; Bonfini, P. A machine-learning photometric classifier for massive stars in nearby galaxies. I. The method. Astron. Astrophys. 2022, 666, A122. [Google Scholar] [CrossRef]
- de Wit, S.; Muñoz-Sanchez, G.; Maravelias, G.; Bonanos, A.Z.; Antoniadis, K.; García-Álvarez, D.; Britavskiy, N.; Ruiz, A.; Philippopoulou, A. Investigating episodic mass loss in evolved massive stars: III. Spectroscopy of dusty massive stars in three northern galaxies. Astron. Astrophys. 2025, in press. [Google Scholar] [CrossRef]
- Dorda, R.; González-Fernández, C.; Negueruela, I. Characterisation of red supergiants in the Gaia spectral range. Astron. Astrophys. 2016, 595, A105. [Google Scholar] [CrossRef]
- Messineo, M. Identification of late-type Class I stars using Gaia DR3 Apsis parameters. Astron. Astrophys. 2023, 671, A148. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, B.; Ren, Y.; Zhao, H.; Yang, M. Searching for Galactic Red Supergiants with Gaia RVS Spectra. Astron. Astrophys. 2025, 694, A152. [Google Scholar] [CrossRef]
- Dorn-Wallenstein, T.Z.; Neugent, K.F.; Levesque, E.M. Physical Properties of 5000 Cool Large Magellanic Cloud Supergiants with Gaia XP Spectra: A Detailed Portrait of the Upper H-R Diagram Hints at Missing Supernova Progenitors. Astrophys. J. 2023, 959, 102. [Google Scholar] [CrossRef]
- Dorn-Wallenstein, T.Z.; Davenport, J.R.A.; Huppenkothen, D.; Levesque, E.M. Photometric Classifications of Evolved Massive Stars: Preparing for the Era of Webb and Roman with Machine Learning. Astrophys. J. 2021, 913, 32. [Google Scholar] [CrossRef]
- Maravelias, G.; Bonanos, A.Z.; Antoniadis, K.; Munoz-Sanchez, G.; Christodoulou, E.; de Wit, S.; Zapartas, E.; Kovlakas, K.; Tramper, F.; Bonfini, P.; et al. A machine-learning photometric classifier for massive stars in nearby galaxies II. The catalog. arXiv 2025, arXiv:2504.01232. A&A, subm. [Google Scholar]
- Kiss, L.L.; Szabó, G.M.; Bedding, T.R. Variability in red supergiant stars: Pulsations, long secondary periods and convection noise. MNRAS 2006, 372, 1721–1734. [Google Scholar] [CrossRef]
- Szczygieł, D.M.; Stanek, K.Z.; Bonanos, A.Z.; Pojmański, G.; Pilecki, B.; Prieto, J.L. Variability of Luminous Stars in the Large Magellanic Cloud Using 10 Years of ASAS Data. Astron. J. 2010, 140, 14–24. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.W.; Gao, J.; Xue, M.Y.; Wang, S.; Lam, M.I.; Spetsieri, Z.T.; Ren, Y.; Gavras, P. Red supergiant stars in the Large Magellanic Cloud. II. Infrared properties and mid-infrared variability. Astron. Astrophys. 2018, 616, A175. [Google Scholar] [CrossRef]
- Soraisam, M.D.; Bildsten, L.; Drout, M.R.; Bauer, E.B.; Gilfanov, M.; Kupfer, T.; Laher, R.R.; Masci, F.; Prince, T.A.; Kulkarni, S.R.; et al. Variability of Red Supergiants in M31 from the Palomar Transient Factory. Astrophys. J. 2018, 859, 73. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, B.W. The Period-Luminosity Relation of Red Supergiant Stars in the Small Magellanic Cloud. Astrophys. J. 2012, 754, 35. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.W.; Yang, M.; Gao, J. The Period-Luminosity Relations of Red Supergiants in M33 and M31. Astrophys. J. Suppl. Ser. 2019, 241, 35. [Google Scholar] [CrossRef]
- Chatys, F.W.; Bedding, T.R.; Murphy, S.J.; Kiss, L.L.; Dobie, D.; Grindlay, J.E. The period-luminosity relation of red supergiants with Gaia DR2. MNRAS 2019, 487, 4832–4846. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.W. On the Granulation and Irregular Variation of Red Supergiants. Astrophys. J. 2020, 898, 24. [Google Scholar] [CrossRef]
- Messineo, M.; Figer, D.F.; Kudritzki, R.P.; Zhu, Q.; Menten, K.M.; Ivanov, V.D.; Chen, C.H.R. New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types. Astron. J. 2021, 162, 187. [Google Scholar] [CrossRef]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Bergemann, M.; Lind, K.; Collet, R.; Magic, Z.; Asplund, M. Non-LTE line formation of Fe in late-type stars - I. Standard stars with 1D and <3D> model atmospheres. MNRAS 2012, 427, 27–49. [Google Scholar] [CrossRef]
- Bergemann, M.; Kudritzki, R.P.; Würl, M.; Plez, B.; Davies, B.; Gazak, Z. Red Supergiant Stars as Cosmic Abundance Probes. II. NLTE Effects in J-band Silicon Lines. Astrophys. J. 2013, 764, 115. [Google Scholar] [CrossRef]
- Bergemann, M.; Kudritzki, R.P.; Gazak, Z.; Davies, B.; Plez, B. Red Supergiant Stars as Cosmic Abundance Probes. III. NLTE effects in J-band Magnesium Lines. Astrophys. J. 2015, 804, 113. [Google Scholar] [CrossRef]
- Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S.; Mugnier, L.; Thiébaut, E.; Berger, J.P.; Ridgway, S.T.; Monnier, J.D.; et al. Imaging the spotty surface of Betelgeuse in the H band. Astron. Astrophys. 2009, 508, 923–932. [Google Scholar] [CrossRef]
- Neilson, H.R.; Lester, J.B.; Haubois, X. Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening. arXiv 2011, arXiv:1109.4562. [Google Scholar] [CrossRef]
- Cannon, E.; Montargès, M.; de Koter, A.; Matter, A.; Sanchez-Bermudez, J.; Norris, R.; Paladini, C.; Decin, L.; Sana, H.; Sundqvist, J.O.; et al. The dusty circumstellar environment of Betelgeuse during the Great Dimming as seen by VLTI/MATISSE. Astron. Astrophys. 2023, 675, A46. [Google Scholar] [CrossRef]
- Joyce, M.; Leung, S.C.; Molnár, L.; Ireland, M.; Kobayashi, C.; Nomoto, K. Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA. Astrophys. J. 2020, 902, 63. [Google Scholar] [CrossRef]
- Harper, G.M.; Brown, A.; Guinan, E.F.; O’Gorman, E.; Richards, A.M.S.; Kervella, P.; Decin, L. An Updated 2017 Astrometric Solution for Betelgeuse. Astron. J. 2017, 154, 11. [Google Scholar] [CrossRef]
- Figer, D.F.; MacKenty, J.W.; Robberto, M.; Smith, K.; Najarro, F.; Kudritzki, R.P.; Herrero, A. Discovery of an Extraordinarily Massive Cluster of Red Supergiants. Astrophys. J. 2006, 643, 1166–1179. [Google Scholar] [CrossRef]
- Clark, J.S.; Negueruela, I.; Davies, B.; Larionov, V.M.; Ritchie, B.W.; Figer, D.F.; Messineo, M.; Crowther, P.A.; Arkharov, A.A. A third red supergiant rich cluster in the Scutum-Crux arm. Astron. Astrophys. 2009, 498, 109–114. [Google Scholar] [CrossRef]
- Negueruela, I.; González-Fernández, C.; Marco, A.; Clark, J.S.; Martínez-Núñez, S. Another cluster of red supergiants close to RSGC1. Astron. Astrophys. 2010, 513, A74. [Google Scholar] [CrossRef]
- Negueruela, I.; González-Fernández, C.; Marco, A.; Clark, J.S. A massive association around the obscured open cluster RSGC3. Astron. Astrophys. 2011, 528, A59. [Google Scholar] [CrossRef]
- Negueruela, I.; Marco, A.; González-Fernández, C.; Jiménez-Esteban, F.; Clark, J.S.; Garcia, M.; Solano, E. Red supergiants around the obscured open cluster Stephenson 2. Astron. Astrophys. 2012, 547, A15. [Google Scholar] [CrossRef]
- Marco, A.; Negueruela, I. NGC 7419 as a template for red supergiant clusters. Astron. Astrophys. 2013, 552, A92. [Google Scholar] [CrossRef]
- Clark, J.S.; Negueruela, I.; Crowther, P.A.; Goodwin, S.P. On the massive stellar population of the super star cluster Westerlund 1. Astron. Astrophys. 2005, 434, 949–969. [Google Scholar] [CrossRef]
- Blum, R.D.; Sellgren, K.; Depoy, D.L. Really Cool Stars at the Galactic Center. Astron. J. 1996, 112, 1988. [Google Scholar] [CrossRef]
- Dorda, R.; Negueruela, I.; González-Fernández, C. The red supergiant population in the Perseus arm. MNRAS 2018, 475, 2003–2015. [Google Scholar] [CrossRef]
- Humphreys, R.M. Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way. Astrophys. J. Suppl. Ser. 1978, 38, 309–350. [Google Scholar] [CrossRef]
- de Burgos, A.; Simon-Díaz, S.; Lennon, D.J.; Dorda, R.; Negueruela, I.; Urbaneja, M.A.; Patrick, L.R.; Herrero, A. High-resolution spectroscopic study of massive blue and red supergiants in Perseus OB1. I. Definition of the sample, membership, and kinematics. Astron. Astrophys. 2020, 643, A116. [Google Scholar] [CrossRef]
- Healy, S.; Horiuchi, S.; Colomer Molla, M.; Milisavljevic, D.; Tseng, J.; Bergin, F.; Weil, K.; Tanaka, M.; Otero, S. Red supergiant candidates for multimessenger monitoring of the next Galactic supernova. MNRAS 2024, 529, 3630–3650. [Google Scholar] [CrossRef]
- Gehrz, R. Sources of Stardust in the Galaxy. In Proceedings of the Interstellar Dust, Santa Clara, CA, USA, 26–30 July 1988; Allamandola, L.J., Tielens, A.G.G.M., Eds.; IAU Symposium: Baja California, Mexico, 1989; Volume 135, p. 445. [Google Scholar]
- Zhang, L.; Chen, B.; Ren, Y.; Zhang, Z.; Gao, J.; Jiang, B. New Red Supergiant Stars in the other side of our Galaxy. Mon. Not. R. Astron. Soc. 2025, 538, 101–107. [Google Scholar] [CrossRef]
- Smith, N.; Humphreys, R.M.; Davidson, K.; Gehrz, R.D.; Schuster, M.T.; Krautter, J. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris. Astron. J. 2001, 121, 1111–1125. [Google Scholar] [CrossRef]
- Kervella, P.; Verhoelst, T.; Ridgway, S.T.; Perrin, G.; Lacour, S.; Cami, J.; Haubois, X. The close circumstellar environment of Betelgeuse. Adaptive optics spectro-imaging in the near-IR with VLT/NACO. Astron. Astrophys. 2009, 504, 115–125. [Google Scholar] [CrossRef]
- Montargès, M.; Cannon, E.; Lagadec, E.; de Koter, A.; Kervella, P.; Sanchez-Bermudez, J.; Paladini, C.; Cantalloube, F.; Decin, L.; Scicluna, P.; et al. A dusty veil shading Betelgeuse during its Great Dimming. Nature 2021, 594, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, D.; Humphreys, R.M.; Jones, T.J.; Marengo, M.; Gehrz, R.D.; Helton, L.A.; Hoffmann, W.F.; Skemer, A.J.; Hinz, P.M. Searching for Cool Dust in the Mid-to-far Infrared: The Mass-loss Histories of the Hypergiants μ Cep, VY CMa, IRC+10420, and ρ Cas. Astron. J. 2016, 151, 51. [Google Scholar] [CrossRef]
- Gordon, M.S.; Humphreys, R.M.; Jones, T.J.; Shenoy, D.; Gehrz, R.D.; Helton, L.A.; Marengo, M.; Hinz, P.M.; Hoffmann, W.F. Searching for Cool Dust. II. Infrared Imaging of The OH/IR Supergiants, NML Cyg, VX Sgr, S Per, and the Normal Red Supergiants RS Per and T Per. Astron. J. 2018, 155, 212. [Google Scholar] [CrossRef]
- González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car, and V460 Car. Astron. Astrophys. 2024, 683, A19. [Google Scholar] [CrossRef]
- Richards, A.M.S.; Impellizzeri, C.M.V.; Humphreys, E.M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M.D.; et al. ALMA sub-mm maser and dust distribution of VY Canis Majoris. Astron. Astrophys. 2014, 572, L9. [Google Scholar] [CrossRef]
- Norris, R.P.; Baron, F.R.; Monnier, J.D.; Paladini, C.; Anderson, M.D.; Martinez, A.O.; Schaefer, G.H.; Che, X.; Chiavassa, A.; Connelley, M.S.; et al. Long Term Evolution of Surface Features on the Red Supergiant AZ Cyg. Astrophys. J. 2021, 919, 124. [Google Scholar] [CrossRef]
- Anugu, N.; Baron, F.; Gies, D.R.; Lanthermann, C.; Schaefer, G.H.; Shepard, K.A.; Brummelaar, T.t.; Monnier, J.D.; Kraus, S.; Le Bouquin, J.B.; et al. The Great Dimming of the Hypergiant Star RW Cephei: CHARA Array Images and Spectral Analysis. Astron. J. 2023, 166, 78. [Google Scholar] [CrossRef]
- Anugu, N.; Gies, D.R.; Roettenbacher, R.M.; Monnier, J.D.; Montargés, M.; Mérand, A.; Baron, F.; Schaefer, G.H.; Shepard, K.A.; Kraus, S.; et al. Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming. Astrophys. J. Lett. 2024, 973, L5. [Google Scholar] [CrossRef]
- Noriega-Crespo, A.; van Buren, D.; Cao, Y.; Dgani, R. A Parsec-Size Bow Shock around Betelgeuse. Astron. J. 1997, 114, 837–840. [Google Scholar] [CrossRef]
- Cox, N.L.J.; Kerschbaum, F.; van Marle, A.J.; Decin, L.; Ladjal, D.; Mayer, A.; Groenewegen, M.A.T.; van Eck, S.; Royer, P.; Ottensamer, R.; et al. A far-infrared survey of bow shocks and detached shells around AGB stars and red supergiants. Astron. Astrophys. 2012, 537, A35. [Google Scholar] [CrossRef]
- Gvaramadze, V.V.; Menten, K.M.; Kniazev, A.Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D.M.A.; Kamiński, T. IRC -10414: A bow-shock-producing red supergiant star. MNRAS 2014, 437, 843–856. [Google Scholar] [CrossRef]
- Guarcello, M.G.; Almendros-Abad, V.; Lovell, J.B.; Monsch, K.; Mužić, K.; Martínez-Galarza, J.R.; Drake, J.J.; Anastasopoulou, K.; Andersen, M.; Argiroffi, C.; et al. EWOCS-III: JWST observations of the supermassive star cluster Westerlund 1. Astron. Astrophys. 2025, 693, A120. [Google Scholar] [CrossRef]
- Munoz-Sanchez, G.; de Wit, S.; Bonanos, A.Z.; Antoniadis, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud. Astron. Astrophys. 2024, 690, A99. [Google Scholar] [CrossRef]
- Beasor, E.R.; Davies, B.; Smith, N.; van Loon, J.T.; Gehrz, R.D.; Figer, D.F. A new mass-loss rate prescription for red supergiants. MNRAS 2020, 492, 5994–6006. [Google Scholar] [CrossRef]
- Decin, L.; Richards, A.M.S.; Marchant, P.; Sana, H. ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1. Determination of a new mass-loss rate prescription for red supergiants. Astron. Astrophys. 2024, 681, A17. [Google Scholar] [CrossRef]
- Antoniadis, K.; Bonanos, A.Z.; de Wit, S.; Zapartas, E.; Munoz-Sanchez, G.; Maravelias, G. Establishing a mass-loss rate relation for red supergiants in the Large Magellanic Cloud. Astron. Astrophys. 2024, 686, A88. [Google Scholar] [CrossRef]
- Kniazev, A.Y.; Grebel, E.K.; Pustilnik, S.A.; Pramskij, A.G.; Zucker, D.B. Spectrophotometry of Sextans A and B: Chemical Abundances of H II Regions and Planetary Nebulae. Astron. J. 2005, 130, 1558–1573. [Google Scholar] [CrossRef]
- Urbaneja, M.A.; Kudritzki, R.P.; Bresolin, F.; Przybilla, N.; Gieren, W.; Pietrzyński, G. The Araucaria Project: The Local Group Galaxy WLM—Distance and Metallicity from Quantitative Spectroscopy of Blue Supergiants. Astrophys. J. 2008, 684, 118–135. [Google Scholar] [CrossRef]
- Zurita, A.; Bresolin, F. The chemical abundance in M31 from H II regions. MNRAS 2012, 427, 1463–1481. [Google Scholar] [CrossRef]
- Pietrzyński, G.; Graczyk, D.; Gallenne, A.; Gieren, W.; Thompson, I.B.; Pilecki, B.; Karczmarek, P.; Górski, M.; Suchomska, K.; Taormina, M.; et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 2019, 567, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, H.S.; Pickering, E.C. Periods of 25 Variable Stars in the Small Magellanic Cloud. Harv. Coll. Obs. Circ. 1912, 173, 1–3. [Google Scholar]
- Lee, M.G.; Freedman, W.L.; Madore, B.F. The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies. Astrophys. J. 1993, 417, 553. [Google Scholar] [CrossRef]
- Bonanos, A.Z.; Stanek, K.Z.; Kudritzki, R.P.; Macri, L.M.; Sasselov, D.D.; Kaluzny, J.; Stetson, P.B.; Bersier, D.; Bresolin, F.; Matheson, T.; et al. The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33. Astrophys. J. 2006, 652, 313–322. [Google Scholar] [CrossRef]
- Massey, P.; Olsen, K.A.G.; Hodge, P.W.; Strong, S.B.; Jacoby, G.H.; Schlingman, W.; Smith, R.C. A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33. Astron. J. 2006, 131, 2478–2496. [Google Scholar] [CrossRef]
- Levesque, E.M.; Massey, P.; Olsen, K.A.G.; Plez, B.; Meynet, G.; Maeder, A. The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity. Astrophys. J. 2006, 645, 1102–1117. [Google Scholar] [CrossRef]
- de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. Properties of luminous red supergiant stars in the Magellanic Clouds. Astron. Astrophys. 2023, 669, A86. [Google Scholar] [CrossRef]
- Massey, P.; Evans, K.A. The Red Supergiant Content of M31. Astrophys. J. 2016, 826, 224. [Google Scholar] [CrossRef]
- Drout, M.R.; Massey, P.; Meynet, G. The Yellow and Red Supergiants of M33. Astrophys. J. 2012, 750, 97. [Google Scholar] [CrossRef]
- Britavskiy, N.E.; Bonanos, A.Z.; Mehner, A.; García-Álvarez, D.; Prieto, J.L.; Morrell, N.I. Identification of red supergiants in nearby galaxies with mid-IR photometry. Astron. Astrophys. 2014, 562, A75. [Google Scholar] [CrossRef]
- Britavskiy, N.E.; Bonanos, A.Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M.L.; Masseron, T.; Mehner, A.; McQuinn, K.B.W. Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group. Astron. Astrophys. 2019, 631, A95. [Google Scholar] [CrossRef]
- González-Torà, G.; Davies, B.; Kudritzki, R.P.; Plez, B. The temperatures of red supergiants in low-metallicity environments. MNRAS 2021, 505, 4422–4443. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.W.; Gao, J.; Gavras, P.; Maravelias, G.; Wang, S.; Chen, X.; Tramper, F.; Ren, Y.; et al. Evolved massive stars at low metallicity. II. Red supergiant stars in the Small Magellanic Cloud. Astron. Astrophys. 2020, 639, A116. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.; Zapartas, E.; Gao, J.; Ren, Y.; Lam, M.I.; Wang, T.; Maravelias, G.; Gavras, P.; et al. Evolved massive stars at low-metallicity. V. Mass-loss rate of red supergiant stars in the Small Magellanic Cloud. Astron. Astrophys. 2023, 676, A84. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.; Yang, M.; Wang, T.; Ren, T. The Sample of Red Supergiants in 12 Low-mass Galaxies of the Local Group. Astrophys. J. 2021, 923, 232. [Google Scholar] [CrossRef]
- Antoniadis, K.; Zapartas, E.; Bonanos, A.Z.; Maravelias, G.; Vlassis, S.; Munoz-Sanchez, G.; Nally, C.; Meixner, M.; Jones, O.C.; Lenkic, L.; et al. Investigating the metallicity dependence of the mass-loss rate relation of red supergiants. arXiv 2025, arXiv:2503.05876. A&A, subm. [Google Scholar] [CrossRef]
- Nally, C.; Jones, O.C.; Lenkić, L.; Habel, N.; Hirschauer, A.S.; Meixner, M.; Kavanagh, P.J.; Boyer, M.L.; Ferguson, A.M.N.; Sargent, B.A.; et al. JWST MIRI and NIRCam unveil previously unseen infrared stellar populations in NGC 6822. MNRAS 2024, 531, 183–198. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Levesque, E.M.; Drout, M.R.; Courteau, S. The Red Supergiant Content of M31 and M33. Astron. J. 2021, 161, 79. [Google Scholar] [CrossRef]
- Ren, Y.; Jiang, B.; Yang, M.; Wang, T.; Jian, M.; Ren, T. Red Supergiants in M31 and M33. I. The Complete Sample. Astrophys. J. 2021, 907, 18. [Google Scholar] [CrossRef]
- Gazak, J.Z.; Kudritzki, R.; Evans, C.; Patrick, L.; Davies, B.; Bergemann, M.; Plez, B.; Bresolin, F.; Bender, R.; Wegner, M.; et al. Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300. Astrophys. J. 2015, 805, 182. [Google Scholar] [CrossRef]
- Patrick, L.R.; Evans, C.J.; Davies, B.; Kudritzki, R.-P.; Ferguson, A.M.N.; Bergemann, M.; Pietrzyński, G.; Turner, O. Physical properties of the first spectroscopically confirmed red supergiant stars in the Sculptor Group galaxy NGC 55. MNRAS 2017, 468, 492–500. [Google Scholar] [CrossRef]
- Williams, S.J.; Bonanos, A.Z.; Whitmore, B.C.; Prieto, J.L.; Blair, W.P. The infrared massive stellar content of M 83. Astron. Astrophys. 2015, 578, A100. [Google Scholar] [CrossRef]
- Davies, B.; Kudritzki, R.P.; Figer, D.F. The potential of red supergiants as extragalactic abundance probes at low spectral resolution. MNRAS 2010, 407, 1203–1211. [Google Scholar] [CrossRef]
- Davies, B.; Kudritzki, R.P.; Lardo, C.; Bergemann, M.; Beasor, E.; Plez, B.; Evans, C.; Bastian, N.; Patrick, L.R. Red Supergiants as Cosmic Abundance Probes: Massive Star Clusters in M83 and the Mass-Metallicity Relation of Nearby Galaxies. Astrophys. J. 2017, 847, 112. [Google Scholar] [CrossRef]
- Lardo, C.; Davies, B.; Kudritzki, R.P.; Gazak, J.Z.; Evans, C.J.; Patrick, L.R.; Bergemann, M.; Plez, B. Red Supergiants as Cosmic Abundance Probes: The First Direct Metallicity Determination of NGC 4038 in the Antennae. Astrophys. J. 2015, 812, 160. [Google Scholar] [CrossRef]
- Chun, S.H.; Sohn, Y.J.; Asplund, M.; Casagrande, L. Red supergiant stars in NGC 4449, NGC 5055 (M63) and NGC 5457 (M101). MNRAS 2017, 467, 102–114. [Google Scholar] [CrossRef]
- Elias, J.H.; Frogel, J.A.; Humphreys, R.M. M supergiants in the Milky Way and the Magellanic Clouds: Colors, spectral types, and luminosities. Astrophys. J. Suppl. Ser. 1985, 57, 91–131. [Google Scholar] [CrossRef]
- Davies, B.; Kudritzki, R.P.; Plez, B.; Trager, S.; Lançon, A.; Gazak, Z.; Bergemann, M.; Evans, C.; Chiavassa, A. The Temperatures of Red Supergiants. Astrophys. J. 2013, 767, 3. [Google Scholar] [CrossRef]
- Davies, B.; Plez, B. The impact of winds on the spectral appearance of red supergiants. MNRAS 2021, 508, 5757–5765. [Google Scholar] [CrossRef]
- Massey, P.; Levesque, E.M.; Olsen, K.A.G.; Plez, B.; Skiff, B.A. HV 11423: The Coolest Supergiant in the SMC. Astrophys. J. 2007, 660, 301–310. [Google Scholar] [CrossRef]
- Levesque, E.M.; Massey, P.; Olsen, K.A.G.; Plez, B. Late-Type Red Supergiants: Too Cool for the Magellanic Clouds? Astrophys. J. 2007, 667, 202–212. [Google Scholar] [CrossRef]
- Davies, B.; Kudritzki, R.P.; Gazak, Z.; Plez, B.; Bergemann, M.; Evans, C.; Patrick, L. Red Supergiants as Cosmic Abundance Probes: The Magellanic Clouds. Astrophys. J. 2015, 806, 21. [Google Scholar] [CrossRef]
- Patrick, L.R.; Evans, C.J.; Davies, B.; Kudritzki, R.P.; Gazak, J.Z.; Bergemann, M.; Plez, B.; Ferguson, A.M.N. Red Supergiant Stars as Cosmic Abundance Probes: KMOS Observations in NGC 6822. Astrophys. J. 2015, 803, 14. [Google Scholar] [CrossRef]
- Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 2015, 575, A60. [Google Scholar] [CrossRef]
- Zapartas, E.; de Wit, S.; Antoniadis, K.; Muñoz-Sanchez, G.; Souropanis, D.; Bonanos, A.Z.; Maravelias, G.; Kovlakas, K.; Kruckow, M.U.; Fragos, T.; et al. The effect of mass loss in models of red supergiants in the Small Magellanic Cloud. Astron. Astrophys. 2025, 697, A167. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Helmel, G.; Jones, T.J.; Gordon, M.S. Exploring the Mass-loss Histories of the Red Supergiants. Astron. J. 2020, 160, 145. [Google Scholar] [CrossRef]
- Neugent, K.F.; Massey, P.; Georgy, C.; Drout, M.R.; Mommert, M.; Levesque, E.M.; Meynet, G.; Ekström, S. The Luminosity Function of Red Supergiants in M31. Astrophys. J. 2020, 889, 44. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Ekström, S.; Georgy, C.; Meynet, G. The Time-averaged Mass-loss Rates of Red Supergiants as Revealed by Their Luminosity Functions in M31 and M33. Astrophys. J. 2023, 942, 69. [Google Scholar] [CrossRef]
- Gordon, M.S.; Humphreys, R.M.; Jones, T.J. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution. Astrophys. J. 2016, 825, 50. [Google Scholar] [CrossRef]
- Davies, B.; Crowther, P.A.; Beasor, E.R. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys–Davidson limit revisited. MNRAS 2018, 478, 3138–3148. [Google Scholar] [CrossRef]
- McDonald, S.L.E.; Davies, B.; Beasor, E.R. Red supergiants in M31: The Humphreys-Davidson limit at high metallicity. MNRAS 2022, 510, 3132–3144. [Google Scholar] [CrossRef]
- Martin, J.C.; Humphreys, R.M. A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud. Astron. J. 2023, 166, 214. [Google Scholar] [CrossRef]
- Ohnaka, K.; Hofmann, K.H.; Weigelt, G.; van Loon, J.T.; Schertl, D.; Goldman, S.R. Imaging the innermost circumstellar environment of the red supergiant WOH G64 in the Large Magellanic Cloud. Astron. Astrophys. 2024, 691, L15. [Google Scholar] [CrossRef]
- Smith, N. Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. ARA&A 2014, 52, 487–528. [Google Scholar] [CrossRef]
- Munoz-Sanchez, G.; Kalitsounaki, M.; de Wit, S.; Antoniadis, K.; Bonanos, A.Z.; Zapartas, E.; Boutsia, K.; Christodoulou, E.; Maravelias, G.; Soszynski, I.; et al. The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant. arXiv 2024, arXiv:2411.19329. [Google Scholar] [CrossRef]
- Ohnaka, K.; Driebe, T.; Hofmann, K.H.; Weigelt, G.; Wittkowski, M. Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud. Astron. Astrophys. 2008, 484, 371–379. [Google Scholar] [CrossRef]
- Beasor, E.R.; Smith, N. The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds. Astrophys. J. 2022, 933, 41. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Jones, T.J.; Polomski, E.; Koppelman, M.; Helton, A.; McQuinn, K.; Gehrz, R.D.; Woodward, C.E.; Wagner, R.M.; Gordon, K.; et al. M33’s Variable A: A Hypergiant Star More Than 35 YEARS in Eruption. Astron. J. 2006, 131, 2105–2113. [Google Scholar] [CrossRef]
- Levesque, E.M. Astrophysics of Red Supergiants; IOP Publishing: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, B.W. Red Supergiant Stars in the Large Magellanic Cloud. I. The Period-Luminosity Relation. Astrophys. J. 2011, 727, 53. [Google Scholar] [CrossRef]
- Goldberg, J.A.; Joyce, M.; Molnár, L. A Buddy for Betelgeuse: Binarity as the Origin of the Long Secondary Period in α Orionis. Astrophys. J. 2024, 977, 35. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K.; Richards, A.M.S.; Ziurys, L.M.; Jones, T.J.; Ishibashi, K. The Mass-loss History of the Red Hypergiant VY CMa. Astron. J. 2021, 161, 98. [Google Scholar] [CrossRef]
- Jencson, J.E.; Sand, D.J.; Andrews, J.E.; Smith, N.; Pearson, J.; Strader, J.; Valenti, S.; Beasor, E.R.; Rothberg, B. An Exceptional Dimming Event for a Massive, Cool Supergiant in M51. Astrophys. J. 2022, 930, 81. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed]
- Neugent, K.F.; Levesque, E.M.; Massey, P.; Morrell, N.I. Binary Red Supergiants. II. Discovering and Characterizing B-type Companions. Astrophys. J. 2019, 875, 124. [Google Scholar] [CrossRef]
- Neugent, K.F.; Levesque, E.M.; Massey, P.; Morrell, N.I.; Drout, M.R. The Red Supergiant Binary Fraction of the Large Magellanic Cloud. Astrophys. J. 2020, 900, 118. [Google Scholar] [CrossRef]
- González-Fernández, C.; Dorda, R.; Negueruela, I.; Marco, A. A new survey of cool supergiants in the Magellanic Clouds. Astron. Astrophys. 2015, 578, A3. [Google Scholar] [CrossRef]
- Neugent, K.F.; Levesque, E.M.; Massey, P. Binary Red Supergiants: A New Method for Detecting B-type Companions. Astron. J. 2018, 156, 225. [Google Scholar] [CrossRef]
- Neugent, K.F. The Red Supergiant Binary Fraction as a Function of Metallicity in M31 and M33. Astrophys. J. 2021, 908, 87. [Google Scholar] [CrossRef]
- Patrick, L.R.; Thilker, D.; Lennon, D.J.; Bianchi, L.; Schootemeijer, A.; Dorda, R.; Langer, N.; Negueruela, I. Red supergiant stars in binary systems. I. Identification and characterization in the small magellanic cloud from the UVIT ultraviolet imaging survey. MNRAS 2022, 513, 5847–5860. [Google Scholar] [CrossRef]
- Patrick, L.R.; Lennon, D.J.; Schootemeijer, A.; Bianchi, L.; Negueruela, I.; Langer, N.; Thilker, D.; Dorda, R. Red supergiant stars in binary systems II. Confirmation of B-type companions of red supergiants in the Small Magellanic Cloud using Hubble ultra-violet spectroscopy. arXiv 2024, arXiv:2412.18554. [Google Scholar] [CrossRef]
- MacLeod, M.; Blunt, S.; De Rosa, R.J.; Dupree, A.K.; Granzer, T.; Harper, G.M.; Huang, C.D.; Leiner, E.M.; Loeb, A.; Nielsen, E.L.; et al. Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse. Astrophys. J. 2025, 978, 50. [Google Scholar] [CrossRef]
- Levesque, E.M.; Massey, P.; Zytkow, A.N.; Morrell, N. Discovery of a Thorne-Zytkow object candidate in the Small Magellanic Cloud. MNRAS 2014, 443, L94–L98. [Google Scholar] [CrossRef]
- DeMarchi, L.; Sanders, J.R.; Levesque, E.M. Prospects for Multimessenger Observations of Thorne-Żytkow Objects. Astrophys. J. 2021, 911, 101. [Google Scholar] [CrossRef]
- Britavskiy, N.; Lennon, D.J.; Patrick, L.R.; Evans, C.J.; Herrero, A.; Langer, N.; van Loon, J.T.; Clark, J.S.; Schneider, F.R.N.; Almeida, L.A.; et al. The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639. Astron. Astrophys. 2019, 624, A128. [Google Scholar] [CrossRef]
- Beasor, E.R.; Davies, B.; Smith, N.; Bastian, N. Discrepancies in the ages of young star clusters; evidence for mergers? MNRAS 2019, 486, 266–273. [Google Scholar] [CrossRef]
- Patrick, L.R.; Lennon, D.J.; Evans, C.J.; Sana, H.; Bodensteiner, J.; Britavskiy, N.; Dorda, R.; Herrero, A.; Negueruela, I.; de Koter, A. Multiplicity of the red supergiant population in the young massive cluster NGC 330. Astron. Astrophys. 2020, 635, A29. [Google Scholar] [CrossRef]
- Wang, C.; Patrick, L.; Schootemeijer, A.; de Mink, S.E.; Langer, N.; Britavskiy, N.; Xu, X.T.; Bodensteiner, J.; Laplace, E.; Valli, R.; et al. Using Detailed Single-star and Binary-evolution Models to Probe the Large Observed Luminosity Spread of Red Supergiants in Young Open Star Clusters. Astrophys. J. Lett. 2025, 981, L16. [Google Scholar] [CrossRef]
- Freytag, B.; Steffen, M.; Ludwig, H.G.; Wedemeyer-Böhm, S.; Schaffenberger, W.; Steiner, O. Simulations of stellar convection with CO5BOLD. J. Comput. Phys. 2012, 231, 919–959. [Google Scholar] [CrossRef]
- Ma, J.Z.; Chiavassa, A.; de Mink, S.E.; Valli, R.; Justham, S.; Freytag, B. Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Convection in 3D Simulations of Red Supergiants. Astrophys. J. Lett. 2024, 962, L36. [Google Scholar] [CrossRef]
- Fragos, T.; Andrews, J.J.; Bavera, S.S.; Berry, C.P.L.; Coughlin, S.; Dotter, A.; Giri, P.; Kalogera, V.; Katsaggelos, A.; Kovlakas, K.; et al. POSYDON: A General-purpose Population Synthesis Code with Detailed Binary-evolution Simulations. Astrophys. J. Suppl. Ser. 2023, 264, 45. [Google Scholar] [CrossRef]
- Andrews, J.J.; Bavera, S.S.; Briel, M.; Chattaraj, A.; Dotter, A.; Fragos, T.; Gallegos-Garcia, M.; Gossage, S.; Kalogera, V.; Kasdagli, E.; et al. POSYDON Version 2: Population Synthesis with Detailed Binary-Evolution Simulations across a Cosmological Range of Metallicities. arXiv 2024, arXiv:2411.02376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonanos, A.Z. Red Supergiants in the Milky Way and Nearby Galaxies. Galaxies 2025, 13, 66. https://doi.org/10.3390/galaxies13030066
Bonanos AZ. Red Supergiants in the Milky Way and Nearby Galaxies. Galaxies. 2025; 13(3):66. https://doi.org/10.3390/galaxies13030066
Chicago/Turabian StyleBonanos, Alceste Z. 2025. "Red Supergiants in the Milky Way and Nearby Galaxies" Galaxies 13, no. 3: 66. https://doi.org/10.3390/galaxies13030066
APA StyleBonanos, A. Z. (2025). Red Supergiants in the Milky Way and Nearby Galaxies. Galaxies, 13(3), 66. https://doi.org/10.3390/galaxies13030066