Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere
Abstract
1. Introduction
2. Life Cycle for Venusian Aerial Microbes
- The updraft of spores transports them up to the habitable layer. For example, the spores could travel up to the clouds via the effect of gravity waves. Despite the fact that gravity waves can only lead to the net transport of energy and momentum and not matter, they can compress atmosphere layers as they travel, producing vertical winds (which have been measured directly by the Venera landing probes 9 and 10 at the atmospheric lower haze layers [27]).
- Shortly after reaching the (middle and lower cloud) habitable layer, the spores act as cloud condensation nuclei, and once surrounded by liquid (with necessary chemicals dissolved) germinate and become metabolically active.
- Metabolically active microbes (dashed blobs in Figure 1) grow and divide within liquid droplets (shown as solid circles in the figure). The liquid droplets grow by coagulation.
- The droplets reach a size large enough to gravitationally settle down out of the atmosphere; higher temperatures and droplet evaporation trigger cell division and sporulation. The spores are small enough to withstand further downward sedimentation, remaining suspended in the lower haze layer (a depot of hibernating microbial life) to restart the cycle.
3. Replication Rates and Fallout Times
4. Cosmic Ray Effects on Microbial Life
5. Life Outside the Habitable Zone
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In mass spectrometry, represents the ratio of an ion’s mass (m) to its charge (z). |
2 | In the spirit of [15], throughout we use the term “spore” to indicate a cell in a dormant state of long-term metabolic inactivity, which is further resistant to (and protected from) environmental stresses. |
3 | The weight concentration of a solution is expressed as w/w, which stands for weight-per-weight. The volume of each chemical is disregarded and only the weight counts. |
References
- Sagan, C. The planet Venus. Science 1961, 133, 849. [Google Scholar] [CrossRef]
- Sagan, C. Life on the surface of Venus? Nature 1967, 216, 1198. [Google Scholar] [CrossRef]
- Morowitz, H.; Sagan, C. Life in the clouds of Venus? Nature 1967, 215, 1259. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. 2020, 5, 665. [Google Scholar] [CrossRef]
- Villanueva, G.L.; Cordiner, M.; Irwin, P.; de Pater, I.; Butler, B.; Gurwell, M.; Milam, S.; Nixon, C.; Luszcz-Cook, S.; Wilson, C.; et al. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 631–635. [Google Scholar] [CrossRef]
- Thompson, M.A. The statistical reliability of 267-GHz JCMT observations of Venus: No significant evidence for phosphine abibitebsorption. Mon. Not. R. Astron. Soc. 2021, 501, L18. [Google Scholar] [CrossRef]
- Akins, A.B.; Lincowski, A.P.; Meadows, V.S.; Steffes, P.G. Complications in the ALMA detection of phosphine at Venus. As-trophys. J. Lett. 2021, 907, L27. [Google Scholar] [CrossRef]
- Lincowski, A.P.; Meadows, V.S.; Crisp, D.; Akins, A.B.; Schwieterman, E.W.; Arney, G.N.; Wong, M.L.; Steffes, P.G.; Parenteau, M.N.; Domagal-Goldman, S. Claimed detection of PH3 in the clouds of Venus is consistent with mesospheric SO2. Astrophys. J. Lett. 2021, 908, L44. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.; Bains, W.; Rimmer, P.B.; Sagawa, H.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; et al. Adendum: Phosphine gas in the cloud decks of Venus. Nat. Astron. 2021, 5, 726. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.; Bains, W.; Rimmer, P.B.; Clements, D.L.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Fraser, H.J. Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. 2021, 5, 636–639. [Google Scholar] [CrossRef]
- Greaves, J.S.; Rimmer, P.B.; Richards, A.M.; Petkowski, J.J.; Bains, W.; Ranjan, S.; Seager, S.; Clements, D.L.; Silva, C.S.; Fraser, H.J. Low levels of sulphur dioxide contamination of venusian phosphine spectra. Mon. Not. R. Astron. Soc. 2022, 514, 2994. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ mass spectra show signs of disequilibria in the middle clouds. Geophys. Res. Lett. 2021, 48, e91327. [Google Scholar] [CrossRef]
- Sousa-Silva, C.; Seager, S.; Ranjan, S.; Petkowski, J.J.; Zhan, Z.; Hu, R.; Bains, W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. Astrobiology 2020, 20, 235. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S.; Ranjan, S.; Sousa-Silva, C.; Rimmer, P.B.; Zhan, Z.; Greaves, J.S.; Richards, A.M.S. Phosphine on Venus cannot be explained by conventional processes. Astrobilogy 2021, 21, 1277. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The venusian lower atmosphere haze as a depot for desiccated microbial life: A propose cycle persistence of the venusian aerial biosphere. Astrobiology 2021, 21, 1206. [Google Scholar] [CrossRef]
- Clements, D.L. Venus, Phosphine and the Possibility of Life. Contemp. Phys. 2023, 63, 180. [Google Scholar] [CrossRef]
- Bains, W.; Seager, S.; Clements, D.L.; Greaves, J.S.; Rimmer, P.B.; Petkowski, J.J. Source of phosphine on Venus—An unsolved problem. Front. Astron. Space Sci. 2024, 11, 1372057. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Chudnovsky, E.M. A physicist view of COVID-19 airborne infection through convective airflow in indoor spaces. SciMed. J. 2020, 2, 68. [Google Scholar] [CrossRef]
- Marov, M.; Grinspoon, D. The Planet Venus; Yale University Press: New Haven, CT, USA, 1998. [Google Scholar]
- Ignatiev, N.; Titov, D.V.; Piccioni, G.; Drossart, P.; Markiewicz, W.J.; Cottini, V.; Roatsch, T.; Almeida, M.; Manoel, N. Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res. 2009, 114, E00B43. [Google Scholar] [CrossRef]
- Knollenberg, R.; Hunten, D. The microphysics of the clouds of Venus: Results of the Pioneer Venus particle size spectrometer experiment. J. Geophys. Res. 1980, 85, 8039. [Google Scholar] [CrossRef]
- Grinspoon, D.H. Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet; Perseus Publishing: Cambridge, MA, USA, 1987. [Google Scholar]
- Schulze-Makuch, D.; Irwin, L.N.; Faire’n, A.G. Drastic environmental change and its effects on a planetary biosphere. Icarus 2013, 225, 775. [Google Scholar] [CrossRef]
- Constantinou, T.; Shorttle, O.; Rimmer, P.B. A dry Venusian interior constrained by atmospheric chemistry. Nat. Astron. 2025, 9, 189. [Google Scholar] [CrossRef]
- Womack, A.; Bohannan, B.; Green, J. Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3645. [Google Scholar] [CrossRef]
- Sattler, B.; Puxbaum, H.; Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239. [Google Scholar] [CrossRef]
- Kerzhanovich, V.V.; Marov, M.I. The Atmospheric Dynamics of Venus According to Doppler Measurements by the Venera Entry Probes Venus; University of Arizona Press: Tucson, AZ, USA, 1983; p. 766. [Google Scholar]
- Chudnovsky, E.M. Thermodynamics of natural selection. J. Stat. Phys. 1985, 41, 877. [Google Scholar] [CrossRef]
- England, J.L. Statistical physics of self-replication. J. Chem. Phys. 2013, 139, 121923. [Google Scholar] [CrossRef]
- Gibson, B.; Wilson, D.J.; Fell, E.; Eyre-Walker, A. The distribution of bacterial doubling time in the wild. Proc. R. Soc. B 2018, 285, 20180789. [Google Scholar] [CrossRef]
- Eagon, R.G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 1962, 83, 736. [Google Scholar] [CrossRef]
- Maida, I.; Bosi, E.; Perrin, E.; Papaleo, M.C.; Orlandini, V.; Fondi, M.; Fani, R.; Wiegel, J.; Bianconi, G.; Canganella, F. Draft genome sequence of the fast-growing Bacterium Vibrio Natriegens Strain DSMZ 759. Genome Announc. 2013, 1, e00648-13. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Ostrov, N.; Wong, B.G.; Gold, M.A.; Khalil, A.S.; Church, G.M. Functional genomics of the rapidly replicating bacte-rium Vibrio natriegens by CRISPRi. Nat. Microbiol. 2019, 4, 1105. [Google Scholar] [CrossRef] [PubMed]
- Errington, J.; Aart, L.T.V. Microbe Profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology 2020, 166, 425. [Google Scholar] [CrossRef]
- LaBauve, A.E.; Wargo, M.J. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr. Protoc. Microbiol. 2010, 6. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, A.; Datta, P.P. Knockdown Experiment Reveals an Essential GTPase CgtA’s Involvement in Growth, Viability, Motility, Morphology, and Persister Phenotypes in Vibrio cholerae. Microbiol. Spectr. 2023, 11, e03181-22. [Google Scholar] [CrossRef]
- Choi, H.J.; Kang, S.J.; Hong, K.W. Comparison of NheA toxin production and doubling time between Bacillus cereus and Bacillus thuringiensis. Appl. Biol. Chem. 2017, 60, 545. [Google Scholar] [CrossRef]
- Jennison, A.V.; Verma, N.K. Shigella flexneri infection: Pathogenesis and vaccine development. FEMS Microbiol. Rev. 2004, 28, 43. [Google Scholar] [CrossRef]
- Gera, K.; McIver, K.S. Laboratory growth and maintenance of Streptococcus pyogenes (the Group A Streptococcus, GAS). Curr. Protoc. Microbiol. 2013, 30, 9D.2.1–9D.2.13. [Google Scholar] [CrossRef] [PubMed]
- Lowrie, D.B.; Aber, V.R.; Carrol, M.E. Division and death rates of Salmonella typhimurium inside macrophages: Use of penicillin as a probe. J. Gen. Microbiol. 1979, 110, 409–419. [Google Scholar] [CrossRef]
- Li, J.; Paredes-Sabja, D.; Sarker, M.R.; Mc-Clane, B.A. Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production. Microbiol. Spectr. 2016, 4, TBS-0022-2015. [Google Scholar] [CrossRef]
- Caldwell, D.E.; Lawrence, J.R. Growth Kinetics of Pseudomonas Fluorescens Microcolonies within the Hydrodynamic Boundary Layers of Surface Microenvironments. Microb. Ecol. 1986, 12, 299. [Google Scholar] [CrossRef]
- Pang, T.Y.; Lercher, M.J. Optimal density of bacterial cells. PLoS Comput. Biol. 2023, 19, e1011177. [Google Scholar] [CrossRef]
- Einarsson, J.; Mehlig, B. Spherical particle sedimenting in weakly viscoelastic shear flow. Phys. Rev. Fluids 2017, 2, 063301. [Google Scholar] [CrossRef]
- Beck, A.J.; Schiffer, R.A. Models of Venus Atmosphere; NASA Technical Report, Document ID: 19690011554; Report/Patent: NASA-SP-8011, Accession Number: 69N20916; NASA: Washington, DC, USA, 1968. [Google Scholar]
- Anderson, J.D.; Pease, G.E.; Efron, L.; Tausworthe, R.C. Celestial Mechanics Experiment. Science 1967, 158, 1689. [Google Scholar] [CrossRef]
- Ash, A.; Shapiro, I.; Smith, W. Astronomical Constants and Planetary Ephemerides Deduced from Radar and Optical Observa-tions. Astron. J. 1967, 72, 338. [Google Scholar] [CrossRef]
- Ash, M.E.; Campbell, D.B.; Dyce, R.B.; Ingalls, R.P.; Jurgens, R.; Pettengill, G.H.; Shapiro, I.I.; Slade, M.A.; Thompson, T.W. The Case for the Radar Radius of Venus. Science 1968, 160, 985. [Google Scholar] [CrossRef]
- Anderson, J.D.; Cain, D.L.; Efron, L.; Goldstein, R.M.; Melbourne, W.G.; O’Handley, D.A.; Pease, G.E.; Tausworth, R.C. The Radius of Venus as Determined by Planetary Radar and Mariner V Radio Tracking Data. J. Atmos. Sci. 1968, 25, 1171. [Google Scholar] [CrossRef]
- Joly, J. Cosmic radiation and evolution. Nature 1929, 123, 981. [Google Scholar] [CrossRef]
- Dartnell, L.R. Ionizing radiation and life. Astrobiology 2011, 11, 551. [Google Scholar] [CrossRef]
- Phillips, J.L.; Russell, C.T. Upper limit on the intrinsic magnetic field of Venus. J. Geophys. Res. 1987, 92, 2253. [Google Scholar] [CrossRef]
- Russell, C.T.; Elphic, R.C.; Slavin, J.A. Limits on the possible intrinsic magnetic field of Venus. J. Geophys. Res. 1980, 85, 8319. [Google Scholar] [CrossRef]
- Zhang, T.L.; Delva, M.; Baumjohann, W.; Auster, H.-U.; Carr, C.; Russell, C.T.; Barabash, S.; Balikhin, M.; Kudela, K.; Berghofer, G.; et al. Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature 2007, 450, 654. [Google Scholar] [CrossRef]
- Russell, C.T.; Luhmann, J.G.; Strangeway, R.J. The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet. Space Sci. 2006, 54, 1482. [Google Scholar] [CrossRef]
- Anchordoqui, L.A. Ultra-high-energy cosmic rays. Phys. Rep. 2019, 801, 1. [Google Scholar] [CrossRef]
- Dartnell, L.R.; Nordheim, T.A.; Patel, M.R.; Mason, J.P.; Coates, A.J.; Jones, G.H. Constraints on a potential aerial biosphere on Venus I: Cosmic rays. Icarus 2015, 257, 396. [Google Scholar] [CrossRef]
- Herbst, K.; Banjac, S.; Atri, D.; Nordheim, T.A. Revisiting the cosmic-ray induced Venusian radiation dose in the context of habitability. Astron. Astrophys. 2020, 633, A15. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Garcia Canal, C.A.; Sciutto, S.J. The Venusian Chronicles. In Proceedings of the 7th International Symposium on Ultra High Energy Cosmic Rays (UHECR2024), Malargüe, Argentina, 17–21 November 2024. [Google Scholar] [CrossRef]
- Lingam, M.; Loeb, A. Subsurface exolife. Int. J. Astrobiol. 2019, 18, 112. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Weber, S.M. Upper limit on the fraction of alien civilizations that develop communication technology. arXiv 2019, arXiv:1908.01335. [Google Scholar]
- Hoehler, T.M.; Bains, W.; Davila, A.; Parenteau, M.N.; Pohorille, A. Life’s requirements, habitability, and biological potential. In Planetary Astrobiology; Meadows, V.S., Arney, G.N., Schmidt, B.E., Marais, D.J.D., Eds.; Space Science Series; University of Arizona Press: Tucson, AZ, USA, 2020; pp. 37–69. ISBN 978-0-8265-4006-8. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Chudnovsky, E.M. Can self-replicating species flourish in the interior of a star? LHEP 2020, 2020, 166. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S. A data resource for sulfuric acid reactivity of organic chemicals. Data 2021, 6, 24. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Zhan, Z.; Seager, S. Evaluating alternatives to water as solvents for life: The example of sulfuric acid. Life 2021, 11, 400. [Google Scholar] [CrossRef]
- Braconnot, H.M. Sur la conversion des matie’res animales ennouvelles substances par le moyen de l’acide sulfurique. Ann. Chim. Phys. Ser. 1820, 2, 113. [Google Scholar]
- Reitz, H.C.; Ferrel, R.E.; Fraenkel-Conrat, H.; Olcott, H.S. Action of sulfating agents on proteins and model substances I: Con-centrated sulfuric acid. J. Am. Chem. Soc. 1946, 68, 1024. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, L.K.; McConnell, W.B. The Action of Sulphuric Acid on Gliadin: With special reference to the N-peptidyl → O-peptidyl Bond Rearrangement. Can. J. Chem. 1955, 33, 1638. [Google Scholar] [CrossRef]
- Hoffman, J.H.; Oyama, V.I.; Von Zahn, U. Measurements of the Venus lower atmosphere composition: A comparison of results. J. Geophys. Res. Space Phys. 1980, 85, 7871. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus. Icarus 2015, 252, 327. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Seager, M.D.; Grimes, J.H., Jr.; Zinsli, Z.; Vollmer-Snarr, H.R.; El-Rahman, M.K.A.; Wishart, D.S.; Lee, B.L.; Gautam, V.; et al. Stability of nucleic acid bases in concentrated sulfuric acid: Implications for the habitability of Venus’ clouds. Proc. Natl. Acad. Sci. USA 2023, 120, e2220007120. [Google Scholar] [CrossRef]
- Seager, M.D.; Seager, S.; Bains, W.; Petkowski, J.J. Stability of 20 biogenic amino acids in concentrated sulfuric acid: Implications for the habitability of Venus’ clouds. Astrobiology 2024, 24, 386–396. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Seager, M.D.; Grimes, J.H., Jr.; Zinsli, Z.; Vollmer-Snarr, H.R.; El-Rahman, M.K.A.; Wishart, D.S.; Lee, B.L.; Gautam, V.; et al. Year-Long Stability of Nucleic Acid Bases in Concentrated Sulfuric Acid: Implications for the Persistence of Organic Chemistry in Venus’ Clouds. Life 2024, 14, 538. [Google Scholar] [CrossRef]
- Duzdevich, D.; Nisler, C.; Petkowski, J.J.; Bains, W.; Kaminsky, C.K.; Szostak, J.W.; Seager, S. Simple lipids form stable high-er-order structures in concentrated sulfuric acid. Astrobiology 2025, 25, 270–283. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Seager, M.D.; Bains, W.; Seager, S. General instability of dipeptides in concentrated sulfuric acid as relevant for the Venus cloud habitability. Sci. Rep. 2024, 14, 17083. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Seager, M.D.; Bains, W.; Grimes, J.H., Jr.; Seager, S. Mechanism for Peptide Bond Solvolysis in 98% w/w Con-centrated Sulfuric Acid. Am. Chem. Soc. Omega 2025, 10, 9623. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.; Ehlmann, B.; Saikia, S.J.; Agrawal, R.; Buchanan, W.; Weber, M.U.; French, R.; et al. Venus Life Finder Mission Study, A suit of mission concepts to explore Venus to study habitability and potentially find life. arXiv 2021, arXiv:2112.05153. [Google Scholar]
Name | Reproduction Time | Ref. |
---|---|---|
Bacillus subtilis | 20 min | [34] |
Pseudomonas aeruginosa | 16 to 24 h | [35] |
Vibrio cholerae | 20 min | [36] |
Bacillus thuringiensis | 20 min | [37] |
Shigella flexneri | 40 min | [38] |
Streptococcus pyogenes | 12 to 16 h | [39] |
Salmonella typhimurium | 20 min | [40] |
Clostridium perfringens | 10 to 12 min | [41] |
Pseudomonas fluorescens | 1.5 h | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, J.J.; Anchordoqui, A.R.; Fosu, N.J.; Kwakye, M.G.; Kyriakakis, D.; Reynoso, K.; Anchordoqui, L.A. Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere. Galaxies 2025, 13, 48. https://doi.org/10.3390/galaxies13030048
Abreu JJ, Anchordoqui AR, Fosu NJ, Kwakye MG, Kyriakakis D, Reynoso K, Anchordoqui LA. Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere. Galaxies. 2025; 13(3):48. https://doi.org/10.3390/galaxies13030048
Chicago/Turabian StyleAbreu, Jennifer J., Alyxander R. Anchordoqui, Nyamekye J. Fosu, Michael G. Kwakye, Danijela Kyriakakis, Krystal Reynoso, and Luis A. Anchordoqui. 2025. "Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere" Galaxies 13, no. 3: 48. https://doi.org/10.3390/galaxies13030048
APA StyleAbreu, J. J., Anchordoqui, A. R., Fosu, N. J., Kwakye, M. G., Kyriakakis, D., Reynoso, K., & Anchordoqui, L. A. (2025). Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere. Galaxies, 13(3), 48. https://doi.org/10.3390/galaxies13030048