The Blue Supergiant Problem and the Main-Sequence Width
Abstract
:1. Introduction on the Blue Supergiant Problem
2. The Related Problem of the Main-Sequence Width
3. Data & Method
4. Mass-Luminosity Plane: Disentangling Mixing and Mass Loss
5. The Importance of Homogeneous Samples and More Diagnostics
6. Final Words
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B[e] | The B[e] phenomenon refers to forbidden emission lines. |
BSG | Blue supergiant (not to be confused with B supergiant that refers to spectral type) |
RSG | Red supergiant |
LBV | Luminous blue variable |
CBM | Core-boundary mixing |
ML-plane | Mass-luminosity plane |
MS | Main sequence |
1 | There is a technical difference in terminology between B supergiants, referring to supergiants of a specific spectral type (i.e., B), and blue supergiants (BSG) which is the more generic evolutionary term that distinguishes the hotter and bluer supergiants (hotter than ∼8 kK) from the cooler (3–5 kK) red supergiants (RSGs). |
2 | |
3 | Note that this could potentially be improved [37]. |
References
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef]
- Kochanek, C.S. On the red supergiant problem. Mon. Not. R. Astron. Soc. 2020, 493, 4945–4949. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. The ‘red supergiant problem’: The upper luminosity boundary of Type II supernova progenitors. Mon. Not. R. Astron. Soc. 2020, 493, 468–476. [Google Scholar] [CrossRef]
- Vink, J.S.; Sabhahit, G.N. Exploring the Red Supergiant wind kink. A Universal mass-loss concept for massive stars. Astron. Astrophys. 2023, 678, L3. [Google Scholar] [CrossRef]
- Hoyle, F. On the main-sequence band and the Hertzsprung gap. Mon. Not. R. Astron. Soc. 1960, 120, 22–32. [Google Scholar] [CrossRef]
- Kraft, R.P. Stellar Rotation and Stellar Evolution among Cepheids and Other Luminous Stars in the Hertzsprung Gap. Astrophys. J. 1966, 144, 1008. [Google Scholar] [CrossRef]
- Fitzpatrick, E.L.; Garmany, C.D. The H-R Diagram of the Large Magellanic Cloud and Implications for Stellar Evolution. Astrophys. J. 1990, 363, 119. [Google Scholar] [CrossRef]
- Castro, N.; Crowther, P.A.; Evans, C.J.; Vink, J.S.; Puls, J.; Herrero, A.; Garcia, M.; Selman, F.J.; Roth, M.M.; Simón-Díaz, S. Mapping the core of the Tarantula Nebula with VLT-MUSE. II. The spectroscopic Hertzsprung-Russell diagram of OB stars in NGC 2070. Astron. Astrophys. 2021, 648, A65. [Google Scholar] [CrossRef]
- Zickgraf, F.J.; Wolf, B.; Stahl, O.; Leitherer, C.; Appenzeller, I. B(e)-supergiants of the Magellanic Clouds. Astron. Astrophys. 1986, 163, 119–134. [Google Scholar]
- Grassitelli, L.; Langer, N.; Mackey, J.; Gräfener, G.; Grin, N.J.; Sander, A.A.C.; Vink, J.S. Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables. Astron. Astrophys. 2021, 647, A99. [Google Scholar] [CrossRef]
- Groh, J.H.; Hillier, D.J.; Damineli, A. AG Carinae: A Luminous Blue Variable with a High Rotational Velocity. Astrophys. J. 2006, 638, L33–L36. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Morris, T.S.; Ivanova, N. Massive Binary Mergers: A Unique Scenario for the sgB[e] Phenomenon? In Proceedings of the Stars with the B[e] Phenomenon, Vlieland, The Netherlands, 10–16 July 2005; Astronomical Society of the Pacific Conference Series. Kraus, M., Miroshnichenko, A.S., Eds.; Volume 355, p. 259. [Google Scholar]
- Pasquali, A.; Nota, A.; Langer, N.; Schulte-Ladbeck, R.E.; Clampin, M. R4 and Its Circumstellar Nebula: Evidence for a Binary Merger? Astrophys. J. 2000, 119, 1352–1358. [Google Scholar] [CrossRef]
- Vanbeveren, D.; Mennekens, N.; Van Rensbergen, W.; De Loore, C. Blue supergiant progenitor models of type II supernovae. Astron. Astrophys. 2013, 552, A105. [Google Scholar] [CrossRef]
- Justham, S.; Podsiadlowski, P.; Vink, J.S. Luminous Blue Variables and Superluminous Supernovae from Binary Mergers. Astrophys. J. 2014, 796, 121. [Google Scholar] [CrossRef]
- Menon, A.; Ercolino, A.; Urbaneja, M.A.; Lennon, D.J.; Herrero, A.; Hirai, R.; Langer, N.; Schootemeijer, A.; Chatzopoulos, E.; Frank, J.; et al. Evidence for Evolved Stellar Binary Mergers in Observed B-type Blue Supergiants. Astrophys. J. Lett. 2024, 963, L42. [Google Scholar] [CrossRef]
- Henneco, J.; Schneider, F.R.N.; Hekker, S.; Aerts, C. Merger seismology: Distinguishing massive merger products from genuine single stars using asteroseismology. Astron. Astrophys. 2024, 690, A65. [Google Scholar] [CrossRef]
- Dvořáková, N.; Korčáková, D.; Dinnbier, F.; Kroupa, P. The mass distribution of stellar mergers: A new scenario for several FS CMa stars. Astron. Astrophys. 2024, 689, A234. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Podsiadlowski, P.; Langer, N.; Castro, N.; Fossati, L. Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars. Mon. Not. R. Astron. Soc. 2016, 457, 2355–2365. [Google Scholar] [CrossRef]
- Vink, J.S.; Brott, I.; Gräfener, G.; Langer, N.; de Koter, A.; Lennon, D.J. The nature of B supergiants: Clues from a steep drop in rotation rates at 22000 K. The possibility of Bi-stability braking. Astron. Astrophys. 2010, 512, L7. [Google Scholar] [CrossRef]
- Martinet, S.; Meynet, G.; Ekström, S.; Simón-Díaz, S.; Holgado, G.; Castro, N.; Georgy, C.; Eggenberger, P.; Buldgen, G.; Salmon, S.; et al. Convective core sizes in rotating massive stars. I. Constraints from solar metallicity OB field stars. Astron. Astrophys. 2021, 648, A126. [Google Scholar] [CrossRef]
- Crowther, P.A.; Lennon, D.J.; Walborn, N.R. Physical parameters and wind properties of galactic early B supergiants. Astron. Astrophys. 2006, 446, 279–293. [Google Scholar] [CrossRef]
- Anders, E.H.; Pedersen, M.G. Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints. Galaxies 2023, 11, 56. [Google Scholar] [CrossRef]
- Martins, F.; Palacios, A. A comparison of evolutionary tracks for single Galactic massive stars. Astron. Astrophys. 2013, 560, A16. [Google Scholar] [CrossRef]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M&sun; at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar]
- Brott, I.; de Mink, S.E.; Cantiello, M.; Langer, N.; de Koter, A.; Evans, C.J.; Hunter, I.; Trundle, C.; Vink, J.S. Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. Astron. Astrophys. 2011, 530, A115. [Google Scholar] [CrossRef]
- Evans, C.; Hunter, I.; Smartt, S.; Lennon, D.; de Koter, A.; Mokiem, R.; Trundle, C.; Dufton, P.; Ryans, R.; Puls, J.; et al. The VLT-FLAMES Survey of Massive Stars. Messenger 2008, 131, 25–29. [Google Scholar]
- Howarth, I.D.; Siebert, K.W.; Hussain, G.A.J.; Prinja, R.K. Cross-correlation characteristics of OB stars from IUE spectroscopy. Mon. Not. R. Astron. Soc. 1997, 284, 265–285. [Google Scholar] [CrossRef]
- de Burgos, A.; Simón-Díaz, S.; Urbaneja, M.A.; Puls, J. The IACOB project. X. Large-scale quantitative spectroscopic analysis of Galactic luminous blue stars. Astron. Astrophys. 2024, 687, A228. [Google Scholar] [CrossRef]
- Bernini-Peron, M.; Sander, A.A.C.; Ramachandran, V.; Oskinova, L.M.; Vink, J.S.; Verhamme, O.; Najarro, F.; Josiek, J.; Brands, S.A.; Crowther, P.A.; et al. X-Shooting ULLYSES: Massive stars at low metallicity: VII. Stellar and wind properties of B supergiants in the Small Magellanic Cloud. Astron. Astrophys. 2024, 692, A89. [Google Scholar] [CrossRef]
- Verhamme, O.; Sundqvist, J.; de Koter, A.; Sana, H.; Backs, F.; Brands, S.A.; Najarro, F.; Puls, J.; Vink, J.S.; Crowther, P.A.; et al. X-Shooting ULLYSES: Massive Stars at low metallicity: IX. Empirical constraints on mass-loss rates and clumping parameters for OB supergiants in the Large Magellanic Cloud. Astron. Astrophys. 2024, 692, A91. [Google Scholar] [CrossRef]
- Heger, A.; Langer, N.; Woosley, S.E. Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure. Astrophys. J. 2000, 528, 368–396. [Google Scholar] [CrossRef]
- Maeder, A. Chemical enrichments by massive stars and the effects of rotation. New Astron. Rev. 2000, 44, 291–296. [Google Scholar] [CrossRef]
- Higgins, E.R.; Vink, J.S. Massive star evolution: Rotation, winds, and overshooting vectors in the mass-luminosity plane. I. A calibrated grid of rotating single star models. Astron. Astrophys. 2019, 622, A50. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar]
- Bailer-Jones, C.A.L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3. Astron. J. 2021, 161, 147. [Google Scholar] [CrossRef]
- Maíz Apellániz, J. An estimation of the Gaia EDR3 parallax bias from stellar clusters and Magellanic Clouds data. Astron. Astrophys. 2022, 657, A130. [Google Scholar] [CrossRef]
- Oudmaijer, R.D.; Jones, E.R.M.; Vioque, M. A census of post-AGB stars in Gaia DR3: Evidence for a substantial population of Galactic post-RGB stars. Mon. Not. R. Astron. Soc. Lett. 2022, 516, L61–L65. [Google Scholar] [CrossRef]
- Weßmayer, D.; Przybilla, N.; Butler, K. Quantitative spectroscopy of B-type supergiants. aap 2022, 668, A92. [Google Scholar] [CrossRef]
- McEvoy, C.; Dufton, P.; Evans, C.; Kalari, V.; Markova, N.; Simón-Díaz, S.; Vink, J.; Walborn, N.; Crowther, P.; de Koter, A.; et al. The VLT-FLAMES Tarantula Survey-XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence. Astron. Astrophys. 2015, 575, A70. [Google Scholar] [CrossRef]
- Bowman, D.M. Asteroseismology of high-mass stars: New insights of stellar interiors with space telescopes. Front. Astron. Space Sci. 2020, 7, 70. [Google Scholar] [CrossRef]
- Mahy, L.; Damerdji, Y.; Gosset, E.; Nitschelm, C.; Eenens, P.; Sana, H.; Klotz, A. A modern study of HD 166734: A massive supergiant system. Astron. Astrophys. 2017, 607, A96. [Google Scholar] [CrossRef]
- Tkachenko, A.; Pavlovski, K.; Johnston, C.; Pedersen, M.G.; Michielsen, M.; Bowman, D.M.; Southworth, J.; Tsymbal, V.; Aerts, C. The mass discrepancy in intermediate- and high-mass eclipsing binaries: The need for higher convective core masses. Astron. Astrophys. 2020, 637, A60. [Google Scholar] [CrossRef]
- Higgins, E.R.; Vink, J.S. Stellar age determination in the mass-luminosity plane. Mon. Not. R. Astron. Soc. 2023, 518, 1158–1169. [Google Scholar] [CrossRef]
- Vink, J.S.; Sabhahit, G.N.; Higgins, E.R. The maximum black hole mass at solar metallicity. Astron. Astrophys. 2024, 688, L10. [Google Scholar] [CrossRef]
- Hastings, B.; Wang, C.; Langer, N. The single star path to Be stars. Astron. Astrophys. 2020, 633, A165. [Google Scholar] [CrossRef]
- Koenigsberger, G.; Moreno, E.; Langer, N. Induced differential rotation and mixing in asynchronous binary stars. Astron. Astrophys. 2021, 653, A127. [Google Scholar] [CrossRef]
- Castro, N.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Schneider, F.R.N.; Izzard, R.G. The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars. Astron. Astrophys. 2014, 570, L13. [Google Scholar] [CrossRef]
- Scott, L.J.A.; Hirschi, R.; Georgy, C.; Arnett, W.D.; Meakin, C.; Kaiser, E.A.; Ekström, S.; Yusof, N. Convective core entrainment in 1D main-sequence stellar models. Mon. Not. R. Astron. Soc. 2021, 503, 4208–4220. [Google Scholar] [CrossRef]
- Ishii, M.; Ueno, M.; Kato, M. Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence. Publ. Astron. Soc. Jpn. 1999, 51, 417–424. [Google Scholar] [CrossRef]
- Petrovic, J.; Pols, O.; Langer, N. Are luminous and metal-rich Wolf-Rayet stars inflated? Astron. Astrophys. 2006, 450, 219–225. [Google Scholar] [CrossRef]
- Gräfener, G.; Owocki, S.P.; Vink, J.S. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables. Astron. Astrophys. 2012, 538, A40. [Google Scholar] [CrossRef]
- Sabhahit, G.N.; Vink, J.S. Stellar expansion or inflation? Astron. Astrophys. 2025, 693, A10. [Google Scholar] [CrossRef]
- Georgy, C.; Saio, H.; Meynet, G. The puzzle of the CNO abundances of α Cygni variables resolved by the Ledoux criterion. Mon. Not. R. Astron. Soc. 2014, 439, L6–L10. [Google Scholar] [CrossRef]
- Bowman, D.M.; Burssens, S.; Pedersen, M.G.; Johnston, C.; Aerts, C.; Buysschaert, B.; Michielsen, M.; Tkachenko, A.; Rogers, T.M.; Edelmann, P.V.F.; et al. Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 2019, 3, 760–765. [Google Scholar] [CrossRef]
- Bellinger, E.P.; de Mink, S.E.; van Rossem, W.E.; Justham, S. The Potential of Asteroseismology to Resolve the Blue Supergiant Problem. apjl 2024, 967, L39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vink, J.S.; Oudmaijer, R.D. The Blue Supergiant Problem and the Main-Sequence Width. Galaxies 2025, 13, 19. https://doi.org/10.3390/galaxies13020019
Vink JS, Oudmaijer RD. The Blue Supergiant Problem and the Main-Sequence Width. Galaxies. 2025; 13(2):19. https://doi.org/10.3390/galaxies13020019
Chicago/Turabian StyleVink, Jorick S., and Rene D. Oudmaijer. 2025. "The Blue Supergiant Problem and the Main-Sequence Width" Galaxies 13, no. 2: 19. https://doi.org/10.3390/galaxies13020019
APA StyleVink, J. S., & Oudmaijer, R. D. (2025). The Blue Supergiant Problem and the Main-Sequence Width. Galaxies, 13(2), 19. https://doi.org/10.3390/galaxies13020019