Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist?
Abstract
:1. Introduction
‘Therefore, it seems appropriate to call it a hypernova.’[4] © AAS. Reproduced with permission.
1.1. An Interlude: as a Proxy for the GRB Duration
2. Protagonists
2.1. Long and Ultra-Long GRBs
2.1.1. GRB Phenomenology
‘Sixteen short bursts of photons in the energy range 0.2–1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than to ∼, and time-integrated flux densities from ∼ to in the energy range given.’ [22]© AAS. Reproduced with permission.
2.1.2. Ultra Long GRBs
2.2. Classical and Superluminous Supernovae
‘It seemed to be as large as half a yan, with scintillating, variegated colors, and it then grew smaller, until in the sixth month of the hou-year (hou-nian, 24 July to 23 August AD 187), it disappeared.’[101] © AAS. Reproduced with permission.
2.2.1. The Supernova Zoo
2.2.2. Superluminous Supernovae
3. Magnetars
3.1. Magnetar-Powered SNe
3.2. Magnetar Scenario for LGRBs
4. GRBs and SNe: How Can a Single System Power Both?
4.1. Black Hole-Driven GRB SNe
4.2. Magnetar-Driven GRB SNe
5. Review of Some Peculiar GRB–SN Associations
5.1. GRB 101225A: The Christmas Burst
5.2. GRB 111209A/SN 2011kl
5.3. GRB 140506A
5.4. Other Possible Non-Standard GRB–SN Associations
5.4.1. GRB 210704A
5.4.2. GRB 221009A
5.4.3. LGRBs Mimicking SGRBs
5.4.4. GRBs Possibly Associated with SNe Interacting with CSM
6. Environments
6.1. Progenitors
6.2. Host Galaxies
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Typically, a measured in softer bands is longer. |
2 | The background level has to be modeled (usually with a polynomial function) to be subtracted fromthe counts, and different choices could potentially affect determination [8]. |
3 | |
4 | GRB spectra are usually well-fit by a smoothed broken law usually referred to as a band function [26]. |
5 | A “hyperaccreting BH” accretes matter at an extreme rate of the order of –. In the following, we implicitly assume that BHs are stellar-mass BHs without further specification. |
6 | It has also been shown that accretion discs are an efficient source of neutrinos and antineutrinos [37,38,39,40,41,42,43,44,45,46,47,48], a fraction of which can annihilate via ; such a mechanism is able, in principle, to power an ultra-relativistic jet. However, Leng and Giannos [49] showed that annihilation does result in suitable conditions to reproduce the energy of ULGRBs (, as discussed later). |
7 | Further details on the interpretation of GRB 080916C as an electromagnetically powered GRB and other inconsistencies in the internal shock model can be found in [58]. |
8 | |
9 | This scenario was also recently applied to GRB 230307A [67]. |
10 | An “orphan” GRB is a GRB event in which the typical high-energy -ray emission is absent or undetected but other afterglow signatures (such as in optical, X-ray or radio wavelengths) are still observed. |
11 | The authors also mentioned a diamond subsample made by a number of very well known ULGRBs, which, due to their , entirely fall within the gold subsample. |
12 | The use of this terminology is not standard in astronomy and might be misleading. For instance, the terms “hypernovae” and GRB SNe have also been used differently, e.g., in the case of SN Ic SN 1997ef [140], which was not associated with any LGRB observation but referred to as a hypernova. Moreover, the definition of “SN Ic BL” is actually somewhat arbitrary without a precise broadness threshold (see [141]). |
13 | See [150] for a different interpretation. |
14 | |
15 | Narrow/multi-component features are a clear spectroscopic signature of CSM interaction, and they are usually seen in the spectra of SNe IIn [136]. |
16 | |
17 | A possible signature revealing a departure from the spherical symmetry of the ejecta is the double-peaked profile of the [O iii]λλ 6300, 6364 doublet seen in the nebular spectrum of SN 2005bf [234]. This has also been recently observed in a nebular spectrum of an SLSN I, SN 2017gci [162], but further polarimetric studies of the same object [193] disfavored this interpretation. |
18 | The so-called “internal plateaus” are shallow phases observed before the steep decay phase in a fraction of GRBs during the prompt phase, and their origin is sometimes attributed to energy injection from a magnetar (e.g., [247]). In these cases, if an afterglow plateau is present, it requires a different explanation. |
19 | A jet is called “structured” when the internal energy and expansion velocity gradually decrease with an increase in the angular distance from the jet axis, which is opposite to a “top-hat” jet, where the energy and velocity abruptly drop outside the jet cone. |
20 | The interested reader can refer to the simulations performed by Menegazzi [115] to see the 56Ni production in the outflow launched by a BH+disc engine. |
21 | In the formalism, s and k are time-stretching and luminosity-scaling factors, respectively, which fit the light curve of SN 1998bw to that of a given SN. Hence, by definition, SN 1998bw has . |
22 | Gendre et al. computed the duration of the prompt phase up to this point, corresponding to 20,000. |
23 | Even though a thermal component is visible throughout the spectral evolution of GRB 111209A, it is subdominant and disappears in the high-energy bands after 5.5 h. |
24 | Based on their analysis, Fynbo et al. [369] ascribed the Balmer and excited He i absorption lines to the presence of a H ii region and an associated partially ionized zone/photodissociation zone, respectively, whereas the UV-flux suppression was due to the absorption from a cooler region (although this last point was disfavored by Heintz et al. [365]). |
25 | A coeval spectrum at days was actually observed by Fynbo et al. [369], but it is limited to ∼660 nm on the blue side. This missing piece of information might have revealed the contribution of the SN if present. |
26 | Different instruments are sensitive to different energy bands and might not have detected every phase of the emission; see [372] for further details. |
27 | However, Germany et al. [384] did not provide a clear definition of “duration” for GRB 970514. |
28 | This requirement stemmed from the high luminosity of SN 1998bw of [3]. |
29 | SN 1997cy exploded between 12 March 1997 and 15 July 1997. In this period, the BATSE satellite detected two GRBs within 2 from the position of SN 1997cy: GRB 970514 at 0.23 (corresponding to 0°.88) and GRB 970403 at 1.92 (corresponding to 17°.3) from SN 1997cy. Using the formalism of Wang and Wheeler [389], a spatial coincidence within 0.23 corresponds to a probability of chance coincidence of ∼. |
30 | In the case of SN 1997cy, the intensities of these narrow/multicomponent lines change over time, thereby rendering them attributable to the SN itself (similar to the case of SN 1988Z [391]); in other cases (like in the spectra of SLSNe and LGRBs), narrow emission lines from these ions are also usually seen but with very different profiles and ascribed to the emission of the host galaxy. |
31 | |
32 | SUper-luminous Supernova Host galaxIES. |
33 | Rather than a specific galaxy class, EELGs represent a rapid phase in the evolution of many galaxy types, like H ii galaxies, blue compact dwarf galaxies, green pea galaxies, blueberry galaxies, and emission-line dot galaxies (see e.g., [448]) in the aftermath of a starburst. |
34 | With at least one notable exception: PTF10uhf [429]. |
35 | Angus et al. [455] argued that this similarity might be due to selection effects in SLSNe I, usually targeted to orphan (i.e., with a non-visible host in the images) events. |
36 | Interestingly, Cleland et al. [464] considered a sample of galaxies from the SDSS with spectroscopic measurements to estimate the local galaxy density and found that SLSNe I usually explode in low-density environments. When applied to a set of simulated galaxies from the IllustrisTNG simulation, they found that densities suitable to reproduce SLSNe I hosts are better reproduced by constraining the host metallicity, while high sSFRs leave room to SLSNe I in high-density environments. Hence, they concluded that metallicity breaks the degeneracy in the case of SLSNe I. |
37 | |
38 | In principle, a magnetar-driven shock injecting energy into the ejecta could also synthesize more 56Ni, but in the case of SN 2011kl, the reduced UV suppression [6] makes the 56Ni-driven scenario more challenging. |
39 | Higher values of the total energy released by the PNS (<) can be achieved for lower PNS spin periods and higher polar magnetic fields. |
40 | For the analytical expression of , refer to Equations (15) and (16) in [238]. |
41 | can be expressed in terms of the jet energy as , where the factor of 2 accounts for a bipolar jet [238]. |
42 | This condition also depends on the value of and on the jet Lorentz factor; see Equation (22) in [238] for further details. |
43 | |
44 | |
45 | This was not investigated by Fisher et al. [487]. |
References
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J. Lett. 1993, 413, L101. [Google Scholar] [CrossRef]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670–672. [Google Scholar] [CrossRef]
- Paczyński, B. Are Gamma-Ray Bursts in Star-Forming Regions? Astrophys. J. Lett. 1998, 494, L45–L48. [Google Scholar] [CrossRef]
- Belkin, S.; Pozanenko, A. Systematics and Biases in Observations of Supernovae Associated with Gamma-Ray Bursts. Pattern Recognit. Image Anal. 2023, 33, 86–91. [Google Scholar] [CrossRef]
- Greiner, J.; Mazzali, P.A.; Kann, D.A.; Krühler, T.; Pian, E.; Prentice, S.; Olivares E., F.; Rossi, A.; Klose, S.; Taubenberger, S.; et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 2015, 523, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Minaev, P.Y.; Pozanenko, A.S. The Ep,I-Eiso correlation: Type I gamma-ray bursts and the new classification method. Mon. Not. R. Astron. Soc. 2020, 492, 1919–1936. [Google Scholar] [CrossRef]
- Minaev, P.Y.; Pozanenko, A.S.; Loznikov, V.M. Short gamma-ray bursts in the SPI-ACS INTEGRAL experiment. Astrophys. Bull. 2010, 65, 326–333. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef]
- Amati, L.; Frontera, F.; Tavani, M.; in’t Zand, J.J.M.; Antonelli, A.; Costa, E.; Feroci, M.; Guidorzi, C.; Heise, J.; Masetti, N.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 2002, 390, 81–89. [Google Scholar] [CrossRef]
- Amati, L. The Ep,i-Eiso correlation in gamma-ray bursts: Updated observational status, re-analysis and main implications. Mon. Not. R. Astron. Soc. 2006, 372, 233–245. [Google Scholar] [CrossRef]
- Amati, L.; Guidorzi, C.; Frontera, F.; Della Valle, M.; Finelli, F.; Landi, R.; Montanari, E. Measuring the cosmological parameters with the Ep,i-Eiso correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2008, 391, 577–584. [Google Scholar] [CrossRef]
- Amati, L.; Frontera, F.; Guidorzi, C. Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astron. Astrophys. 2009, 508, 173–180. [Google Scholar] [CrossRef]
- Zhang, B.B.; Zhang, B.; Murase, K.; Connaughton, V.; Briggs, M.S. How Long does a Burst Burst? Astrophys. J. 2014, 787, 66. [Google Scholar] [CrossRef]
- Margutti, R.; Bernardini, G.; Barniol Duran, R.; Guidorzi, C.; Shen, R.F.; Chincarini, G. On the average gamma-ray burst X-ray flaring activity. Mon. Not. R. Astron. Soc. 2011, 410, 1064–1075. [Google Scholar] [CrossRef]
- Virgili, F.J.; Mundell, C.G.; Pal’shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R.; Henden, A.; et al. GRB 091024A and the Nature of Ultra-long Gamma-Ray Bursts. Astrophys. J. 2013, 778, 54. [Google Scholar] [CrossRef]
- Boër, M.; Gendre, B.; Stratta, G. Are Ultra-long Gamma-Ray Bursts Different? Astrophys. J. 2015, 800, 16. [Google Scholar] [CrossRef]
- Woosley, S.E.; Eastman, R.G.; Schmidt, B.P. Gamma-Ray Bursts and Type Ic Supernova SN 1998bw. Astrophys. J. 1999, 516, 788. [Google Scholar] [CrossRef]
- Pozanenko, A.S.; Barkov, M.V.; Minaev, P.Y.; Volnova, A.A. Gamma-Ray Bursts: Multiwavelength Investigations and Models. Astron. Lett. 2021, 47, 791–830. [Google Scholar] [CrossRef]
- Bonnell, J.T.; Klebesadel, R.W. A brief history of the discovery of cosmic gamma-ray bursts. In Proceedings of the Gamma-ray Bursts: 3rd Huntsville Symposium, Huntsville, AL, USA, 25–27 October 1995; AIP: Melville, NY, USA, 1996; Volume 384, pp. 977–980, American Institute of Physics Conference Series. [Google Scholar] [CrossRef]
- Vigliano, A.A.; Longo, F. Gamma-ray Bursts: 50 Years and Counting! Universe 2024, 10, 57. [Google Scholar] [CrossRef]
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. Lett. 1973, 182, L85. [Google Scholar] [CrossRef]
- Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 1986, 308, L43–L46. [Google Scholar] [CrossRef]
- Meegan, C.A.; Fishman, G.J.; Wilson, R.B.; Paciesas, W.S.; Pendleton, G.N.; Horack, J.M.; Brock, M.N.; Kouveliotou, C. Spatial distribution of γ-ray bursts observed by BATSE. Nature 1992, 355, 143–145. [Google Scholar] [CrossRef]
- Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. 1999, 314, 575–667. [Google Scholar] [CrossRef]
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity. Astrophys. J. 1993, 413, 281. [Google Scholar] [CrossRef]
- Cavallo, G.; Rees, M.J. A qualitative study of cosmic fireballs and gamma -ray bursts. Mon. Not. R. Astron. Soc. 1978, 183, 359–365. [Google Scholar] [CrossRef]
- Rees, M.J.; Meszaros, P. Relativistic fireballs—Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992, 258, 41. [Google Scholar] [CrossRef]
- Meszaros, P.; Rees, M.J. Relativistic Fireballs and Their Impact on External Matter: Models for Cosmological Gamma-Ray Bursts. Astrophys. J. 1993, 405, 278. [Google Scholar] [CrossRef]
- Meszaros, P.; Laguna, P.; Rees, M.J. Gasdynamics of Relativistically Expanding Gamma-Ray Burst Sources: Kinematics, Energetics, Magnetic Fields, and Efficiency. Astrophys. J. 1993, 415, 181. [Google Scholar] [CrossRef]
- Rees, M.J.; Meszaros, P. Unsteady Outflow Models for Cosmological Gamma-Ray Bursts. Astrophys. J. Lett. 1994, 430, L93. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273. [Google Scholar] [CrossRef]
- Usov, V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 1992, 357, 472–474. [Google Scholar] [CrossRef]
- Usov, V.V. On the Nature of Nonthermal Radiation from Cosmological Gamma-Ray Bursters. Mon. Not. R. Astron. Soc. 1994, 267, 1035. [Google Scholar] [CrossRef]
- Metzger, B.D.; Giannios, D.; Thompson, T.A.; Bucciantini, N.; Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2011, 413, 2031–2056. [Google Scholar] [CrossRef]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Popham, R.; Woosley, S.E.; Fryer, C. Hyperaccreting Black Holes and Gamma-Ray Bursts. Astrophys. J. 1999, 518, 356–374. [Google Scholar] [CrossRef]
- Ruffert, M.; Janka, H.T. Gamma-ray bursts from accreting black holes in neutron star mergers. Astron. Astrophys. 1999, 344, 573–606. [Google Scholar] [CrossRef]
- Narayan, R.; Piran, T.; Kumar, P. Accretion Models of Gamma-Ray Bursts. Astrophys. J. 2001, 557, 949–957. [Google Scholar] [CrossRef]
- Kohri, K.; Mineshige, S. Can Neutrino-cooled Accretion Disks Be an Origin of Gamma-Ray Bursts? Astrophys. J. 2002, 577, 311–321. [Google Scholar] [CrossRef]
- Janiuk, A.; Perna, R.; Di Matteo, T.; Czerny, B. Evolution of a neutrino-cooled disc in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2004, 355, 950–958. [Google Scholar] [CrossRef]
- Chen, W.X.; Beloborodov, A.M. Neutrino-cooled Accretion Disks around Spinning Black Holes. In Proceedings of the Gamma-Ray Bursts in the Swift Era, Washington, DC, USA, 29 November–2 December 2005; AIP: Melville, NY, USA, 2006; Volume 836, pp. 193–196, American Institute of Physics Conference Series. [Google Scholar] [CrossRef]
- Liu, T.; Gu, W.M.; Xue, L.; Lu, J.F. Structure and Luminosity of Neutrino-cooled Accretion Disks. Astrophys. J. 2007, 661, 1025–1033. [Google Scholar] [CrossRef]
- Birkl, R.; Aloy, M.A.; Janka, H.T.; Müller, E. Neutrino pair annihilation near accreting, stellar-mass black holes. Astron. Astrophys. 2007, 463, 51–67. [Google Scholar] [CrossRef]
- Zalamea, I.; Beloborodov, A.M. Neutrino heating near hyper-accreting black holes. Mon. Not. R. Astron. Soc. 2011, 410, 2302–2308. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.Q.; Hou, S.J.; Gu, W.M. Can Black Hole Neutrino-cooled Disks Power Short Gamma-Ray Bursts? Astrophys. J. 2015, 806, 58. [Google Scholar] [CrossRef]
- Liu, T.; Gu, W.M.; Zhang, B. Neutrino-dominated accretion flows as the central engine of gamma-ray bursts. New Astron. Rev. 2017, 79, 1–25. [Google Scholar] [CrossRef]
- Leng, M.; Giannios, D. Testing the neutrino annihilation model for launching GRB jets. Mon. Not. R. Astron. Soc. 2014, 445, L1–L5. [Google Scholar] [CrossRef]
- Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. Lett. 1986, 308, L47. [Google Scholar] [CrossRef]
- Krolik, J.H.; Pier, E.A. Relativistic Motion in Gamma-Ray Bursts. Astrophys. J. 1991, 373, 277. [Google Scholar] [CrossRef]
- Pe’er, A. Plasmas in Gamma-Ray Bursts: Particle acceleration, magnetic fields, radiative Processes and environments. Galaxies 2019, 7, 33. [Google Scholar] [CrossRef]
- Huntington, C.M.; Manuel, M.J.E.; Ross, J.S.; Wilks, S.C.; Fiuza, F.; Rinderknecht, H.G.; Park, H.S.; Gregori, G.; Higginson, D.P.; Park, J.; et al. Magnetic field production via the Weibel instability in interpenetrating plasma flows. Phys. Plasmas 2017, 24, 041410. [Google Scholar] [CrossRef]
- Fleishman, G.D.; Urtiev, F.A. Gamma-ray burst spectral parameters within the fireball model. Mon. Not. R. Astron. Soc. 2010, 406, 644–655. [Google Scholar] [CrossRef]
- Chiaberge, M.; Ghisellini, G. Rapid variability in the synchrotron self-Compton model for blazars. Mon. Not. R. Astron. Soc. 1999, 306, 551–560. [Google Scholar] [CrossRef]
- Veres, P.; Bhat, P.N.; Briggs, M.S.; Cleveland, W.H.; Hamburg, R.; Hui, C.M.; Mailyan, B.; Preece, R.D.; Roberts, O.J.; von Kienlin, A.; et al. Observation of inverse Compton emission from a long γ-ray burst. Nature 2019, 575, 459–463. [Google Scholar] [CrossRef]
- Miceli, D.; Nava, L. Gamma-Ray Bursts Afterglow Physics and the VHE Domain. Galaxies 2022, 10, 66. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, H. The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts. Astrophys. J. 2011, 726, 90. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688. [Google Scholar] [CrossRef]
- Mészáros, P. The Fireball Model of Gamma-Ray Bursts. Prog. Theor. Phys. Suppl. 2001, 143, 33–49. [Google Scholar] [CrossRef]
- Pe’er, A. Physics of Gamma-Ray Bursts Prompt Emission. Adv. Astron. 2015, 2015, 907321. [Google Scholar] [CrossRef]
- Bhat, P.N.; Guiriec, S. An overview of the current understanding of Gamma Ray Bursts in the Fermi era. Bull. Astron. Soc. India 2011, 39, 471–515. [Google Scholar] [CrossRef]
- Gupta, N.; Zhang, B. Prompt emission of high-energy photons from gamma ray bursts: Prompt high-energy photons from GRBs. Mon. Not. R. Astron. Soc. 2007, 380, 78–92. [Google Scholar] [CrossRef]
- Drenkhahn, G. Acceleration of GRB outflows by Poynting flux dissipation. Astron. Astrophys. 2002, 387, 714–724. [Google Scholar] [CrossRef]
- Drenkhahn, G.; Spruit, H.C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 2002, 391, 1141–1153. [Google Scholar] [CrossRef]
- Lyutikov, M.; Blandford, R. Gamma Ray Bursts as Electromagnetic Outflows. arXiv 2003, arXiv:astro-ph/0312347. [Google Scholar] [CrossRef]
- Du, Z.W.; Lü, H.; Liu, X.; Liang, E. The Jet Composition of GRB 230307A: Poynting-Flux-Dominated Outflow? Mon. Not. R. Astron. Soc. Lett. 2024, 529, L67–L72. [Google Scholar] [CrossRef]
- Zhang, B.; Meszaros, P. An Analysis of Gamma-Ray Burst Spectral Break Models. Astrophys. J. 2002, 581, 1236–1247. [Google Scholar] [CrossRef]
- Ramirez-Ruiz, E.; Celotti, A.; Rees, M.J. Events in the life of a cocoon surrounding a light, collapsar jet. Mon. Not. R. Astron. Soc. 2002, 337, 1349–1356. [Google Scholar] [CrossRef]
- Lazzati, D.; Begelman, M.C. Universal GRB Jets from Jet-Cocoon Interaction in Massive Stars. Astrophys. J. 2005, 629, 903–907. [Google Scholar] [CrossRef]
- Gottlieb, O.; Nakar, E.; Piran, T. The cocoon emission—An electromagnetic counterpart to gravitational waves from neutron star mergers. Mon. Not. R. Astron. Soc. 2018, 473, 576–584. [Google Scholar] [CrossRef]
- Eisenberg, M.; Gottlieb, O.; Nakar, E. Observational signatures of stellar explosions driven by relativistic jets. Mon. Not. R. Astron. Soc. 2022, 517, 582–596. [Google Scholar] [CrossRef]
- Lazzati, D.; Morsony, B.J.; Begelman, M.C. Short-duration Gamma-ray Bursts From Off-axis Collapsars. Astrophys. J. 2010, 717, 239–244. [Google Scholar] [CrossRef]
- Bromberg, O.; Nakar, E.; Piran, T.; Sari, R. The Propagation of Relativistic Jets in External Media. Astrophys. J. 2011, 740, 100. [Google Scholar] [CrossRef]
- Nakar, E.; Piran, T. The Observable Signatures of Grb Cocoons. Astrophys. J. 2016, 834, 28. [Google Scholar] [CrossRef]
- Mukherjee, S.; Feigelson, E.D.; Jogesh Babu, G.; Murtagh, F.; Fraley, C.; Raftery, A. Three Types of Gamma-Ray Bursts. Astrophys. J. 1998, 508, 314–327. [Google Scholar] [CrossRef]
- Tunnicliffe, R.L.; Levan, A. GRB 100816A and the nature of intermediate duration gamma-ray bursts. In Proceedings of the Death of Massive Stars: Supernovae and Gamma-Ray Bursts, Nikko, Japan, 12–26 March 2012; Volume 279, pp. 415–416. [Google Scholar] [CrossRef]
- Norris, J.P.; Bonnell, J.T. Short Gamma-Ray Bursts with Extended Emission. Astrophys. J. 2006, 643, 266–275. [Google Scholar] [CrossRef]
- Rastinejad, J.C.; Gompertz, B.P.; Levan, A.J.; Fong, W.f.; Nicholl, M.; Lamb, G.P.; Malesani, D.B.; Nugent, A.E.; Oates, S.R.; Tanvir, N.R.; et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 2022, 612, 223–227. [Google Scholar] [CrossRef]
- Yang, J.; Ai, S.; Zhang, B.B.; Zhang, B.; Liu, Z.K.; Wang, X.I.; Yang, Y.H.; Yin, Y.H.; Li, Y.; Lü, H.J. A long-duration gamma-ray burst with a peculiar origin. Nature 2022, 612, 232–235. [Google Scholar] [CrossRef]
- Connaughton, V. BATSE Observations of Gamma-Ray Burst Tails. Astrophys. J. 2002, 567, 1028–1036. [Google Scholar] [CrossRef]
- Tikhomirova, Y.Y.; Stern, B.E. Superlong Gamma-Ray Bursts. Astron. Lett. 2005, 31, 291–298. [Google Scholar] [CrossRef]
- Gruber, D.; Krühler, T.; Foley, S.; Nardini, M.; Burlon, D.; Rau, A.; Bissaldi, E.; von Kienlin, A.; McBreen, S.; Greiner, J.; et al. Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash. Astron. Astrophys. 2011, 528, A15. [Google Scholar] [CrossRef]
- Thöne, C.C.; de Ugarte Postigo, A.; Fryer, C.L.; Page, K.L.; Gorosabel, J.; Aloy, M.A.; Perley, D.A.; Kouveliotou, C.; Janka, H.T.; Mimica, P.; et al. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature 2011, 480, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Gendre, B.; Stratta, G.; Atteia, J.L.; Basa, S.; Boër, M.; Coward, D.M.; Cutini, S.; D’Elia, V.; Howell, E.J.; Klotz, A.; et al. The Ultra-long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant? Astrophys. J. 2013, 766, 30. [Google Scholar] [CrossRef]
- Stratta, G.; Gendre, B.; Atteia, J.L.; Boër, M.; Coward, D.M.; De Pasquale, M.; Howell, E.; Klotz, A.; Oates, S.; Piro, L. The Ultra-long GRB 111209A. II. Prompt to Afterglow and Afterglow Properties. Astrophys. J. 2013, 779, 66. [Google Scholar] [CrossRef]
- Evans, P.A.; Willingale, R.; Osborne, J.P.; O’Brien, P.T.; Tanvir, N.R.; Frederiks, D.D.; Pal’shin, V.D.; Svinkin, D.S.; Lien, A.; Cummings, J.; et al. GRB 130925A: An ultralong gamma ray burst with a dust-echo afterglow, and implications for the origin of the ultralong GRBs. Mon. Not. R. Astron. Soc. 2014, 444, 250–267. [Google Scholar] [CrossRef]
- Levan, A.J.; Tanvir, N.R.; Starling, R.L.C.; Wiersema, K.; Page, K.L.; Perley, D.A.; Schulze, S.; Wynn, G.A.; Chornock, R.; Hjorth, J.; et al. A New Population of Ultra-long Duration Gamma-Ray Bursts. Astrophys. J. 2014, 781, 13. [Google Scholar] [CrossRef]
- Piro, L.; Troja, E.; Gendre, B.; Ghisellini, G.; Ricci, R.; Bannister, K.; Fiore, F.; Kidd, L.A.; Piranomonte, S.; Wieringa, M.H. A Hot Cocoon in the Ultralong GRB 130925A: Hints of a POPIII-like Progenitor in a Low-Density Wind Environment. Astrophys. J. Lett. 2014, 790, L15. [Google Scholar] [CrossRef]
- Ror, A.K.; Gupta, R.; Aryan, A.; Pandey, S.B.; Oates, S.R.; Castro-Tirado, A.J.; Kumar, S. Exploring the Origin of Ultralong Gamma-Ray Bursts: Lessons from GRB 221009A. Astrophys. J. 2024, 971, 163. [Google Scholar] [CrossRef]
- Campana, S.; Mangano, V.; Blustin, A.J.; Brown, P.; Burrows, D.N.; Chincarini, G.; Cummings, J.R.; Cusumano, G.; Della Valle, M.; Malesani, D.; et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 2006, 442, 1008–1010. [Google Scholar] [CrossRef]
- Starling, R.L.C.; Wiersema, K.; Levan, A.J.; Sakamoto, T.; Bersier, D.; Goldoni, P.; Oates, S.R.; Rowlinson, A.; Campana, S.; Sollerman, J.; et al. Discovery of the nearby long, soft GRB 100316D with an associated supernova. Mon. Not. R. Astron. Soc. 2011, 411, 2792–2803. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 1993, 408, 194–217. [Google Scholar] [CrossRef]
- Spruit, H.C. The source of magnetic fields in (neutron-) stars. Proc. Int. Astron. Union 2008, 4, 61–74. [Google Scholar] [CrossRef]
- Perna, R.; Lazzati, D.; Cantiello, M. Ultra-long Gamma-Ray Bursts from the Collapse of Blue Supergiant Stars: An End-to-end Simulation. Astrophys. J. 2018, 859, 48. [Google Scholar] [CrossRef]
- Kann, D.A.; Schady, P.; Olivares E., F.; Klose, S.; Rossi, A.; Perley, D.A.; Krühler, T.; Greiner, J.; Nicuesa Guelbenzu, A.; Elliott, J.; et al. Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. Astron. Astrophys. 2019, 624, A143. [Google Scholar] [CrossRef]
- Liang, E.; Zhang, B.; Virgili, F.; Dai, Z.G. Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. Astrophys. J. 2007, 662, 1111–1118. [Google Scholar] [CrossRef]
- Woods, P.M.; Thompson, C. Soft gamma repeaters and anomalous X-ray pulsars: Magnetar candidates. In Compact Stellar X-Ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 547–586. [Google Scholar] [CrossRef]
- Mereghetti, S. The strongest cosmic magnets: Soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 2008, 15, 225–287. [Google Scholar] [CrossRef]
- Al Dallal, S.; Azzam, W.J. A Brief Review of Historical Supernovae. Int. J. Astron. Astrophys. 2021, 11, 73–86. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Strom, R.G.; Jiang, S.Y. The Guest Star of AD185 must have been a Supernova. Chin. J. Astron. Astrophys. 2006, 6, 635–640. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262–289. [Google Scholar] [CrossRef]
- Janka, H.T. Explosion Mechanisms of Core-Collapse Supernovae. Annu. Rev. Nucl. Part. Sci. 2012, 62, 407–451. [Google Scholar] [CrossRef]
- Müller, B.; Janka, H.T.; Heger, A. New Two-dimensional Models of Supernova Explosions by the Neutrino-heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores. Astrophys. J. 2012, 761, 72. [Google Scholar] [CrossRef]
- Burrows, A. Colloquium: Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 2013, 85, 245–261. [Google Scholar] [CrossRef]
- Bethe, H.A.; Wilson, J.R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 1985, 295, 14–23. [Google Scholar] [CrossRef]
- Müller, B.; Janka, H.T.; Marek, A. A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae. III. Gravitational Wave Signals from Supernova Explosion Models. Astrophys. J. 2013, 766, 43. [Google Scholar] [CrossRef]
- Mezzacappa, A.; Bruenn, S.W. A Numerical Method for Solving the Neutrino Boltzmann Equation Coupled to Spherically Symmetric Stellar Core Collapse. Astrophys. J. 1993, 405, 669. [Google Scholar] [CrossRef]
- Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 2008, 385, 1455–1460. [Google Scholar] [CrossRef]
- Dessart, L.; Burrows, A.; Livne, E.; Ott, C.D. The Proto-Neutron Star Phase of the Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae. Astrophys. J. Lett. 2008, 673, L43. [Google Scholar] [CrossRef]
- Bucciantini, N.; Metzger, B.D.; Thompson, T.A.; Quataert, E. Short gamma-ray bursts with extended emission from magnetar birth: Jet formation and collimation. Mon. Not. R. Astron. Soc. 2012, 419, 1537–1545. [Google Scholar] [CrossRef]
- Shankar, S.; Mösta, P.; Barnes, J.; Duffell, P.C.; Kasen, D. Proto-magnetar jets as central engines for broad-lined Type Ic supernovae. Mon. Not. R. Astron. Soc. 2021, 508, 5390–5401. [Google Scholar] [CrossRef]
- Barnes, J.; Duffell, P.C.; Liu, Y.; Modjaz, M.; Bianco, F.B.; Kasen, D.; MacFadyen, A.I. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine. Astrophys. J. 2018, 860, 38. [Google Scholar] [CrossRef]
- Janiuk, A.; Moderski, R.; Proga, D. On the Duration of Long GRBs: Effects of Black Hole Spin. Astrophys. J. 2008, 687, 433–442. [Google Scholar] [CrossRef]
- Crosato Menegazzi, L.; Fujibayashi, S.; Takahashi, K.; Ishii, A. Variety of disc wind-driven explosions in massive rotating stars. Mon. Not. R. Astron. Soc. 2024, 529, 178–195. [Google Scholar] [CrossRef]
- Menegazzi, L.C.; Fujibayashi, S.; Shibata, M.; Betranhandy, A.; Takahashi, K. Variety of disc wind-driven explosions in massive rotating stars—II. Dependence on the progenitor. Mon. Not. R. Astron. Soc. 2025, 537, 2850–2867. [Google Scholar] [CrossRef]
- Obergaulinger, M.; Aloy, M.Á. Protomagnetar and black hole formation in high-mass stars. Mon. Not. R. Astron. Soc. 2017, 469, L43–L47. [Google Scholar] [CrossRef]
- Obergaulinger, M.; Aloy, M.Á. Magnetorotational core collapse of possible GRB progenitors—I. Explosion mechanisms. Mon. Not. R. Astron. Soc. 2020, 492, 4613–4634. [Google Scholar] [CrossRef]
- Radice, D.; Morozova, V.; Burrows, A.; Vartanyan, D.; Nagakura, H. Characterizing the Gravitational Wave Signal from Core-collapse Supernovae. Astrophys. J. Lett. 2019, 876, L9. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Förster, F.; Cabrera-Vives, G.; Castillo-Navarrete, E.; Estévez, P.A.; Sánchez-Sáez, P.; Arredondo, J.; Bauer, F.E.; Carrasco-Davis, R.; Catelan, M.; Elorrieta, F.; et al. The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker. Astron. J. 2021, 161, 242. [Google Scholar] [CrossRef]
- Turatto, M. Classification of Supernovae. In Supernovae and Gamma-Ray Bursters; Weiler, K., Ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598, pp. 21–36. [Google Scholar] [CrossRef]
- Nomoto, K. The fate of accreting white dwarfs: Type I supernovae vs. collapse. Prog. Part. Nucl. Phys. 1986, 17, 249–266. [Google Scholar] [CrossRef]
- Bravo, E.; Isern, J.; Piersanti, L. Type Ia supernovae from chemically segregated white dwarfs. Astron. Astrophys. 2024, 683, A237. [Google Scholar] [CrossRef]
- Blondin, S. Type Ia supernovae. arXiv 2024, arXiv:2411.09740. [Google Scholar]
- Woosley, S.E.; Heger, A. The Supernova Gamma-Ray Burst Connection. In Proceedings of the Gamma-Ray Bursts in the Swift Era, Washington, DC, USA, 29 November–2 December 2005; AIP: Melville, NY, USA, 2006; Volume 836, pp. 398–407. [Google Scholar] [CrossRef]
- Janka, H.T.; Melson, T.; Summa, A. Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview. Annu. Rev. Nucl. Part. Sci. 2016, 66, 341–375. [Google Scholar] [CrossRef]
- Burrows, A.; Vartanyan, D. Core-collapse supernova explosion theory. Nature 2021, 589, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bollig, R.; Yadav, N.; Kresse, D.; Janka, H.T.; Müller, B.; Heger, A. Self-consistent 3D Supernova Models From -7 Minutes to +7 s: A 1-bethe Explosion of a 19 M⊙ Progenitor. Astrophys. J. 2021, 915, 28. [Google Scholar] [CrossRef]
- Mezzacappa, A.; Marronetti, P.; Landfield, R.E.; Lentz, E.J.; Yakunin, K.N.; Bruenn, S.W.; Hix, W.R.; Messer, O.E.B.; Endeve, E.; Blondin, J.M.; et al. Gravitational-wave signal of a core-collapse supernova explosion of a 15 M⊙ star. Phys. Rev. D 2020, 102, 023027. [Google Scholar] [CrossRef]
- Vartanyan, D.; Coleman, M.S.B.; Burrows, A. The collapse and three-dimensional explosion of three-dimensional massive-star supernova progenitor models. Mon. Not. R. Astron. Soc. 2021, 510, 4689–4705. [Google Scholar] [CrossRef]
- Kuroda, T.; Fischer, T.; Takiwaki, T.; Kotake, K. Core-collapse Supernova Simulations and the Formation of Neutron Stars, Hybrid Stars, and Black Holes. Astrophys. J. 2022, 924, 38. [Google Scholar] [CrossRef]
- Bruenn, S.W.; Sieverding, A.; Lentz, E.J.; Sukhbold, T.; Hix, W.R.; Huk, L.N.; Harris, J.A.; Messer, O.E.B.; Mezzacappa, A. Comparison of the Core-collapse Evolution of Two Nearly Equal-mass Progenitors. Astrophys. J. 2023, 947, 35. [Google Scholar] [CrossRef]
- Schlegel, E.M. A new subclass of type II supernovae ? Mon. Not. R. Astron. Soc. 1990, 244, 269–271. [Google Scholar]
- Filippenko, A.V. Optical Spectra of Supernovae. Annu. Rev. Astron. Astrophys. 1997, 35, 309–355. [Google Scholar] [CrossRef]
- Smith, N. Interacting Supernovae: Types IIn and Ibn. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 403. [Google Scholar] [CrossRef]
- Taubenberger, S. The Extremes of Thermonuclear Supernovae. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; p. 317. [Google Scholar] [CrossRef]
- Modjaz, M.; Liu, Y.Q.; Bianco, F.B.; Graur, O. The Spectral SN-GRB Connection: Systematic Spectral Comparisons between Type Ic Supernovae and Broad-lined Type Ic Supernovae with and without Gamma-Ray Bursts. Astrophys. J. 2016, 832, 108. [Google Scholar] [CrossRef]
- Taddia, F.; Sollerman, J.; Fremling, C.; Barbarino, C.; Karamehmetoglu, E.; Arcavi, I.; Cenko, S.B.; Filippenko, A.V.; Gal-Yam, A.; Hiramatsu, D.; et al. Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astron. Astrophys. 2019, 621, A71. [Google Scholar] [CrossRef]
- Iwamoto, K.; Nakamura, T.; Nomoto, K.; Mazzali, P.A.; Danziger, I.J.; Garnavich, P.; Kirshner, R.; Jha, S.; Balam, D.; Thorstensen, J. The Peculiar Type IC Supernova 1997EF: Another Hypernova. Astrophys. J. 2000, 534, 660–669. [Google Scholar] [CrossRef]
- Prentice, S.J.; Mazzali, P.A. A physically motivated classification of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 2017, 469, 2672–2694. [Google Scholar] [CrossRef]
- van Putten, M.H.P.M.; Lee, G.M.; Della Valle, M.; Amati, L.; Levinson, A. On the origin of short GRBs with extended emission and long GRBs without associated SN. Mon. Not. R. Astron. Soc. 2014, 444, L58–L62. [Google Scholar] [CrossRef]
- Taggart, K.; Perley, D.A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: The importance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 2021, 503, 3931–3952. [Google Scholar] [CrossRef]
- Richardson, D.; Branch, D.; Casebeer, D.; Millard, J.; Thomas, R.C.; Baron, E. A Comparative Study of the Absolute Magnitude Distributions of Supernovae. Astron. J. 2002, 123, 745–752. [Google Scholar] [CrossRef]
- Gal-Yam, A. Luminous Supernovae. Science 2012, 337, 927. [Google Scholar] [CrossRef] [PubMed]
- Howell, D.A. Superluminous Supernovae. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2017; p. 431. [Google Scholar] [CrossRef]
- Gal-Yam, A. The Most Luminous Supernovae. Annu. Rev. Astron. Astrophys. 2019, 57, 305–333. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Sullivan, M.; Pian, E.; Greiner, J.; Kann, D.A. Spectrum formation in superluminous supernovae (Type I). Mon. Not. R. Astron. Soc. 2016, 458, 3455–3465. [Google Scholar] [CrossRef]
- Quimby, R.M.; De Cia, A.; Gal-Yam, A.; Leloudas, G.; Lunnan, R.; Perley, D.A.; Vreeswijk, P.M.; Yan, L.; Bloom, J.S.; Cenko, S.B.; et al. Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophys. J. 2018, 855, 2. [Google Scholar] [CrossRef]
- Könyves-Tóth, R. Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. Astrophys. J. 2022, 940, 69. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 453, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, C.P.; Pastorello, A.; Bersten, M.; Benetti, S.; Orellana, M.; Fiore, A.; Karamehmetoglu, E.; Kravtsov, T.; Reguitti, A.; Reynolds, T.M.; et al. SN 2020wnt: A slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. Mon. Not. R. Astron. Soc. 2022, 517, 2056–2075. [Google Scholar] [CrossRef]
- Prentice, S.J.; Inserra, C.; Schulze, S.; Nicholl, M.; Mazzali, P.A.; Vergani, S.D.; Galbany, L.; Anderson, J.P.; Ashall, C.; Chen, T.W.; et al. Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. Mon. Not. R. Astron. Soc. 2021, 508, 4342–4358. [Google Scholar] [CrossRef]
- Gomez, S.; Berger, E.; Nicholl, M.; Blanchard, P.K.; Hosseinzadeh, G. Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. Astrophys. J. 2022, 941, 107. [Google Scholar] [CrossRef]
- Pastorello, A.; Smartt, S.J.; Botticella, M.T.; Maguire, K.; Fraser, M.; Smith, K.; Kotak, R.; Magill, L.; Valenti, S.; Young, D.R.; et al. Ultra-bright Optical Transients are Linked with Type Ic Supernovae. Astrophys. J. Lett. 2010, 724, L16–L21. [Google Scholar] [CrossRef]
- Inserra, C. Observational properties of extreme supernovae. Nat. Astron. 2019, 3, 697–705. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Inserra, C.; Sim, S.A.; Chen, T.W.; Benetti, S.; Fraser, M.; Gal-Yam, A.; Kankare, E.; et al. On the diversity of superluminous supernovae: Ejected mass as the dominant factor. Mon. Not. R. Astron. Soc. 2015, 452, 3869–3893. [Google Scholar] [CrossRef]
- De Cia, A.; Gal-Yam, A.; Rubin, A.; Leloudas, G.; Vreeswijk, P.; Perley, D.A.; Quimby, R.; Yan, L.; Sullivan, M.; Flörs, A.; et al. Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophys. J. 2018, 860, 100. [Google Scholar] [CrossRef]
- Lunnan, R.; Chornock, R.; Berger, E.; Jones, D.O.; Rest, A.; Czekala, I.; Dittmann, J.; Drout, M.R.; Foley, R.J.; Fong, W.; et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 2018, 852, 81. [Google Scholar] [CrossRef]
- Angus, C.R.; Smith, M.; Sullivan, M.; Inserra, C.; Wiseman, P.; D’Andrea, C.B.; Thomas, B.P.; Nichol, R.C.; Galbany, L.; Childress, M.; et al. Superluminous supernovae from the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2019, 487, 2215–2241. [Google Scholar] [CrossRef]
- Kangas, T.; Blagorodnova, N.; Mattila, S.; Lundqvist, P.; Fraser, M.; Burgaz, U.; Cappellaro, E.; Carrasco Martínez, J.M.; Elias-Rosa, N.; Hardy, L.K.; et al. Gaia16apd—A link between fast and slowly declining type I superluminous supernovae. Mon. Not. R. Astron. Soc. 2017, 469, 1246–1258. [Google Scholar] [CrossRef]
- Fiore, A.; Chen, T.W.; Jerkstrand, A.; Benetti, S.; Ciolfi, R.; Inserra, C.; Cappellaro, E.; Pastorello, A.; Leloudas, G.; Schulze, S.; et al. SN 2017gci: A nearby Type I Superluminous Supernova with a bumpy tail. Mon. Not. R. Astron. Soc. 2021, 502, 2120–2139. [Google Scholar] [CrossRef]
- Yan, L.; Quimby, R.; Ofek, E.; Gal-Yam, A.; Mazzali, P.; Perley, D.; Vreeswijk, P.M.; Leloudas, G.; De Cia, A.; Masci, F.; et al. Detection of Broad Hα Emission Lines in the Late-time Spectra of a Hydrogen-poor Superluminous Supernova. Astrophys. J. 2015, 814, 108. [Google Scholar] [CrossRef]
- Yan, L.; Lunnan, R.; Perley, D.A.; Gal-Yam, A.; Yaron, O.; Roy, R.; Quimby, R.; Sollerman, J.; Fremling, C.; Leloudas, G.; et al. Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events from the Intermediate Palomar Transient Factory. Astrophys. J. 2017, 848, 6. [Google Scholar] [CrossRef]
- Pursiainen, M.; Leloudas, G.; Paraskeva, E.; Cikota, A.; Anderson, J.P.; Angus, C.R.; Brennan, S.; Bulla, M.; Camacho-Iñiguez, E.; Charalampopoulos, P.; et al. SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. Astron. Astrophys. 2022, 666, A30. [Google Scholar] [CrossRef]
- West, S.L.; Lunnan, R.; Omand, C.M.B.; Kangas, T.; Schulze, S.; Strotjohann, N.L.; Yang, S.; Fransson, C.; Sollerman, J.; Perley, D.; et al. SN 2020qlb: A hydrogen-poor superluminous supernova with well-characterized light curve undulations. Astron. Astrophys. 2023, 670, A7. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, N.; Dong, S.; Filippenko, A.V.; Rudy, R.J.; Pastorello, A.; Ashall, C.; Bose, S.; Post, R.S.; Bersier, D.; et al. SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. Astrophys. J. 2023, 949, 23. [Google Scholar] [CrossRef]
- Zhu, J.P.; Liu, L.D.; Yu, Y.W.; Mandel, I.; Hirai, R.; Zhang, B.; Chen, A. Bumpy Superluminous Supernovae Powered by a Magnetar–Star Binary Engine. Astrophys. J. Lett. 2024, 970, L42. [Google Scholar] [CrossRef]
- Inserra, C.; Smartt, S.J.; Jerkstrand, A.; Valenti, S.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.W.; Kotak, R.; Pastorello, A.; et al. Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail. Astrophys. J. 2013, 770, 128. [Google Scholar] [CrossRef]
- Nadyozhin, D.K. The Properties of NI CO Fe Decay. Astrophys. J. Suppl. 1994, 92, 527. [Google Scholar] [CrossRef]
- Padmanabhan, T. Theoretical Astrophysics—Volume 2, Stars and Stellar Systems; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar] [CrossRef]
- Anderson, J.P. A meta-analysis of core-collapse supernova 56Ni masses. Astron. Astrophys. 2019, 628, A7. [Google Scholar] [CrossRef]
- Ugliano, M.; Janka, H.T.; Marek, A.; Arcones, A. Progenitor-explosion Connection and Remnant Birth Masses for Neutrino-driven Supernovae of Iron-core Progenitors. Astrophys. J. 2012, 757, 69. [Google Scholar] [CrossRef]
- Heger, A.; Woosley, S.E. The Nucleosynthetic Signature of Population III. Astrophys. J. 2002, 567, 532–543. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.W.; Smith, K.; et al. Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature 2013, 502, 346–349. [Google Scholar] [CrossRef]
- Kozyreva, A.; Blinnikov, S. Can pair-instability supernova models match the observations of superluminous supernovae? Mon. Not. R. Astron. Soc. 2015, 454, 4357–4365. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Moriya, T.J.; Tanaka, M.; Woosley, S.E. The nature of PISN candidates: Clues from nebular spectra. Mon. Not. R. Astron. Soc. 2019, 484, 3451–3462. [Google Scholar] [CrossRef]
- Moriya, T.J.; Mazzali, P.A.; Tanaka, M. Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as. Mon. Not. R. Astron. Soc. 2019, 484, 3443–3450. [Google Scholar] [CrossRef]
- Dessart, L.; Waldman, R.; Livne, E.; Hillier, D.J.; Blondin, S. Radiative properties of pair-instability supernova explosions. Mon. Not. R. Astron. Soc. 2013, 428, 3227–3251. [Google Scholar] [CrossRef]
- Jerkstrand, A.; Smartt, S.J.; Heger, A. Nebular spectra of pair-instability supernovae. Mon. Not. R. Astron. Soc. 2016, 455, 3207–3229. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Fransson, C. Supernova Interaction with a Circumstellar Medium. In Supernovae and Gamma-Ray Bursters; Weiler, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598, pp. 171–194. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Irwin, C.M. Shock Breakout in Dense Mass Loss: Luminous Supernovae. Astrophys. J. Lett. 2011, 729, L6. [Google Scholar] [CrossRef]
- Chatzopoulos, E.; Wheeler, J.C.; Vinko, J. Generalized Semi-analytical Models of Supernova Light Curves. Astrophys. J. 2012, 746, 121. [Google Scholar] [CrossRef]
- Ginzburg, S.; Balberg, S. Superluminous Light Curves from Supernovae Exploding in a Dense Wind. Astrophys. J. 2012, 757, 178. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Inserra, C.; Anderson, J.P.; Baltay, C.; Benetti, S.; Chen, T.W.; Elias-Rosa, N.; Feindt, U.; et al. Superluminous supernovae from PESSTO. Mon. Not. R. Astron. Soc. 2014, 444, 2096–2113. [Google Scholar] [CrossRef]
- Chen, T.W.; Smartt, S.J.; Jerkstrand, A.; Nicholl, M.; Bresolin, F.; Kotak, R.; Polshaw, J.; Rest, A.; Kudritzki, R.; Zheng, Z.; et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 2015, 452, 1567–1586. [Google Scholar] [CrossRef]
- Dexter, J.; Kasen, D. Supernova Light Curves Powered by Fallback Accretion. Astrophys. J. 2013, 772, 30. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.D.; Bildsten, L. Magnetar-driven Shock Breakout and Double-peaked Supernova Light Curves. Astrophys. J. 2016, 821, 36. [Google Scholar] [CrossRef]
- Moriya, T.J.; Nicholl, M.; Guillochon, J. Systematic Investigation of the Fallback Accretion-powered Model for Hydrogen-poor Superluminous Supernovae. Astrophys. J. 2018, 867, 113. [Google Scholar] [CrossRef]
- Cikota, A.; Leloudas, G.; Bulla, M.; Inserra, C.; Chen, T.W.; Spyromilio, J.; Patat, F.; Cano, Z.; Cikota, S.; Coughlin, M.W.; et al. Testing the magnetar scenario for superluminous supernovae with circular polarimetry. Mon. Not. R. Astron. Soc. 2018, 479, 4984–4990. [Google Scholar] [CrossRef]
- Lee, C.H. Early optical imaging polarimetry of type I superluminous supernova 2020ank. Astron. Nachrichten 2020, 341, 651–655. [Google Scholar] [CrossRef]
- Poidevin, F.; Omand, C.M.B.; Pérez-Fournon, I.; Clavero, R.; Shirley, R.; Marques-Chaves, R.; Jimenez Angel, C.; Geier, S. Post maximum light and late time optical imaging polarimetry of type I superluminous supernova 2020znr. Mon. Not. R. Astron. Soc. 2022, 511, 5948–5963. [Google Scholar] [CrossRef]
- Pursiainen, M.; Leloudas, G.; Cikota, A.; Bulla, M.; Inserra, C.; Patat, F.; Wheeler, J.C.; Aamer, A.; Gal-Yam, A.; Maund, J.; et al. Polarimetry of hydrogen-poor superluminous supernovae. Astron. Astrophys. 2023, 674, A81. [Google Scholar] [CrossRef]
- Fiore, A.; Benetti, S.; Nicholl, M.; Reguitti, A.; Cappellaro, E.; Campana, S.; Bose, S.; Paraskeva, E.; Berger, E.; Bravo, T.M.; et al. Close, bright, and boxy: The superluminous SN 2018hti. Mon. Not. R. Astron. Soc. 2022, 512, 4484–4502. [Google Scholar] [CrossRef]
- Li, S.; Liang, Y.F.; Liao, N.H.; Lei, L.; Fan, Y.Z. Fermi-LAT discovery of the GeV emission of the superluminous supernovae SN 2017egm. arXiv 2024, arXiv:2407.05968. [Google Scholar] [CrossRef]
- Woosley, S.E.; Blinnikov, S.; Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 2007, 450, 390–392. [Google Scholar] [CrossRef]
- Woosley, S.E. Pulsational Pair-instability Supernovae. Astrophys. J. 2017, 836, 244. [Google Scholar] [CrossRef]
- Renzo, M.; Farmer, R.; Justham, S.; Götberg, Y.; de Mink, S.E.; Zapartas, E.; Marchant, P.; Smith, N. Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. Astron. Astrophys. 2020, 640, A56. [Google Scholar] [CrossRef]
- Andrews, J.E.; Smith, N. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls. Mon. Not. R. Astron. Soc. 2018, 477, 74–79. [Google Scholar] [CrossRef]
- LeBlanc, J.M.; Wilson, J.R. A Numerical Example of the Collapse of a Rotating Magnetized Star. Astrophys. J. 1970, 161, 541. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Popov, I.P.; Samokhin, A.A. The Magnetohydrodynamic Rotational Model of Supernova Explosion. Astrophys. Space Sci. 1976, 41, 287–320. [Google Scholar] [CrossRef]
- Meier, D.L.; Epstein, R.I.; Arnett, W.D.; Schramm, D.N. Magnetohydrodynamic phenomena in collapsing stellar cores. Astrophys. J. 1976, 204, 869–878. [Google Scholar] [CrossRef]
- Mueller, E.; Hillebrandt, W. A magnetohydrodynamical supernova model. Astron. Astrophys. 1979, 80, 147–154. [Google Scholar]
- Reichert, M.; Obergaulinger, M.; Aloy, M.Á.; Gabler, M.; Arcones, A.; Thielemann, F.K. Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models. Mon. Not. R. Astron. Soc. 2023, 518, 1557–1583. [Google Scholar] [CrossRef]
- Inserra, C.; Smartt, S.J. Superluminous Supernovae as Standardizable Candles and High-redshift Distance Probes. Astrophys. J. 2014, 796, 87. [Google Scholar] [CrossRef]
- Wei, J.J.; Wu, X.F.; Melia, F. Testing Cosmological Models with Type Ic Super Luminous Supernovae. Astron. J. 2015, 149, 165. [Google Scholar] [CrossRef]
- Inserra, C.; Sullivan, M.; Angus, C.R.; Macaulay, E.; Nichol, R.C.; Smith, M.; Frohmaier, C.; Gutiérrez, C.P.; Vicenzi, M.; Möller, A.; et al. The first Hubble diagram and cosmological constraints using superluminous supernovae. Mon. Not. R. Astron. Soc. 2021, 504, 2535–2549. [Google Scholar] [CrossRef]
- Khetan, N.; Cooke, J.; Branchesi, M. The rest-frame ultraviolet of superluminous supernovae—I. Potential as cosmological probes. Mon. Not. R. Astron. Soc. 2023, 521, 2814–2832. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfven Wave Emission. Astrophys. J. 1996, 473, 322. [Google Scholar] [CrossRef]
- Bachetti, M.; Harrison, F.A.; Walton, D.J.; Grefenstette, B.W.; Chakrabarty, D.; Fürst, F.; Barret, D.; Beloborodov, A.; Boggs, S.E.; Christensen, F.E.; et al. An ultraluminous X-ray source powered by an accreting neutron star. Nature 2014, 514, 202–204. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef]
- Auriere, M.; Silvester, J.; Wade, G.A.; Bagnulo, S.; Donati, J.F.; Johnson, N.; Landstreet, J.D.; Ligneres, F.; Lueftinger, T.; Mouillet, D.; et al. A survey of magnetic Ap/Bp stars for weak longitudinal magnetic fields. A-Peculiar Newsl. 2003, 39. [Google Scholar]
- Hu, R.Y.; Lou, Y.Q. Magnetized massive stars as magnetar progenitors. Mon. Not. R. Astron. Soc. 2009, 396, 878–886. [Google Scholar] [CrossRef]
- Braithwaite, J.; Spruit, H.C. A fossil origin for the magnetic field in A stars and white dwarfs. Nature 2004, 431, 819–821. [Google Scholar] [CrossRef]
- Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. Lett. 1992, 392, L9. [Google Scholar] [CrossRef]
- Fryer, C.L.; Warren, M.S. The Collapse of Rotating Massive Stars in Three Dimensions. Astrophys. J. 2004, 601, 391. [Google Scholar] [CrossRef]
- Buras, R.; Rampp, M.; Janka, H.T.; Kifonidis, K. Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport: I. Numerical method and results for a 15 M⊙ star. Astron. Astrophys. 2006, 447, 1049–1092. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Gunn, J.E. On the Nature of Pulsars. I. Theory. Astrophys. J. 1969, 157, 1395. [Google Scholar] [CrossRef]
- Kasen, D.; Bildsten, L. Supernova Light Curves Powered by Young Magnetars. Astrophys. J. 2010, 717, 245–249. [Google Scholar] [CrossRef]
- Fruchter, A.S.; Levan, A.J.; Strolger, L.; Vreeswijk, P.M.; Thorsett, S.E.; Bersier, D.; Burud, I.; Castro Cerón, J.M.; Castro-Tirado, A.J.; Conselice, C.; et al. Long γ-ray bursts and core-collapse supernovae have different environments. Nature 2006, 441, 463–468. [Google Scholar] [CrossRef]
- Modjaz, M.; Kewley, L.; Kirshner, R.P.; Stanek, K.Z.; Challis, P.; Garnavich, P.M.; Greene, J.E.; Kelly, P.L.; Prieto, J.L. Measured Metallicities at the Sites of Nearby Broad-Lined Type Ic Supernovae and Implications for the Supernovae Gamma-Ray Burst Connection. Astron. J. 2008, 135, 1136–1150. [Google Scholar] [CrossRef]
- Mandel, I.; de Mink, S.E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 2016, 458, 2634–2647. [Google Scholar] [CrossRef]
- Vink, J.S.; Harries, T.J. Wolf-Rayet spin at low metallicity and its implication for black hole formation channels. Astron. Astrophys. 2017, 603, A120. [Google Scholar] [CrossRef]
- Di Carlo, U.N.; Mapelli, M.; Giacobbo, N.; Spera, M.; Bouffanais, Y.; Rastello, S.; Santoliquido, F.; Pasquato, M.; Ballone, A.; Trani, A.A.; et al. Binary black holes in young star clusters: The impact of metallicity. Mon. Not. R. Astron. Soc. 2020, 498, 495–506. [Google Scholar] [CrossRef]
- Yoon, S.C.; Langer, N. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron. Astrophys. 2005, 443, 643–648. [Google Scholar] [CrossRef]
- Ablimit, I.; Podsiadlowski, P.; Hirai, R.; Wicker, J. Stellar core-merger-induced collapse: New formation pathways for black holes, Thorne–Żytkow objects, magnetars, and superluminous supernovae. Mon. Not. R. Astron. Soc. 2022, 513, 4802–4813. [Google Scholar] [CrossRef]
- Sharma, K.; Ravi, V.; Connor, L.; Law, C.; Ocker, S.K.; Sherman, M.; Kosogorov, N.; Faber, J.; Hallinan, G.; Harnach, C.; et al. Preferential Occurrence of Fast Radio Bursts in Massive Star-Forming Galaxies. arXiv 2024, arXiv:2409.16964. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, T. Long-duration Gamma-Ray Burst Progenitors and Magnetar Formation. Astrophys. J. 2023, 952, 156. [Google Scholar] [CrossRef]
- Bodenheimer, P.; Ostriker, J.P. Do Pulsars Make Supernovae? 11. Calculations of Light Curves for Type 11 Events. Astrophys. J. 1974, 191, 465–472. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Gunn, J.E. Do Pulsars Make Supernovae? Astrophys. J. Lett. 1971, 164, L95. [Google Scholar] [CrossRef]
- Gaffet, B. Pulsar theory of supernova light curves. I. Dynamical effect and thermalization of the pulsar strong waves. Astrophys. J. 1977, 216, 565–577. [Google Scholar] [CrossRef]
- Gaffet, B. Pulsar theory of supernova light curves. II. The light curve and the continuum spectrum. Astrophys. J. 1977, 216, 852–864. [Google Scholar] [CrossRef]
- Folatelli, G.; Contreras, C.; Phillips, M.M.; Woosley, S.E.; Blinnikov, S.; Morrell, N.; Suntzeff, N.B.; Lee, B.L.; Hamuy, M.; González, S.; et al. SN 2005bf: A Possible Transition Event between Type Ib/c Supernovae and Gamma-Ray Bursts. Astrophys. J. 2006, 641, 1039–1050. [Google Scholar] [CrossRef]
- Maeda, K.; Tanaka, M.; Nomoto, K.; Tominaga, N.; Kawabata, K.; Mazzali, P.A.; Umeda, H.; Suzuki, T.; Hattori, T. The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star. Astrophys. J. 2007, 666, 1069–1082. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Deng, J.; Nomoto, K.; Sauer, D.N.; Pian, E.; Tominaga, N.; Tanaka, M.; Maeda, K.; Filippenko, A.V. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 2006, 442, 1018–1020. [Google Scholar] [CrossRef]
- Chatzopoulos, E.; Wheeler, J.C.; Vinko, J.; Horvath, Z.L.; Nagy, A. Analytical Light Curve Models of Superluminous Supernovae: χ2-minimization of Parameter Fits. Astrophys. J. 2013, 773, 76. [Google Scholar] [CrossRef]
- Nicholl, M.; Guillochon, J.; Berger, E. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT. Astrophys. J. 2017, 850, 55. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D.; Thompson, T.A.; Nicholl, M.; Sukhbold, T. The GRB-SLSN connection: Misaligned magnetars, weak jet emergence, and observational signatures. Mon. Not. R. Astron. Soc. 2018, 475, 2659–2674. [Google Scholar] [CrossRef]
- Liu, L.D.; Gao, H.; Wang, X.F.; Yang, S. Magnetar-driven Shock Breakout Revisited and Implications for Double-peaked Type I Superluminous Supernovae. Astrophys. J. 2021, 911, 142. [Google Scholar] [CrossRef]
- Gottlieb, O.; Metzger, B.D. Late Jets, Early Sparks: Illuminating the Pre-Maximum Bumps in Superluminous Supernovae. arXiv 2024, arXiv:2407.20348. [Google Scholar] [CrossRef]
- Dessart, L.; Hillier, D.J.; Waldman, R.; Livne, E.; Blondin, S. Superluminous supernovae: 56Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 2012, 426, L76–L80. [Google Scholar] [CrossRef]
- Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P.K.; Jerkstrand, A.; Smartt, S.J.; Arcavi, I.; Challis, P.; Chambers, K.C.; et al. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star. Astrophys. J. Lett. 2016, 828, L18. [Google Scholar] [CrossRef]
- Omand, C.M.B.; Jerkstrand, A. Toward nebular spectral modeling of magnetar-powered supernovae. Astron. Astrophys. 2023, 673, A107. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D.; Berger, E.; Nicholl, M.; Eftekhari, T.; Margutti, R. Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 2018, 481, 2407–2426. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. Lett. 1998, 497, L17–L20. [Google Scholar] [CrossRef]
- Gompertz, B.P.; O’Brien, P.T.; Wynn, G.A.; Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. 2013, 431, 1745–1751. [Google Scholar] [CrossRef]
- Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.L.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; et al. Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data. Astrophys. J. 2006, 642, 389–400. [Google Scholar] [CrossRef]
- Gehrels, N.; Ramirez-Ruiz, E.; Fox, D.B. Gamma-Ray Bursts in the Swift Era. Annu. Rev. Astron. Astrophys. 2009, 47, 567–617. [Google Scholar] [CrossRef]
- Lazzati, D.; Begelman, M.C. Thick Fireballs and the Steep Decay in the Early X-Ray Afterglow of Gamma-Ray Bursts. Astrophys. J. 2006, 641, 972–977. [Google Scholar] [CrossRef]
- Dereli-Bégué, H.; Pe’er, A.; Ryde, F.; Oates, S.R.; Zhang, B.; Dainotti, M.G. A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau. Nat. Commun. 2022, 13, 5611. [Google Scholar] [CrossRef]
- Beniamini, P.; Gill, R.; Granot, J. Robust features of off-axis gamma-ray burst afterglow light curves. Mon. Not. R. Astron. Soc. 2022, 515, 555–570. [Google Scholar] [CrossRef]
- Kluźniak, W.; Ruderman, M. The Central Engine of Gamma-Ray Bursters. Astrophys. J. Lett. 1998, 505, L113–L117. [Google Scholar] [CrossRef]
- Wheeler, J.C.; Yi, I.; Höflich, P.; Wang, L. Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts. Astrophys. J. 2000, 537, 810–823. [Google Scholar] [CrossRef]
- Dai, Z.G.; Lu, T. Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars. Astron. Astrophys. 1998, 333, L87–L90. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. Astrophys. J. Lett. 2001, 552, L35–L38. [Google Scholar] [CrossRef]
- Dall’Osso, S.; Stratta, G.; Guetta, D.; Covino, S.; De Cesare, G.; Stella, L. Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. Astron. Astrophys. 2011, 526, A121. [Google Scholar] [CrossRef]
- Rowlinson, A.; O’Brien, P.T.; Metzger, B.D.; Tanvir, N.R.; Levan, A.J. Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 2013, 430, 1061–1087. [Google Scholar] [CrossRef]
- Li, L.; Wu, X.F.; Lei, W.H.; Dai, Z.G.; Liang, E.W.; Ryde, F. Constraining the Type of Central Engine of GRBs with Swift Data. Astrophys. J. Suppl. 2018, 236, 26. [Google Scholar] [CrossRef]
- Stratta, G.; Dainotti, M.G.; Dall’Osso, S.; Hernandez, X.; Cesare, G.D. On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophys. J. 2018, 869, 155. [Google Scholar] [CrossRef]
- Tang, C.H.; Huang, Y.F.; Geng, J.J.; Zhang, Z.B. Statistical Study of Gamma-Ray Bursts with a Plateau Phase in the X-Ray Afterglow. Astrophys. J. Suppl. 2019, 245, 1. [Google Scholar] [CrossRef]
- Ronchini, S.; Stratta, G.; Rossi, A.; Kann, D.A.; Oganeysan, G.; Dall’Osso, S.; Branchesi, M.; Cesare, G.D. Combined X-ray and optical analysis to probe the origin of the plateau emission in γ-ray burst afterglows. Astron. Astrophys. 2023, 675, A117. [Google Scholar] [CrossRef]
- Bernardini, M.G.; Margutti, R.; Mao, J.; Zaninoni, E.; Chincarini, G. The X-ray light curve of gamma-ray bursts: Clues to the central engine. Astron. Astrophys. 2012, 539, A3. [Google Scholar] [CrossRef]
- Bhattacharya, D.; van den Heuvel, E.P.J. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep. 1991, 203, 1–124. [Google Scholar] [CrossRef]
- Yuanyue, P.; Na, W.; Chengmin, Z. Binary Pulsars in Magnetic Field versus Spin Period Diagram. arXiv 2013, arXiv:1304.2489. [Google Scholar] [CrossRef]
- Illarionov, A.F.; Sunyaev, R.A. Why the Number of Galactic X-ray Stars Is so Small? Astron. Astrophys. 1975, 39, 185. [Google Scholar]
- Stella, L.; White, N.E.; Rosner, R. Intermittent Stellar Wind Acceleration and the Long-Term Activity of Population I Binary Systems Containing an X-Ray Pulsar. Astrophys. J. 1986, 308, 669. [Google Scholar] [CrossRef]
- Bernardini, M.G.; Campana, S.; Ghisellini, G.; D’Avanzo, P.; Burlon, D.; Covino, S.; Ghirlanda, G.; Melandri, A.; Salvaterra, R.; Vergani, S.D.; et al. How to Switch a Gamma-Ray Burst On and Off through a Magnetar. Astrophys. J. 2013, 775, 67. [Google Scholar] [CrossRef]
- Dall’Osso, S.; Stratta, G.; Perna, R.; Cesare, G.D.; Stella, L. Magnetar Central Engines in Gamma-Ray Bursts Follow the Universal Relation of Accreting Magnetic Stars. Astrophys. J. Lett. 2023, 949, L32. [Google Scholar] [CrossRef]
- Campana, S.; Stella, L.; Mereghetti, S.; de Martino, D. A universal relation for the propeller mechanisms in magnetic rotating stars at different scales. Astron. Astrophys. 2018, 610, A46. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, G.; et al. The THESEUS space mission concept: Science case, design and expected performances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef]
- Hjorth, J.; Bloom, J.S. The Gamma-Ray Burst—Supernova Connection. In Chapter 9 in ”Gamma-Ray Bursts; Kouveliotou, C., Wijers, R.A.M.J., Woosley, S., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 169–190. [Google Scholar] [CrossRef]
- Patat, F.; Cappellaro, E.; Danziger, J.; Mazzali, P.A.; Sollerman, J.; Augusteijn, T.; Brewer, J.; Doublier, V.; Gonzalez, J.F.; Hainaut, O.; et al. The Metamorphosis of SN 1998bw. Astrophys. J. 2001, 555, 900–917. [Google Scholar] [CrossRef]
- Valenti, S.; Benetti, S.; Cappellaro, E.; Patat, F.; Mazzali, P.; Turatto, M.; Hurley, K.; Maeda, K.; Gal-Yam, A.; Foley, R.J.; et al. The broad-lined Type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 2008, 383, 1485–1500. [Google Scholar] [CrossRef]
- Hoflich, P.; Wheeler, J.C.; Wang, L. Aspherical Explosion Models for SN 1998bw/GRB 980425. Astrophys. J. 1999, 521, 179–189. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Kawabata, K.S.; Maeda, K.; Nomoto, K.; Filippenko, A.V.; Ramirez-Ruiz, E.; Benetti, S.; Pian, E.; Deng, J.; Tominaga, N.; et al. An Asymmetric Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma Ray Bursts. Science 2005, 308, 1284–1287. [Google Scholar] [CrossRef]
- Mazzali, P.A.; McFadyen, A.I.; Woosley, S.E.; Pian, E.; Tanaka, M. An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars. Mon. Not. R. Astron. Soc. 2014, 443, 67–71. [Google Scholar] [CrossRef]
- Kohri, K.; Narayan, R.; Piran, T. Neutrino-dominated Accretion and Supernovae. Astrophys. J. 2005, 629, 341. [Google Scholar] [CrossRef]
- Surman, R.; McLaughlin, G.C. Neutrino Interactions in the Outflow from Gamma-Ray Burst Accretion Disks. Astrophys. J. 2005, 618, 397–402. [Google Scholar] [CrossRef]
- Surman, R.; McLaughlin, G.C.; Hix, W.R. Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks. Astrophys. J. 2006, 643, 1057–1064. [Google Scholar] [CrossRef]
- Surman, R.; McLaughlin, G.C.; Sabbatino, N. Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks. Astrophys. J. 2011, 743, 155. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, T. Black Hole Hyperaccretion Inflow-Outflow Model. II. Long-duration Gamma-Ray Bursts and Supernova 56Ni Bumps. Astrophys. J. 2019, 871, 117. [Google Scholar] [CrossRef]
- Khokhlov, A.M.; Höflich, P.A.; Oran, E.S.; Wheeler, J.C.; Wang, L.; Chtchelkanova, A.Y. Jet-induced Explosions of Core Collapse Supernovae. Astrophys. J. Lett. 1999, 524, L107–L110. [Google Scholar] [CrossRef]
- Burrows, A.; Dessart, L.; Livne, E.; Ott, C.D.; Murphy, J. Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. Astrophys. J. 2007, 664, 416–434. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N. Triggering jet-driven explosions of core-collapse supernovae by accretion from convective regions. Mon. Not. R. Astron. Soc. 2014, 439, 4011–4017. [Google Scholar] [CrossRef]
- Lazzati, D.; Morsony, B.J.; Blackwell, C.H.; Begelman, M.C. Unifying the Zoo of Jet-Driven Stellar Explosions. Astrophys. J. 2012, 750, 68. [Google Scholar] [CrossRef]
- Hjorth, J. The supernova–gamma-ray burst–jet connection. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013, 371, 20120275. [Google Scholar] [CrossRef]
- De Colle, F.; Kumar, P.; Hoeflich, P. The large landscape of supernova, GRB, and cocoon interactions. Mon. Not. R. Astron. Soc. 2022, 512, 3627–3637. [Google Scholar] [CrossRef]
- Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. How Massive Single Stars End Their Life. Astrophys. J. 2003, 591, 288–300. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Tout, C.A. The progenitors of core-collapse supernovae. Mon. Not. R. Astron. Soc. 2004, 353, 87–97. [Google Scholar] [CrossRef]
- Pejcha, O.; Thompson, T.A. The Landscape of the Neutrino Mechanism of Core-Collapse Supernovae: Neutron Star and Black Hole Mass Functions, Explosion Energies, and Nickel Yields. Astrophys. J. 2015, 801, 90. [Google Scholar] [CrossRef]
- Vagnozzi, S. New Solar Metallicity Measurements. Atoms 2019, 7, 41. [Google Scholar] [CrossRef]
- Hayakawa, T.; Maeda, K. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts. Astrophys. J. 2018, 854, 43. [Google Scholar] [CrossRef]
- Just, O.; Aloy, M.A.; Obergaulinger, M.; Nagataki, S. r-process Viable Outflows are Suppressed in Global Alpha-viscosity Models of Collapsar Disks. Astrophys. J. Lett. 2022, 934, L30. [Google Scholar] [CrossRef]
- Fujibayashi, S.; Lam, A.T.L.; Shibata, M.; Sekiguchi, Y. Supernovalike explosions of massive rotating stars from disks surrounding a black hole. Phys. Rev. D 2024, 109, 023031. [Google Scholar] [CrossRef]
- Dean, C.; Fernández, R. Collapsar disk outflows: Viscous hydrodynamic evolution in axisymmetry. Phys. Rev. D 2024, 109, 083010. [Google Scholar] [CrossRef]
- Tominaga, N.; Maeda, K.; Umeda, H.; Nomoto, K.; Tanaka, M.; Iwamoto, N.; Suzuki, T.; Mazzali, P.A. The Connection between Gamma-Ray Bursts and Extremely Metal-poor Stars: Black Hole-forming Supernovae with Relativistic Jets. Astrophys. J. 2007, 657, L77. [Google Scholar] [CrossRef]
- Tominaga, N. Aspherical properties of hydrodynamics and nucleosynthesis in jet-induced supernovae. Astrophys. J. 2008, 690, 526. [Google Scholar] [CrossRef]
- Maeda, K.; Nomoto, K. Bipolar Supernova Explosions: Nucleosynthesis and Implications for Abundances in Extremely Metal-Poor Stars. Astrophys. J. 2003, 598, 1163–1200. [Google Scholar] [CrossRef]
- Nagataki, S.; Mizuta, A.; Sato, K. Explosive Nucleosynthesis in GRB Jets Accompanied by Hypernovae. Astrophys. J. 2006, 647, 1255–1268. [Google Scholar] [CrossRef]
- Bucciantini, N.; Quataert, E.; Metzger, B.D.; Thompson, T.A.; Arons, J.; Del Zanna, L. Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae. Mon. Not. R. Astron. Soc. 2009, 396, 2038–2050. [Google Scholar] [CrossRef]
- Woosley, S.E. Bright Supernovae from Magnetar Birth. Astrophys. J. Lett. 2010, 719, L204–L207. [Google Scholar] [CrossRef]
- Mundell, C.G.; Kopač, D.; Arnold, D.M.; Steele, I.A.; Gomboc, A.; Kobayashi, S.; Harrison, R.M.; Smith, R.J.; Guidorzi, C.; Virgili, F.J.; et al. Highly polarized light from stable ordered magnetic fields in GRB 120308A. Nature 2013, 504, 119–121. [Google Scholar] [CrossRef]
- Thompson, T.A.; Chang, P.; Quataert, E. Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts. Astrophys. J. 2004, 611, 380–393. [Google Scholar] [CrossRef]
- Bernardini, M.G.; Campana, S.; Ghisellini, G.; D’Avanzo, P.; Calderone, G.; Covino, S.; Cusumano, G.; Ghirlanda, G.; La Parola, V.; Maselli, A.; et al. A magnetar powering the ordinary monster GRB 130427A? Mon. Not. R. Astron. Soc. Lett. 2014, 439, L80–L84. [Google Scholar] [CrossRef]
- Gao, H.; Lei, W.H.; You, Z.Q.; Xie, W. The Black Hole Central Engine for Ultra-long Gamma-Ray Burst 111209A and Its Associated Supernova 2011kl. Astrophys. J. 2016, 826, 141. [Google Scholar] [CrossRef]
- Gompertz, B.; Fruchter, A. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A. Astrophys. J. 2017, 839, 49. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Yu, Y.W.; Liu, L.D. The Effects of a Magnetar Engine on the Gamma-Ray Burst-associated Supernovae: Application to Double-peaked SN 2006aj. Astrophys. J. 2022, 936, 54. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, S.B.; Gupta, R.; Aryan, A.; Ror, A.K.; Sharma, S.; Brahme, N. Tale of GRB 171010A/SN 2017htp and GRB 171205A/SN 2017iuk: Magnetar origin? New Astron. 2022, 97, 101889. [Google Scholar] [CrossRef]
- Ashall, C.; Mazzali, P.A.; Pian, E.; Woosley, S.E.; Palazzi, E.; Prentice, S.J.; Kobayashi, S.; Holmbo, S.; Levan, A.; Perley, D.; et al. GRB 161219B/SN 2016jca: A powerful stellar collapse. Mon. Not. R. Astron. Soc. 2019, 487, 5824–5839. [Google Scholar] [CrossRef]
- Ramirez-Ruiz, E.; Dray, L.M.; Madau, P.; Tout, C.A. Winds from Massive Stars and the Afterglows of γ-Ray Bursts. In Proceedings of the Gamma-ray Bursts in the Afterglow Era, Rome, Italy, 17–20 October 2000; p. 291. [Google Scholar] [CrossRef]
- Lazzati, D.; Covino, S.; Ghisellini, G.; Fugazza, D.; Campana, S.; Saracco, P.; Price, P.A.; Berger, E.; Kulkarni, S.; Ramirez-Ruiz, E.; et al. The optical afterglow of GRB 000911: Evidence for an associated supernova? Astron. Astrophys. 2001, 378, 996–1002. [Google Scholar] [CrossRef]
- Yu, Y.B.; Huang, Y.F.; Wu, X.F.; Xu, M.; Geng, J.J. Signature of a Spin-Up Magnetar from Multi-Band Afterglow Rebrightening of GRB 100814A. Astrophys. J. 2015, 805, 88. [Google Scholar] [CrossRef]
- Björnsson, G. Polarization in GRB Afterglows. arXiv 2003, arXiv:astro-ph/0302177. [Google Scholar]
- Covino, S.; Ghisellini, G.; Lazzati, D.; Malesani, D. Polarization of Gamma–Ray Burst Optical and Near-Infrared Afterglows. arXiv 2003, arXiv:astro-ph/0301608. [Google Scholar]
- Coburn, W.; Boggs, S.E. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002. Nature 2003, 423, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Boggs, S.E.; Coburn, W. Statistical Uncertainty in the Re-Analysis of Polarization in GRB 021206. arXiv 2003, arXiv:astro-ph/0310515. [Google Scholar]
- Rutledge, R.E.; Fox, D.B. Re-analysis of polarization in the gamma-ray flux of GRB 021206. Mon. Not. R. Astron. Soc. 2004, 350, 1288–1300. [Google Scholar] [CrossRef]
- McConnell, M.L. High energy polarimetry of prompt GRB emission. New Astron. Rev. 2017, 76, 1–21. [Google Scholar] [CrossRef]
- Kumar, P.; Panaitescu, A. A unified treatment of the gamma-ray burst 021211 and its afterglow. Mon. Not. R. Astron. Soc. 2003, 346, 905–914. [Google Scholar] [CrossRef]
- ZHANG, B.; MÉSZÁROS, P. Gamma-Ray Bursts: Progress, Problems & Prospects. Int. J. Mod. Phys. A 2004, 19, 2385–2472. [Google Scholar] [CrossRef]
- Negro, M.; The IXPE Collaboration Team. The IXPE view of GRB 221009A. In Proceedings of the APS April Meeting Abstracts, Washington, DC, USA, 27–30 April 2023; Volume 2023, APS Meeting Abstracts. p. F13.002. [Google Scholar]
- Racusin, J.L.; Beardmore, A.P.; Campana, S.; Chester, M.M.; Cummings, J.R.; Gehrels, N.; Gelbord, J.M.; Holland, S.T.; Kennea, J.A.; Krimm, H.A.; et al. Trigger 441015: Swift detection of a possible burst or transient. GRB Coord. Netw. 2010, 11493, 1. [Google Scholar]
- Zeh, A.; Klose, S.; Hartmann, D.H. A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows. Astrophys. J. 2004, 609, 952–961. [Google Scholar] [CrossRef]
- Cepa, J.; Aguiar, M.; Escalera, V.G.; Gonzalez-Serrano, I.; Joven-Alvarez, E.; Peraza, L.; Rasilla, J.L.; Rodriguez-Ramos, L.F.; Gonzalez, J.J.; Cobos Duenas, F.J.; et al. OSIRIS tunable imager and spectrograph. In Proceedings of the Optical and IR Telescope Instrumentation and Detectors, Munich, Germany, 27–31 March 2000; Volume 4008, pp. 623–631, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. [Google Scholar] [CrossRef]
- Campana, S.; Lodato, G.; D’Avanzo, P.; Panagia, N.; Rossi, E.M.; Della Valle, M.; Tagliaferri, G.; Antonelli, L.A.; Covino, S.; Ghirlanda, G.; et al. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star. Nature 2011, 480, 69–71. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E. Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model. Astrophys. J. Lett. 1998, 502, L9–L12. [Google Scholar] [CrossRef]
- Barkov, M.V.; Komissarov, S.S. Recycling of neutron stars in common envelopes and hypernova explosions. Mon. Not. R. Astron. Soc. 2011, 415, 944–958. [Google Scholar] [CrossRef]
- Lü, H.J.; Zou, L.; Lan, L.; Liang, E.W. Electromagnetic emission from newly born magnetar spin-down by gravitational-wave and magnetic dipole radiations. Mon. Not. R. Astron. Soc. 2018, 480, 4402–4407. [Google Scholar] [CrossRef]
- Zou, L.; Zheng, T.C.; Yang, X.; Zhang, H.m.; Li, X.Y.; Ren, J.; Lin, D.B.; Liang, E.W. GRB 101225A as Orphan Dipole Radiation of a Newborn Magnetar with Precession Rotation in an Off-axis Gamma-ray Burst. Astrophys. J. Lett. 2021, 921, L1. [Google Scholar] [CrossRef]
- Barthelmy, S.D. Burst Alert Telescope (BAT) on the Swift MIDEX mission. In Proceedings of the X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, San Diego, CA, USA, 3–5 August 2004; Volume 5165, pp. 175–189, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. [Google Scholar] [CrossRef]
- Hoversten, E.A.; Evans, P.A.; Guidorzi, C.; Lien, A.Y.; Pagani, C.; Page, K.L.; Palmer, D.M.; Sbarufatti, B.; Siegel, M.H.; Stroh, M.C.; et al. GRB 111209A: Swift detection of a long burst with an optical counterpart. GRB Coord. Netw. 2011, 12632, 1. [Google Scholar]
- Palmer, D.M.; Barthelmy, S.D.; Baumgartner, W.H.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Krimm, H.A.; Markwardt, C.B.; Sakamoto, T.; Sato, G.; et al. GRB 111209A, Swift-BAT refined analysis. GRB Coord. Netw. 2011, 12640, 1. [Google Scholar]
- Vreeswijk, P.; Fynbo, J.; Melandri, A. GRB 111209A: VLT/X-shooter redshift. GRB Coord. Netw. 2011, 12648, 1. [Google Scholar]
- Golenetskii, S.; Aptekar, R.; Mazets, E.; Pal’Shin, V.; Frederiks, D.; Oleynik, P.; Ulanov, M.; Svinkin, D.; Cline, T. Konus-wind observation of GRB 111209A. GRB Coord. Netw. 2011, 12663, 1. [Google Scholar]
- Aptekar, R.L.; Frederiks, D.D.; Golenetskii, S.V.; Ilynskii, V.N.; Mazets, E.P.; Panov, V.N.; Sokolova, Z.J.; Terekhov, M.M.; Sheshin, L.O.; Cline, T.L.; et al. Konus-W Gamma-Ray Burst Experiment for the GGS Wind Spacecraft. Space Sci. Rev. 1995, 71, 265–272. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Klotz, A.; Boër, M.; Atteia, J.L.; Gendre, B. Early Optical Observations of Gamma-Ray Bursts by the TAROT Telescopes: Period 2001–2008. Astron. J. 2009, 137, 4100–4108. [Google Scholar] [CrossRef]
- Klotz, A.; Gendre, B.; Boer, M.; Atteia, J.L. GRB 111209A: TAROT la silla observatory optical light curve analysis. GRB Coord. Netw. 2011, 12637, 1. [Google Scholar]
- Kann, D.A.; Klose, S.; Kruehler, T.; Greiner, J. GRB 111209A: GROND afterglow observations. GRB Coord. Netw. 2011, 12647, 1. [Google Scholar]
- Liang, E.W.; Yi, S.X.; Zhang, J.; Lü, H.J.; Zhang, B.B.; Zhang, B. Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-E γ,iso Correlation. Astrophys. J. 2010, 725, 2209–2224. [Google Scholar] [CrossRef]
- Gendre, B.; Atteia, J.L.; Boer, M.; Klotz, A.; Piro, L.; Stratta, G. GRB111209A: Planned XMM-Newton observation. GRB Coord. Netw. 2011, 12638, 1. [Google Scholar]
- Kumar, P.; Panaitescu, A. Afterglow Emission from Naked Gamma-Ray Bursts. Astrophys. J. Lett. 2000, 541, L51–L54. [Google Scholar] [CrossRef]
- Greiner, J.; Bornemann, W.; Clemens, C.; Deuter, M.; Hasinger, G.; Honsberg, M.; Huber, H.; Huber, S.; Krauss, M.; Krühler, T.; et al. GROND—a 7-Channel Imager. Publ. Astron. Soc. Pac. 2008, 120, 405. [Google Scholar] [CrossRef]
- Vernet, J.; Dekker, H.; D’Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 2011, 536, A105. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Modjaz, M.; Bianco, F.B. Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae. Astrophys. J. 2017, 845, 85. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A. Long Gamma-Ray Transients from Collapsars. Astrophys. J. 2012, 752, 32. [Google Scholar] [CrossRef]
- Starling, R.L.C.; Page, K.L.; Pe’Er, A.; Beardmore, A.P.; Osborne, J.P. A search for thermal X-ray signatures in gamma-ray bursts—I. Swift bursts with optical supernovae. Mon. Not. R. Astron. Soc. 2012, 427, 2950–2964. [Google Scholar] [CrossRef]
- Ioka, K.; Hotokezaka, K.; Piran, T. Are Ultra-long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events? Astrophys. J. 2016, 833, 110. [Google Scholar] [CrossRef]
- Kann, D.A.; Schady, P.; Olivares, E.F.; Klose, S.; Rossi, A.; Perley, D.A.; Zhang, B.; Krühler, T.; Greiner, J.; Nicuesa Guelbenzu, A.; et al. The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. Astron. Astrophys. 2018, 617, A122. [Google Scholar] [CrossRef]
- Wang, S.Q.; Cano, Z.; Wang, L.J.; Zheng, W.; Dai, Z.G.; Filippenko, A.V.; Liu, L.D. Modeling The Most Luminous Supernova Associated with a Gamma-Ray Burst, SN 2011kl. Astrophys. J. 2017, 850, 148. [Google Scholar] [CrossRef]
- Metzger, B.D.; Margalit, B.; Kasen, D.; Quataert, E. The diversity of transients from magnetar birth in core collapse supernovae. Mon. Not. R. Astron. Soc. 2015, 454, 3311–3316. [Google Scholar] [CrossRef]
- Bersten, M.C.; Benvenuto, O.G.; Orellana, M.; Nomoto, K. The Unusual Super-luminous Supernovae SN 2011kl and ASASSN-15lh. Astrophys. J. Lett. 2016, 817, L8. [Google Scholar] [CrossRef]
- Burrows, D.N.; Kennea, J.A.; Ghisellini, G.; Mangano, V.; Zhang, B.; Page, K.L.; Eracleous, M.; Romano, P.; Sakamoto, T.; Falcone, A.D.; et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 2011, 476, 421–424. [Google Scholar] [CrossRef]
- Bloom, J.S.; Giannios, D.; Metzger, B.D.; Cenko, S.B.; Perley, D.A.; Butler, N.R.; Tanvir, N.R.; Levan, A.J.; O’Brien, P.T.; Strubbe, L.E.; et al. A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star. Science 2011, 333, 203. [Google Scholar] [CrossRef]
- Zauderer, B.A.; Berger, E.; Soderberg, A.M.; Loeb, A.; Narayan, R.; Frail, D.A.; Petitpas, G.R.; Brunthaler, A.; Chornock, R.; Carpenter, J.M.; et al. Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451. Nature 2011, 476, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Levan, A.J.; Tanvir, N.R.; Cenko, S.B.; Perley, D.A.; Wiersema, K.; Bloom, J.S.; Fruchter, A.S.; de Ugarte Postigo, A.; O’Brien, P.T.; Butler, N.; et al. An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy. Science 2011, 333, 199. [Google Scholar] [CrossRef] [PubMed]
- Tchekhovskoy, A.; Metzger, B.D.; Giannios, D.; Kelley, L.Z. Swift J1644+57 gone MAD: The case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 2014, 437, 2744–2760. [Google Scholar] [CrossRef]
- Moriya, T.J.; Marchant, P.; Blinnikov, S.I. Luminous supernovae associated with ultra-long gamma-ray bursts from hydrogen-free progenitors extended by pulsational pair-instability. Astron. Astrophys. 2020, 641, L10. [Google Scholar] [CrossRef]
- Lyutikov, M. On the nature of fast blue optical transients. Mon. Not. R. Astron. Soc. 2022, 515, 2293–2304. [Google Scholar] [CrossRef]
- Gompertz, B.P.; Burrows, D.N.; Cenko, S.B.; Holland, S.T.; Kennea, J.A.; Krimm, H.A.; Kuin, N.P.M.; Lien, A.Y.; Mangano, V.; Page, K.L.; et al. GRB 140506A: Swift detection of a burst with an optical counterpart. GRB Coord. Netw. 2014, 16214, 1. [Google Scholar]
- Markwardt, C.B.; Barthelmy, S.D.; Baumgartner, W.H.; Cummings, J.R.; Gehrels, N.; Gompertz, B.P.; Krimm, H.A.; Lien, A.Y.; Palmer, D.M.; Sakamoto, T.; et al. GRB 140506A: Swift-BAT refined analysis. GRB Coord. Netw. 2014, 16218, 1. [Google Scholar]
- Heintz, K.E.; Fynbo, J.P.U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D.A.; Rhodin, H.; et al. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local. Astron. Astrophys. 2017, 601, A83. [Google Scholar] [CrossRef]
- Golenetskii, S.; Aptekar, R.; Frederiks, D.; Pal’Shin, V.; Oleynik, P.; Ulanov, M.; Svinkin, D.; Tsvetkova, A.; Lyssenko, A.; Cline, T. Konus-Wind observation of GRB 140506A. GRB Coord. Netw. 2014, 16223, 1. [Google Scholar]
- Jenke, P. GRB 140506A: Fermi GBM Detection. GRB Coord. Netw. 2014, 16220, 1. [Google Scholar]
- Kann, D.A.; Rossi, A.; Oates, S.R.; Klose, S.; Blazek, M.; Agüí Fernández, J.F.; de Ugarte Postigo, A.; Thöne, C.C.; Schulze, S. Highly luminous supernovae associated with gamma-ray bursts. II. The luminous blue bump in the afterglow of GRB 140506A. Astron. Astrophys. 2024, 684, A164. [Google Scholar] [CrossRef]
- Fynbo, J.P.U.; Krühler, T.; Leighly, K.; Ledoux, C.; Vreeswijk, P.M.; Schulze, S.; Noterdaeme, P.; Watson, D.; Wijers, R.A.M.J.; Bolmer, J.; et al. The mysterious optical afterglow spectrum of GRB 140506A at z = 0.889. Astron. Astrophys. 2014, 572, A12. [Google Scholar] [CrossRef]
- Dressler, A.; Bigelow, B.; Hare, T.; Sutin, B.; Thompson, I.; Burley, G.; Epps, H.; Oemler, A.J.; Bagish, A.; Birk, C.; et al. IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 2011, 123, 288. [Google Scholar] [CrossRef]
- Siegel, M.H.; Gompertz, B.P. GRB 140506A: Swift/UVOT Detection. GRB Coord. Netw. 2014, 16219, 1. [Google Scholar]
- Becerra, R.L.; Troja, E.; Watson, A.M.; O’Connor, B.; Veres, P.; Dichiara, S.; Butler, N.R.; De Colle, F.; Sakamoto, T.; López, K.O.C.; et al. Deciphering the unusual stellar progenitor of GRB 210704A. Mon. Not. R. Astron. Soc. 2023, 522, 5204–5216. [Google Scholar] [CrossRef]
- Dong, S.; Shappee, B.J.; Prieto, J.L.; Jha, S.W.; Stanek, K.Z.; Holoien, T.W.S.; Kochanek, C.S.; Thompson, T.A.; Morrell, N.; Thompson, I.B.; et al. ASASSN-15lh: A highly super-luminous supernova. Science 2016, 351, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Holoien, T.W.S.; Kochanek, C.S.; Prieto, J.L.; Grupe, D.; Chen, P.; Godoy-Rivera, D.; Stanek, K.Z.; Shappee, B.J.; Dong, S.; Brown, J.S.; et al. ASASSN-15oi: A rapidly evolving, luminous tidal disruption event at 216 Mpc. Mon. Not. R. Astron. Soc. 2016, 463, 3813–3828. [Google Scholar] [CrossRef]
- Leloudas, G.; Fraser, M.; Stone, N.C.; van Velzen, S.; Jonker, P.G.; Arcavi, I.; Fremling, C.; Maund, J.R.; Smartt, S.J.; Krìhler, T.; et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nat. Astron. 2016, 1, 0002. [Google Scholar] [CrossRef]
- Blanchard, P.K.; Villar, V.A.; Chornock, R.; Laskar, T.; Li, Y.; Leja, J.; Pierel, J.; Berger, E.; Margutti, R.; Alexander, K.D.; et al. JWST detection of a supernova associated with GRB 221009A without an r-process signature. Nat. Astron. 2024, 8, 774–785. [Google Scholar] [CrossRef]
- Donaghy, T.Q.; Lamb, D.Q.; Sakamoto, T.; Norris, J.P.; Nakagawa, Y.; Villasenor, J.; Atteia, J.L.; Vanderspek, R.; Graziani, C.; Kawai, N.; et al. HETE-2 Localizations and Observations of Four Short Gamma-Ray Bursts: GRBs 010326B, 040802, 051211 and 060121. arXiv 2006, arXiv:astro-ph/0605570. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Kulkarni, S.R.; Price, P.A.; Fox, D.B.; Berger, E.; Moon, D.S.; Cenko, S.B.; Gal-Yam, A.; Frail, D.A.; Chevalier, R.A.; et al. An HST Study of the Supernovae Accompanying GRB 040924 and GRB 041006. Astrophys. J. 2006, 636, 391–399. [Google Scholar] [CrossRef]
- Wiersema, K.; van der Horst, A.J.; Kann, D.A.; Rol, E.; Starling, R.L.C.; Curran, P.A.; Gorosabel, J.; Levan, A.J.; Fynbo, J.P.U.; de Ugarte Postigo, A.; et al. Spectroscopy and multiband photometry of the afterglow of intermediate duration γ-ray burst GRB 040924 and its host galaxy. Astron. Astrophys. 2008, 481, 319–326. [Google Scholar] [CrossRef]
- Antonelli, L.A.; D’Avanzo, P.; Perna, R.; Amati, L.; Covino, S.; Cutini, S.; D’Elia, V.; Gallozzi, S.; Grazian, A.; Palazzi, E.; et al. GRB 090426: The farthest short gamma-ray burst? Astron. Astrophys. 2009, 507, L45–L48. [Google Scholar] [CrossRef]
- Nicuesa Guelbenzu, A.; Klose, S.; Rossi, A.; Kann, D.A.; Krühler, T.; Greiner, J.; Rau, A.; Olivares, E.F.; Afonso, P.M.J.; Filgas, R.; et al. GRB 090426: Discovery of a jet break in a short burst afterglow. Astron. Astrophys. 2011, 531, L6. [Google Scholar] [CrossRef]
- Thöne, C.C.; Campana, S.; Lazzati, D.; de Ugarte Postigo, A.; Fynbo, J.P.U.; Christensen, L.; Levan, A.J.; Aloy, M.A.; Hjorth, J.; Jakobsson, P.; et al. Variable Lyα sheds light on the environment surrounding GRB 090426. Mon. Not. R. Astron. Soc. 2011, 414, 479–488. [Google Scholar] [CrossRef]
- Rossi, A.; Rothberg, B.; Palazzi, E.; Kann, D.A.; D’Avanzo, P.; Amati, L.; Klose, S.; Perego, A.; Pian, E.; Guidorzi, C.; et al. The Peculiar Short-duration GRB 200826A and Its Supernova. Astrophys. J. 2022, 932, 1. [Google Scholar] [CrossRef]
- Germany, L.M.; Reiss, D.J.; Sadler, E.M.; Schmidt, B.P.; Stubbs, C.W. SN 1997CY/GRB 970514: A New Piece in the Gamma-Ray Burst Puzzle? Astrophys. J. 2000, 533, 320–328. [Google Scholar] [CrossRef]
- Rigon, L.; Turatto, M.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Aretxaga, I.; Vega, O.; Chavushyan, V.; Patat, F.; Danziger, I.J.; et al. SN 1999E: Another piece in the supernova-gamma-ray burst connection puzzle. Mon. Not. R. Astron. Soc. 2003, 340, 191–196. [Google Scholar] [CrossRef]
- Turatto, M.; Suzuki, T.; Mazzali, P.A.; Benetti, S.; Cappellaro, E.; Danziger, I.J.; Nomoto, K.; Nakamura, T.; Young, T.R.; Patat, F. The Properties of Supernova 1997CY Associated with GRB 970514. Astrophys. J. Lett. 2000, 534, L57–L61. [Google Scholar] [CrossRef]
- Reiss, D.J.; Germany, L.M.; Schmidt, B.P.; Stubbs, C.W. The Mount Stromlo Abell Cluster Supernova Search. Astron. J. 1998, 115, 26–36. [Google Scholar] [CrossRef]
- Green, M.R.; Godwin, J.G.; Peach, J.V. Three southern cD clusters of galaxies Klemola 44, Sersic 40/6 and 2354–35. Mon. Not. R. Astron. Soc. 1990, 243, 159–170. [Google Scholar] [CrossRef]
- Wang, L.; Wheeler, J.C. The Supernova-Gamma-Ray Burst Connection. Astrophys. J. Lett. 1998, 504, L87–L90. [Google Scholar] [CrossRef]
- Benetti, S.; Pizzella, A.; Wheatley, P.J. Supernova 1997cy in Anonymous Galaxy. IAU Circ. 1997, 6708, 2. [Google Scholar]
- Turatto, M.; Cappellaro, E.; Danziger, I.J.; Benetti, S.; Gouiffes, C.; della Valle, M. The type II supernova 1988Z in MCG +03-28-022: Increasingevidence of interaction of supernova ejecta with a circumstellar wind. Mon. Not. R. Astron. Soc. 1993, 262, 128–140. [Google Scholar] [CrossRef]
- Cappellaro, E.; Turatto, M.; Mazzali, P.; Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Schmidt, B.P. Supernova 1999E in Anonymous Galaxy. IAU Circ. 1999, 7091, 1. [Google Scholar]
- Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Schmidt, B.P. Supernova 1999E in Anonymous Galaxy. IAU Circ. 1999, 7091, 2. [Google Scholar]
- Filippenko, A.V. Optical observations of Type II supernovae. In Proceedings of the Cosmic Explosions: Tenth AstroPhysics Conference, College Park, MD, USA, 11–13 October 1999; AIP: Melville, NY, USA, 2000; Volume 522, pp. 123–140, American Institute of Physics Conference Series. [Google Scholar] [CrossRef]
- Perez, I.; Maza, J.; Antezana, R.; Gonzalez, L.E. Supernova 1999E in Anonymous Galaxy. IAU Circ. 1999, 7089, 1. [Google Scholar]
- Greiner, J.; Klose, S.; Salvato, M.; Zeh, A.; Schwarz, R.; Hartmann, D.H.; Masetti, N.; Stecklum, B.; Lamer, G.; Lodieu, N.; et al. GRB 011121: A Collimated Outflow into Wind-blown Surroundings. Astrophys. J. 2003, 599, 1223–1237. [Google Scholar] [CrossRef]
- Piro, L.; Soffitta, P.; Antonelli, L.A.; in’t Zand, J.; Heise, J.; Nicastro, L.; Amati, L.; Frontera, F.; Guidorzi, C.; Montanari, E.; et al. Detection of the X-ray afterglow of GRB011121 by BeppoSAX. GRB Coord. Netw. 2001, 1172, 1. [Google Scholar]
- Wyrzykowski, L.; Stanek, K.Z.; Garnavich, P.M. GRB011121: Possible optical counterpart. GRB Coord. Netw. 2001, 1150, 1. [Google Scholar]
- Olsen, K.; Brown, M.; Schommer, R.; Stubbs, C. GRB011121. GRB Coord. Netw. 2001, 1157, 1. [Google Scholar]
- Brown, M.; Schommer, R.; Olsen, K.; Jannuzi, B.; Dey, A.; Fruchter, A.; Rhoads, J. GRB011121: UBRI observations. GRB Coord. Netw. 2001, 1158, 1. [Google Scholar]
- Garnavich, P.M.; Stanek, K.Z.; Wyrzykowski, L.; Infante, L.; Bendek, E.; Bersier, D.; Holland, S.T.; Jha, S.; Matheson, T.; Kirshner, R.P.; et al. Discovery of the Low-Redshift Optical Afterglow of GRB 011121 and Its Progenitor Supernova SN 2001ke. Astrophys. J. 2003, 582, 924–932. [Google Scholar] [CrossRef]
- Infante, L.; Garnavich, P.M.; Stanek, K.Z.; Wyrzykowski, L. GRB011121: Possible redshift, continued decay. GRB Coord. Netw. 2001, 1152, 1. [Google Scholar]
- Price, P.A.; Berger, E.; Reichart, D.E.; Kulkarni, S.R.; Yost, S.A.; Subrahmanyan, R.; Wark, R.M.; Wieringa, M.H.; Frail, D.A.; Bailey, J.; et al. GRB 011121: A Massive Star Progenitor. Astrophys. J. Lett. 2002, 572, L51–L55. [Google Scholar] [CrossRef]
- Bloom, J.S.; Kulkarni, S.R.; Price, P.A.; Reichart, D.; Galama, T.J.; Schmidt, B.P.; Frail, D.A.; Berger, E.; McCarthy, P.J.; Chevalier, R.A.; et al. Detection of a Supernova Signature Associated with GRB 011121. Astrophys. J. Lett. 2002, 572, L45–L49. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Moran, E.C. Supernova 1998S in NGC 3877. IAU Circ. 1998, 6830, 2. [Google Scholar]
- Wood-Vasey, W.M.; Aldering, G.; Nugent, P. Supernova 2002ic. IAU Circ. 2002, 8019, 2. [Google Scholar]
- Hamuy, M.; Phillips, M.; Suntzeff, N.; Maza, J. Supernova 2002ic. IAU Circ. 2003, 8151, 2. [Google Scholar]
- Nomoto, K.; Suzuki, T.; Deng, J.; Uenishi, T.; Hachisu, I.; Mazzali, P. Circumstellar Interaction of Type Ia Supernova SN 2002ic. In Proceedings of the Frontier in Astroparticle Physics and Cosmology, Tokyo, Japan, 4–7 November 2004; p. 323. [Google Scholar] [CrossRef]
- Benetti, S.; Cappellaro, E.; Turatto, M.; Taubenberger, S.; Harutyunyan, A.; Valenti, S. Supernova 2002ic: The Collapse of a Stripped-Envelope, Massive Star in a Dense Medium? Astrophys. J. Lett. 2006, 653, L129–L132. [Google Scholar] [CrossRef]
- Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns, M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; et al. Spectra of High-Redshift Type Ia Supernovae and a Comparison with Their Low-Redshift Counterparts. Astron. J. 2005, 130, 2788–2803. [Google Scholar] [CrossRef]
- Taubenberger, S.; Pastorello, A.; Mazzali, P.A.; Valenti, S.; Pignata, G.; Sauer, D.N.; Arbey, A.; Bärnbantner, O.; Benetti, S.; Della Valle, A.; et al. SN 2004aw: Confirming diversity of Type Ic supernovae. Mon. Not. R. Astron. Soc. 2006, 371, 1459–1477. [Google Scholar] [CrossRef]
- Pastorello, A.; Mattila, S.; Zampieri, L.; Della Valle, M.; Smartt, S.J.; Valenti, S.; Agnoletto, I.; Benetti, S.; Benn, C.R.; Branch, D.; et al. Massive stars exploding in a He-rich circumstellar medium—I. Type Ibn (SN 2006jc-like) events. Mon. Not. R. Astron. Soc. 2008, 389, 113–130. [Google Scholar] [CrossRef]
- Shenar, T. Wolf-Rayet stars. arXiv 2024, arXiv:2410.04436. [Google Scholar] [CrossRef]
- Conti, P.S. On the relationship between Of and WR stars. Mem. Soc. R. Des Sci. Liege 1975, 9, 193–212. [Google Scholar]
- Paczyński, B. Evolution of Close Binaries. V. The Evolution of Massive Binaries and the Formation of the Wolf-Rayet Stars. Acta. Astron. 1967, 17, 355. [Google Scholar]
- Detmers, R.G.; Langer, N.; Podsiadlowski, P.; Izzard, R.G. Gamma-Ray Bursts from tidally spun-up Wolf-Rayet stars? Astron. Astrophys. 2008, 484, 831. [Google Scholar] [CrossRef]
- Crowther, P.A. Physical Properties of Wolf-Rayet Stars. Annu. Rev. Astron. Astrophys. 2007, 45, 177–219. [Google Scholar] [CrossRef]
- Yoon, S.C.; Langer, N.; Norman, C. Single star progenitors of long gamma-ray bursts: I. Model grids and redshift dependent GRB rate. Astron. Astrophys. 2006, 460, 199–208. [Google Scholar] [CrossRef]
- Maeder, A.; Meynet, G. Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler-Spruit dynamo. Astron. Astrophys. 2004, 422, 225–237. [Google Scholar] [CrossRef]
- Podsiadlowski, P. The evolution of binary systems. In Accretion Processes In Astrophysics: XXI Canary Islands Winter School Of Astrophysics; Cambridge University Press: Cambridge, UK, 2012; pp. 45–88. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Izzard, R.G.; Tout, C.A. The effect of massive binaries on stellar populations and supernova progenitors. Mon. Not. R. Astron. Soc. 2008, 384, 1109–1118. [Google Scholar] [CrossRef]
- Yoon, S.C.; Woosley, S.E.; Langer, N. Type Ib/c supernovae in binary systems. I. Evolution and properties of the progenitor stars. Astrophys. J. 2010, 725, 940–954. [Google Scholar] [CrossRef]
- Sravan, N.; Milisavljevic, D.; Reynolds, J.; Lentner, G.; Linvill, M. Real-time, Value-driven Data Augmentation in the Era of LSST. Astrophys. J. 2020, 893, 127. [Google Scholar] [CrossRef]
- Cantiello, M.; Yoon, S.C.; Langer, N.; Livio, M. Binary star progenitors of long gamma-ray bursts. Astron. Astrophys. 2007, 465, L29–L33. [Google Scholar] [CrossRef]
- de Mink, S.E.; Langer, N.; Izzard, R.G.; Sana, H.; de Koter, A. The Rotation Rates of Massive Stars: The Role of Binary Interaction through Tides, Mass Transfer, and Mergers. Astrophys. J. 2013, 764, 166. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef]
- Moe, M.; Di Stefano, R. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars. Astrophys. J. Suppl. 2017, 230, 15. [Google Scholar] [CrossRef]
- Japelj, J.; Vergani, S.D.; Salvaterra, R.; Renzo, M.; Zapartas, E.; de Mink, S.E.; Kaper, L.; Zibetti, S. Host galaxies of SNe Ic-BL with and without long gamma-ray bursts. Astron. Astrophys. 2018, 617, A105. [Google Scholar] [CrossRef]
- Perley, D.A.; Quimby, R.M.; Yan, L.; Vreeswijk, P.M.; De Cia, A.; Lunnan, R.; Gal-Yam, A.; Yaron, O.; Filippenko, A.V.; Graham, M.L.; et al. Host-galaxy Properties of 32 Low-redshift Superluminous Supernovae from the Palomar Transient Factory. Astrophys. J. 2016, 830, 13. [Google Scholar] [CrossRef]
- Aguilera-Dena, D.R.; Langer, N.; Moriya, T.J.; Schootemeijer, A. Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae. Astrophys. J. 2018, 858, 115. [Google Scholar] [CrossRef]
- Lin, W.L.; Wang, X.F.; Li, W.X.; Zhang, J.J.; Mo, J.; Sai, H.N.; Zhang, X.H.; Filippenko, A.V.; Zheng, W.K.; Brink, T.G.; et al. SN 2018hti: A nearby superluminous supernova discovered in a metal-poor galaxy. Mon. Not. R. Astron. Soc. 2020, 497, 318–335. [Google Scholar] [CrossRef]
- Weiler, K. Supernovae and Gamma-Ray Bursters; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598. [Google Scholar] [CrossRef]
- Jerkstrand, A. Spectra of Supernovae in the Nebular Phase. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 795. [Google Scholar] [CrossRef]
- Leloudas, G.; Schulze, S.; Krühler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; de Ugarte Postigo, A.; Amorín, R.; Thöne, C.C.; Anderson, J.P.; et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 2015, 449, 917–932. [Google Scholar] [CrossRef]
- Thone, C.C.; de Ugarte Postigo, A.; Garcia-Benito, R.; Leloudas, G.; Schulze, S.; Amorin, R. A young stellar environment for the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 2015, 451, L65–L69. [Google Scholar] [CrossRef]
- Dabringhausen, J.; Kroupa, P.; Baumgardt, H. A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies. Mon. Not. R. Astron. Soc. 2009, 394, 1529–1543. [Google Scholar] [CrossRef]
- van den Heuvel, E.P.J.; Portegies Zwart, S.F. Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters? Astrophys. J. 2013, 779, 114. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Vinkó, J.; Steeghs, D.; Gompertz, B.; Lyman, J.; Dastidar, R.; Singh, A.; Ackley, K.; Pursiainen, M. Magnetars as powering sources of gamma-ray burst associated supernovae, and unsupervized clustering of cosmic explosions. Mon. Not. R. Astron. Soc. 2024, 531, 3297–3309. [Google Scholar] [CrossRef]
- Le Floc’h, E.; Duc, P.A.; Mirabel, I.F.; Sanders, D.B.; Bosch, G.; Diaz, R.J.; Donzelli, C.J.; Rodrigues, I.; Courvoisier, T.J.L.; Greiner, J.; et al. Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? Astron. Astrophys. 2003, 400, 499–510. [Google Scholar] [CrossRef]
- Stanek, K.Z.; Gnedin, O.Y.; Beacom, J.F.; Gould, A.P.; Johnson, J.A.; Kollmeier, J.A.; Modjaz, M.; Pinsonneault, M.H.; Pogge, R.; Weinberg, D.H. Protecting Life in the Milky Way: Metals Keep the GRBs Away. Acta. Astron. 2006, 56, 333–345. [Google Scholar] [CrossRef]
- Chen, T.W.; Smartt, S.J.; Yates, R.M.; Nicholl, M.; Krühler, T.; Schady, P.; Dennefeld, M.; Inserra, C. Superluminous supernova progenitors have a half-solar metallicity threshold. Mon. Not. R. Astron. Soc. 2017, 470, 3566–3573. [Google Scholar] [CrossRef]
- Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 2018, 473, 1258–1285. [Google Scholar] [CrossRef]
- Stoll, R.; Prieto, J.L.; Stanek, K.Z.; Pogge, R.W.; Szczygieł, D.M.; Pojmański, G.; Antognini, J.; Yan, H. SN 2010jl in UGC 5189: Yet Another Luminous Type IIn Supernova in a Metal-poor Galaxy. Astrophys. J. 2011, 730, 34. [Google Scholar] [CrossRef]
- Chen, T.W.; Smartt, S.J.; Bresolin, F.; Pastorello, A.; Kudritzki, R.P.; Kotak, R.; McCrum, M.; Fraser, M.; Valenti, S. The Host Galaxy of the Super-luminous SN 2010gx and Limits on Explosive 56Ni Production. Astrophys. J. Lett. 2013, 763, L28. [Google Scholar] [CrossRef]
- Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N.E.; Challis, P.M.; Czekala, I.; Foley, R.J.; Fong, W.; et al. PS1-10bzj: A Fast, Hydrogen-poor Superluminous Supernova in a Metal-poor Host Galaxy. Astrophys. J. 2013, 771, 97. [Google Scholar] [CrossRef]
- Lunnan, R.; Chornock, R.; Berger, E.; Laskar, T.; Fong, W.; Rest, A.; Sanders, N.E.; Challis, P.M.; Drout, M.R.; Foley, R.J.; et al. Hydrogen-poor Superluminous Supernovae and Long-duration Gamma-Ray Bursts Have Similar Host Galaxies. Astrophys. J. 2014, 787, 138. [Google Scholar] [CrossRef]
- Japelj, J.; Vergani, S.D.; Salvaterra, R.; Hunt, L.K.; Mannucci, F. Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. Astron. Astrophys. 2016, 593, A115. [Google Scholar] [CrossRef]
- Iglesias-Páramo, J.; Arroyo, A.; Kehrig, C.; Vílchez, J.M.; Duarte Puertas, S.; Pérez-Montero, E.; Breda, I.; Jiménez-Teja, Y.; López Sanjuan, C.; Lumbreras-Calle, A.; et al. The miniJPAS survey: A search for extreme emission-line galaxies. Astron. Astrophys. 2022, 665, A95. [Google Scholar] [CrossRef]
- Atek, H.; Siana, B.; Scarlata, C.; Malkan, M.; McCarthy, P.; Teplitz, H.; Henry, A.; Colbert, J.; Bridge, C.; Bunker, A.J.; et al. Very Strong Emission-line Galaxies in the WFC3 Infrared Spectroscopic Parallel Survey and Implications for High-redshift Galaxies. Astrophys. J. 2011, 743, 121. [Google Scholar] [CrossRef]
- Amorín, R.; Grazian, A.; Castellano, M.; Pentericci, L.; Fontana, A.; Sommariva, V.; van der Wel, A.; Maseda, M.; Merlin, E. Evidence of Very Low Metallicity and High Ionization State in a Strongly Lensed, Star-forming Dwarf Galaxy at z= 3.417. Astrophys. J. Lett. 2014, 788, L4. [Google Scholar] [CrossRef]
- Amorín, R.; Sommariva, V.; Castellano, M.; Grazian, A.; Tasca, L.A.M.; Fontana, A.; Pentericci, L.; Cassata, P.; Garilli, B.; Le Brun, V.; et al. Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z ~0.9 in the VIMOS Ultra-Deep Survey. Astron. Astrophys. 2014, 568, L8. [Google Scholar] [CrossRef]
- Graham, J.F.; Fruchter, A.S. The Metal Aversion of Long-duration Gamma-Ray Bursts. Astrophys. J. 2013, 774, 119. [Google Scholar] [CrossRef]
- Krühler, T.; Malesani, D.; Fynbo, J.P.U.; Hartoog, O.E.; Hjorth, J.; Jakobsson, P.; Perley, D.A.; Rossi, A.; Schady, P.; Schulze, S.; et al. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 <z < 3.6. Astron. Astrophys. 2015, 581, A125. [Google Scholar] [CrossRef]
- Lunnan, R.; Chornock, R.; Berger, E.; Rest, A.; Fong, W.; Scolnic, D.; Jones, D.O.; Soderberg, A.M.; Challis, P.M.; Drout, M.R.; et al. Zooming In on the Progenitors of Superluminous Supernovae With the HST. Astrophys. J. 2015, 804, 90. [Google Scholar] [CrossRef]
- Angus, C.R.; Levan, A.J.; Perley, D.A.; Tanvir, N.R.; Lyman, J.D.; Stanway, E.R.; Fruchter, A.S. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. Mon. Not. R. Astron. Soc. 2016, 458, 84–104. [Google Scholar] [CrossRef]
- Blanchard, P.K.; Berger, E.; Fong, W.f. The Offset and Host Light Distributions of Long Gamma-Ray Bursts: A New View From HST Observations of Swift Bursts. Astrophys. J. 2016, 817, 144. [Google Scholar] [CrossRef]
- Lyman, J.D.; Levan, A.J.; Tanvir, N.R.; Fynbo, J.P.U.; McGuire, J.T.W.; Perley, D.A.; Angus, C.R.; Bloom, J.S.; Conselice, C.J.; Fruchter, A.S.; et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 2017, 467, 1795–1817. [Google Scholar] [CrossRef]
- Hammer, F.; Flores, H.; Schaerer, D.; Dessauges-Zavadsky, M.; Le Floc’h, E.; Puech, M. Detection of Wolf-Rayet stars in host galaxies of gamma-ray bursts (GRBs): Are GRBs produced by runaway massive stars ejected from high stellar density regions? Astron. Astrophys. 2006, 454, 103–111. [Google Scholar] [CrossRef]
- Han, X.H.; Hammer, F.; Liang, Y.C.; Flores, H.; Rodrigues, M.; Hou, J.L.; Wei, J.Y. The Wolf-Rayet features and mass-metallicity relation of long-duration gamma-ray burst host galaxies. Astron. Astrophys. 2010, 514, A24. [Google Scholar] [CrossRef]
- Hsu, B.; Blanchard, P.K.; Berger, E.; Gomez, S. An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. Astrophys. J. 2024, 961, 169. [Google Scholar] [CrossRef]
- Tremonti, C.A.; Heckman, T.M.; Kauffmann, G.; Brinchmann, J.; Charlot, S.; White, S.D.M.; Seibert, M.; Peng, E.W.; Schlegel, D.J.; Uomoto, A.; et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. Astrophys. J. 2004, 613, 898–913. [Google Scholar] [CrossRef]
- Salim, S.; Rich, R.M.; Charlot, S.; Brinchmann, J.; Johnson, B.D.; Schiminovich, D.; Seibert, M.; Mallery, R.; Heckman, T.M.; Forster, K.; et al. UV Star Formation Rates in the Local Universe. Astrophys. J. Suppl. 2007, 173, 267–292. [Google Scholar] [CrossRef]
- Shappee, B.J.; Prieto, J.L.; Grupe, D.; Kochanek, C.S.; Stanek, K.Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B.M.; Pogge, R.W.; et al. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. Astrophys. J. 2014, 788, 48. [Google Scholar] [CrossRef]
- Cleland, C.; McGee, S.L.; Nicholl, M. Metallicity beats sSFR: The connection between superluminous supernova host galaxy environments and the importance of metallicity for their production. Mon. Not. R. Astron. Soc. 2023, 524, 3559–3567. [Google Scholar] [CrossRef]
- Modjaz, M.; Stanek, K.Z.; Garnavich, P.M.; Berlind, P.; Blondin, S.; Brown, W.; Calkins, M.; Challis, P.; Diamond-Stanic, A.M.; Hao, H.; et al. Early-Time Photometry and Spectroscopy of the Fast Evolving SN 2006aj Associated with GRB 060218. Astrophys. J. Lett. 2006, 645, L21–L24. [Google Scholar] [CrossRef]
- Pian, E.; Mazzali, P.A.; Masetti, N.; Ferrero, P.; Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley, S.E.; Kouveliotou, C.; Deng, J.; et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 2006, 442, 1011–1013. [Google Scholar] [CrossRef]
- Chornock, R.; Berger, E.; Levesque, E.M.; Soderberg, A.M.; Foley, R.J.; Fox, D.B.; Frebel, A.; Simon, J.D.; Bochanski, J.J.; Challis, P.J.; et al. Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D. arXiv 2010, arXiv:1004.2262. [Google Scholar]
- Iwamoto, K.; Mazzali, P.A.; Nomoto, K.; Umeda, H.; Nakamura, T.; Patat, F.; Danziger, I.J.; Young, T.R.; Suzuki, T.; Shigeyama, T.; et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 1998, 395, 672–674. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Barkov, M.V. Magnetar-energized supernova explosions and gamma-ray burst jets. Mon. Not. R. Astron. Soc. 2007, 382, 1029–1040. [Google Scholar] [CrossRef]
- Bucciantini, N.; Quataert, E.; Arons, J.; Metzger, B.D.; Thompson, T.A. Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2007, 380, 1541–1553. [Google Scholar] [CrossRef]
- Bucciantini, N.; Quataert, E.; Arons, J.; Metzger, B.D.; Thompson, T.A. Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars. Mon. Not. R. Astron. Soc. 2008, 383, L25–L29. [Google Scholar] [CrossRef]
- Prasanna, T.; Coleman, M.S.B.; Raives, M.J.; Thompson, T.A. The early evolution of magnetar rotation—II. Rapidly rotating magnetars: Implications for gamma-ray bursts and superluminous supernovae. Mon. Not. R. Astron. Soc. 2023, 526, 3141–3155. [Google Scholar] [CrossRef]
- Arnett, W.D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 1982, 253, 785–797. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, H.; Liu, L.D.; Wang, S.Q.; Han, Y.H.; Xu, D.; Dai, Z.G.; Qiu, Y.L.; Wei, J.Y. Evidence for Magnetar Formation in Broad-lined Type Ic Supernovae 1998bw and 2002ap. Astrophys. J. 2017, 837, 128. [Google Scholar] [CrossRef]
- Lyubarsky, Y.E. The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 2003, 345, 153–160. [Google Scholar] [CrossRef]
- Quataert, E.; Kasen, D. Swift 1644+57: The longest gamma-ray burst? Mon. Not. R. Astron. Soc. 2012, 419, L1–L5. [Google Scholar] [CrossRef]
- Ganot, N.; Gal-Yam, A.; Ofek, E.O.; Sagiv, I.; Waxman, E.; Lapid, O.; Kulkarni, S.R.; Ben-Ami, S.; Kasliwal, M.M.; ULTRASAT Science; et al. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates. Astrophys. J. 2016, 820, 57. [Google Scholar] [CrossRef]
- Leloudas, G.; Chatzopoulos, E.; Dilday, B.; Gorosabel, J.; Vinko, J.; Gallazzi, A.; Wheeler, J.C.; Bassett, B.; Fischer, J.A.; Frieman, J.A.; et al. SN 2006oz: Rise of a super-luminous supernova observed by the SDSS-II SN Survey. Astron. Astrophys. 2012, 541, A129. [Google Scholar] [CrossRef]
- Smith, M.; Sullivan, M.; D’Andrea, C.B.; Castander, F.J.; Casas, R.; Prajs, S.; Papadopoulos, A.; Nichol, R.C.; Karpenka, N.V.; Bernard, S.R.; et al. DES14X3taz: A Type I Superluminous Supernova Showing a Luminous, Rapidly Cooling Initial Pre-peak Bump. Astrophys. J. Lett. 2016, 818, L8. [Google Scholar] [CrossRef]
- Morsony, B.J.; Lazzati, D.; Begelman, M.C. The origin and propagation of variability in the outflows of long-duration gamma-ray bursts. Astrophys. J. 2010, 723, 267. [Google Scholar] [CrossRef]
- Barniol Duran, R.; Tchekhovskoy, A.; Giannios, D. Simulations of AGN jets: Magnetic kink instability versus conical shocks. Mon. Not. R. Astron. Soc. 2017, 469, 4957–4978. [Google Scholar] [CrossRef]
- Lazzati, D.; Blackwell, C.H.; Morsony, B.J.; Begelman, M.C. X-ray flares from propagation instabilities in long gamma-ray burst jets. Mon. Not. R. Astron. Soc. 2011, 411, L16–L20. [Google Scholar] [CrossRef]
- Nicholl, M.; Smartt, S.J.; Jerkstrand, A.; Sim, S.A.; Inserra, C.; Anderson, J.P.; Baltay, C.; Benetti, S.; Chambers, K.; Chen, T.W.; et al. LSQ14bdq: A Type Ic Super-luminous Supernova with a Double-peaked Light Curve. Astrophys. J. Lett. 2015, 807, L18. [Google Scholar] [CrossRef]
- Mösta, P.; Ott, C.D.; Radice, D.; Roberts, L.F.; Schnetter, E.; Haas, R. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 2015, 528, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Arnett, W.D.; Bahcall, J.N.; Kirshner, R.P.; Woosley, S.E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 1989, 27, 629–700. [Google Scholar] [CrossRef]
- Nakauchi, D.; Kashiyama, K.; Suwa, Y.; Nakamura, T. Blue Supergiant Model for Ultra-long Gamma-Ray Burst with Superluminous-supernova-like Bump. Astrophys. J. 2013, 778, 67. [Google Scholar] [CrossRef]
- Fischer, T.; Bastian, N.U.F.; Wu, M.R.; Baklanov, P.; Sorokina, E.; Blinnikov, S.; Typel, S.; Klähn, T.; Blaschke, D.B. Quark deconfinement as a supernova explosion engine for massive blue supergiant stars. Nat. Astron. 2018, 2, 980–986. [Google Scholar] [CrossRef]
- Prajs, S.; Sullivan, M.; Smith, M.; Levan, A.; Karpenka, N.V.; Edwards, T.D.P.; Walker, C.R.; Wolf, W.M.; Balland, C.; Carlberg, R.; et al. The volumetric rate of superluminous supernovae at z ∼ 1. Mon. Not. R. Astron. Soc. 2017, 464, 3568–3579. [Google Scholar] [CrossRef]
- Zhao, W.C.; Xue, X.X.; Cao, X.F. On the event rate and luminosity function of superluminous supernovae. New Astron. 2021, 83, 101506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, A.; Crosato Menegazzi, L.; Stratta, G. Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist? Galaxies 2025, 13, 57. https://doi.org/10.3390/galaxies13030057
Fiore A, Crosato Menegazzi L, Stratta G. Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist? Galaxies. 2025; 13(3):57. https://doi.org/10.3390/galaxies13030057
Chicago/Turabian StyleFiore, Achille, Ludovica Crosato Menegazzi, and Giulia Stratta. 2025. "Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist?" Galaxies 13, no. 3: 57. https://doi.org/10.3390/galaxies13030057
APA StyleFiore, A., Crosato Menegazzi, L., & Stratta, G. (2025). Exploring the GRB–Supernova Connection: Does a Superluminous Hypernova Population Exist? Galaxies, 13(3), 57. https://doi.org/10.3390/galaxies13030057