The IXPE Science of Pulsars and Their Nebulae
Abstract
:1. Introduction
2. IXPE Science on PSR and PWNe
3. Sources
3.1. Crab Nebula and Pulsar
3.2. Vela
3.3. MSH 15−52
3.4. SNR 0540-69
4. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CXO | Chandra X-ray Observatory |
PWN | Pulsar Wind Nebula |
PSR | Pulsar |
PD | Polarization Degree |
PA | Polarization Angle |
References
- Gaensler, B.M.; Slane, P.O. The Evolution and Structure of Pulsar Wind Nebulae. Ann. Rev. Astron. Astrophys. 2006, 44, 17–47. [Google Scholar] [CrossRef]
- Kargaltsev, O.; Cerutti, B.; Lyubarsky, Y.; Striani, E. Pulsar-Wind Nebulae. Recent Progress in Observations and Theory. Space Sci. Rev. 2015, 191, 391–439. [Google Scholar] [CrossRef]
- Amato, E. The Theory Of Pulsar Wind Nebulae: Recent Progress. In Proceedings of the High Energy Phenomena in Relativistic Outflows VII, Barcelona, Spain, 9–12 July 2019; p. 33. [Google Scholar] [CrossRef]
- Blasi, P.; Amato, E. Positrons from pulsar winds. In High-Energy Emission from Pulsars and their Systems, Proceedings of the First Session of the Sant Cugat Forum on Astrophysics, Catalonia, Spain, 12–16 April 2010; Astrophysics and Space Science Proceedings; Springer: Berlin/Heidelberg, Germany, 2011; Volume 21, p. 624. [Google Scholar] [CrossRef]
- Timokhin, A.N.; Harding, A.K. On the Maximum Pair Multiplicity of Pulsar Cascades. Astrophys. J. 2019, 871, 12. [Google Scholar] [CrossRef]
- Li, J.; Spitkovsky, A.; Tchekhovskoy, A. Resistive Solutions for Pulsar Magnetospheres. Astrophys. J. 2012, 746, 60. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Spitkovsky, A.; Li, J.G. Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: Oblique rotators. Mon. Not. R. Astron. Soc. Lett. 2013, 435, L1–L5. [Google Scholar] [CrossRef]
- Philippov, A.A.; Spitkovsky, A.; Cerutti, B. Ab Initio Pulsar Magnetosphere: Three-dimensional Particle-in-cell Simulations of Oblique Pulsars. Astrophys. J. 2015, 801, L19. [Google Scholar] [CrossRef]
- Cerutti, B.; Philippov, A.A.; Spitkovsky, A. Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. Lett. 2016, 457, 2401–2414. [Google Scholar] [CrossRef]
- Pétri, J. High-energy emission from the pulsar striped wind: A synchrotron model for gamma-ray pulsars. Mon. Not. R. Astron. Soc. Lett. 2012, 424, 2023–2027. [Google Scholar] [CrossRef]
- Pétri, J. Phase-resolved polarization properties of the pulsar striped wind synchrotron emission. Mon. Not. R. Astron. Soc. Lett. 2013, 434, 2636–2644. [Google Scholar] [CrossRef]
- Kalapotharakos, C.; Brambilla, G.; Timokhin, A.; Harding, A.K.; Kazanas, D. Three-dimensional Kinetic Pulsar Magnetosphere Models: Connecting to Gamma-Ray Observations. Astrophys. J. 2018, 857, 44. [Google Scholar] [CrossRef]
- Philippov, A.; Timokhin, A.; Spitkovsky, A. Origin of Pulsar Radio Emission. Phys. Rev. Lett. 2020, 124, 245101. [Google Scholar] [CrossRef]
- Dyks, J.; Harding, A.K.; Rudak, B. Relativistic Effects and Polarization in Three High-Energy Pulsar Models. Astrophys. J. 2004, 606, 1125–1142. [Google Scholar] [CrossRef]
- Pétri, J.; Kirk, J.G. The Polarization of High-Energy Pulsar Radiation in the Striped Wind Model. Astrophys. J. 2005, 627, L37–L40. [Google Scholar] [CrossRef]
- Słowikowska, A.; Kanbach, G.; Kramer, M.; Stefanescu, A. Optical polarization of the Crab pulsar: Precision measurements and comparison to the radio emission. Mon. Not. R. Astron. Soc. Lett. 2009, 397, 103–123. [Google Scholar] [CrossRef]
- Kern, B.; Martin, C.; Mazin, B.; Halpern, J.P. Optical Pulse-Phased Photopolarimetry of PSR B0656+14. Astrophys. J. 2003, 597, 1049–1058. [Google Scholar] [CrossRef]
- Mignani, R.P.; Sartori, A.; de Luca, A.; Rudak, B.; Słowikowska, A.; Kanbach, G.; Caraveo, P.A. HST/WFPC2 observations of the LMC pulsar PSR B0540-69. Astron. Astrophys. 2010, 515, A110. [Google Scholar] [CrossRef]
- Moran, P.; Mignani, R.P.; Shearer, A. HST optical polarimetry of the Vela pulsar and nebula. Mon. Not. R. Astron. Soc. Lett. 2014, 445, 835–844. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity. Astrophys. J. 2009, 698, 1523–1549. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Acceleration of Particles at the Termination Shock of a Relativistic Striped Wind. Astrophys. J. 2011, 741, 39. [Google Scholar] [CrossRef]
- Zrake, J.; Arons, J. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae. Astrophys. J. 2017, 847, 57. [Google Scholar] [CrossRef]
- Takata, J.; Chang, H.K. Pulse Profiles, Spectra, and Polarization Characteristics of Nonthermal Emissions from the Crab-like Pulsars. Astrophys. J. 2007, 670, 677–692. [Google Scholar] [CrossRef]
- Harding, A.K.; Kalapotharakos, C. Multiwavelength Polarization of Rotation-powered Pulsars. Astrophys. J. 2017, 840, 73. [Google Scholar] [CrossRef]
- Bühler, R.; Blandford, R. The surprising Crab pulsar and its nebula: A review. Rep. Prog. Phys. 2014, 77, 066901. [Google Scholar] [CrossRef] [PubMed]
- Komissarov, S.S.; Lyubarsky, Y.E. The origin of peculiar jet-torus structure in the Crab nebula. Mon. Not. R. Astron. Soc. Lett. 2003, 344, L93–L96. [Google Scholar] [CrossRef]
- Del Zanna, L.; Volpi, D.; Amato, E.; Bucciantini, N. Simulated synchrotron emission from pulsar wind nebulae. Astron. Astrophys. 2006, 453, 621–633. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Silver, E.H.; Kestenbaum, H.L.; Long, K.S.; Novick, R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. 1978, 220, L117–L121. [Google Scholar] [CrossRef]
- Bucciantini, N.; Ferrazzoli, R.; Bachetti, M.; Rankin, J.; Di Lalla, N.; Sgrò, C.; Omodei, N.; Kitaguchi, T.; Mizuno, T.; Gunji, S.; et al. Simultaneous space and phase resolved X-ray polarimetry of the Crab pulsar and nebula. Nat. Astron. 2023, 7, 602–610. [Google Scholar] [CrossRef]
- Xie, F.; Di Marco, A.; La Monaca, F.; Liu, K.; Muleri, F.; Bucciantini, N.; Romani, R.W.; Costa, E.; Rankin, J.; Soffitta, P.; et al. Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit. Nature 2022, 612, 658–660. [Google Scholar] [CrossRef]
- Romani, R.W.; Wong, J.; Di Lalla, N.; Omodei, N.; Xie, F.; Ng, C.Y.; Ferrazzoli, R.; Di Marco, A.; Bucciantini, N.; Pilia, M.; et al. The Polarized Cosmic Hand: IXPE Observations of PSR B1509-58/MSH 15−52. Astrophys. J. 2023, 957, 23. [Google Scholar] [CrossRef]
- Mizuno, T.; Ohno, H.; Watanabe, E.; Bucciantini, N.; Gunji, S.; Shibata, S.; Slane, P.; Weisskopf, M.C. Magnetic-field structure of the Crab pulsar wind nebula revealed with IXPE. Publ. Astron. Soc. Jpn. 2023, 75, 1298–1310. [Google Scholar] [CrossRef]
- Wong, J.; Romani, R.W.; Dinsmore, J.T. Improved Measurements of the IXPE Crab Polarization. Astrophys. J. 2023, 953, 28. [Google Scholar] [CrossRef]
- Wong, J.; Mizuno, T.; Bucciantini, N.; Romani, R.W.; Yang, Y.J.; Liu, K.; Deng, W.; Goya, K.; Xie, F.; Pilia, M.; et al. Analysis of Crab X-ray Polarization using Deeper IXPE Observations. arXiv 2024, arXiv:2407.12779. [Google Scholar] [CrossRef]
- Liu, K.; Xie, F.; Liu, Y.h.; Ng, C.Y.; Bucciantini, N.; Romani, R.W.; Weisskopf, M.C.; Costa, E.; Di Marco, A.; La Monaca, F.; et al. A Spatially Resolved X-ray Polarization Map of the Vela Pulsar Wind Nebula. Astrophys. J. 2023, 959, L2. [Google Scholar] [CrossRef]
- Dodson, R.; Lewis, D.; McConnell, D.; Deshpande, A.A. The radio nebula surrounding the Vela pulsar. Mon. Not. R. Astron. Soc. Lett. 2003, 343, 116–124. [Google Scholar] [CrossRef]
- Aumont, J.; Conversi, L.; Thum, C.; Wiesemeyer, H.; Falgarone, E.; Macías-Pérez, J.F.; Piacentini, F.; Pointecouteau, E.; Ponthieu, N.; Puget, J.L.; et al. Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments. Astron. Astrophys. 2010, 514, A70. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Cooke, D.J. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. 1969, 3, 225. [Google Scholar]
- Bartel, N.; Morris, D.; Sieber, W.; Hankins, T.H. The mode-switching phenomenon in pulsars. Astrophys. J. 1982, 258, 776–789. [Google Scholar] [CrossRef]
- Xie, F.; Wong, J.; La Monaca, F.; Romani, R.W.; Heyl, J.; Kaaret, P.; Di Marco, A.; Bucciantini, N.; Liu, K.; Ng, C.Y.; et al. First Detection of Polarization in X-Rays for PSR B0540-69 and Its Nebula. Astrophys. J. 2024, 962, 92. [Google Scholar] [CrossRef]
- Ng, C.Y.; Romani, R.W. Fitting Pulsar Wind Tori. II. Error Analysis and Applications. Astrophys. J. 2008, 673, 411–417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucciantini, N.; Romani, R.W.; Xie, F.; Wong, J. The IXPE Science of Pulsars and Their Nebulae. Galaxies 2024, 12, 45. https://doi.org/10.3390/galaxies12040045
Bucciantini N, Romani RW, Xie F, Wong J. The IXPE Science of Pulsars and Their Nebulae. Galaxies. 2024; 12(4):45. https://doi.org/10.3390/galaxies12040045
Chicago/Turabian StyleBucciantini, Niccolò, Roger W. Romani, Fei Xie, and Josephine Wong. 2024. "The IXPE Science of Pulsars and Their Nebulae" Galaxies 12, no. 4: 45. https://doi.org/10.3390/galaxies12040045
APA StyleBucciantini, N., Romani, R. W., Xie, F., & Wong, J. (2024). The IXPE Science of Pulsars and Their Nebulae. Galaxies, 12(4), 45. https://doi.org/10.3390/galaxies12040045