Galaxy Groups as the Ultimate Probe of AGN Feedback
Abstract
:1. Introduction
2. Galaxy Groups as Probes of AGN Feedback
3. The XMM-Newton Group AGN Project (X-GAP)
- : This ensures that of the selected system is contained within the XMM-Newton FOV;
- : Given the sensitivity curve of our sample, the systems located at greater redshifts are almost exclusively clusters with ;
- Number of member galaxies >8: This criterion removes loosely bound galaxy systems.
4. Conclusions
- Galaxy groups occupy a key mass regime where the energy injected by AGN feedback is sufficient to affect the baryonic properties of the system over the entire volume, yet not so strong that most of the baryons are evacuated from the halo. The hot atmospheres of galaxy groups can be used as a fossil record of the feedback energy dissipated by AGN over the entire history of these systems;
- The mechanical energy injected by radio AGN is deposited far outside of the central galaxy into the surrounding IGrM (see the left-hand panel of Figure 1), which is eventually responsible for cutting the supply of fresh gas on the central galaxy and quenching star formation;
- The properties of the IGrM predicted by modern hydrodynamical simulations implementing different feedback models strongly vary from one simulation to another (see Figure 2). Calibrating the feedback model against high-fidelity measurements of IGrM properties is therefore a key step toward creating a unified model of energy injection by AGN in galaxy evolution models;
- To advance our understanding of IGrM properties, we were recently awarded the XMM-Newton Group AGN Project (X-GAP), a large program on XMM-Newton targeting a sample of 49 galaxy groups selected by cross-matching SDSS FoF catalogues with weak RASS extended sources (see Figure 3; [56]). In Appendix A, we provide a master table describing the selected sources and an XMM-Newton image gallery.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. X-GAP Master Table and Image Gallery
ID | RA (deg) | Dec (deg) | z | ( ergs/cm2/s) | (km/s) | BGG Name | BGG z | ||
---|---|---|---|---|---|---|---|---|---|
828 | 153.41 | −0.93 | 0.046 | 54.22 ± 4.70 | 55 | 750 | 19.6 ± 1.8 | UGC 5515 | 0.0453 |
885 | 117.05 | 18.55 | 0.047 | 26.43 ± 3.84 | 62 | 626 | 2.9 ± 0.6 | MCG+03-20-013 | 0.0225 |
1011 | 223.60 | 16.36 | 0.046 | 42.15 ± 6.30 | 11 | 374 | 2.4 ± 0.5 | IC 4516 | 0.0241 |
1162 | 232.37 | 7.57 | 0.044 | 41.03 ± 7.68 | 18 | 316 | 4.9 ± 0.7 | NGC 5931 | 0.0267 |
1398 | 228.20 | 7.43 | 0.046 | 30.26 ± 4.54 | 74 | 617 | 4.3 ± 0.8 | UGC 9767 | 0.0279 |
1601 | 161.09 | 14.08 | 0.034 | 7.24 ± 3.39 | 23 | 355 | 5.3 ± 1.0 | NGC 3357 | 0.0323 |
1695 | 155.42 | 23.92 | 0.04 | 40.96 ± 4.25 | 44 | 441 | 4.0 ± 1.1 | NGC 3216 | 0.0326 |
2424 | 241.61 | 15.69 | 0.04 | 7.44 ± 2.70 | 85 | 627 | 5.3 ± 0.9 | MCG+03-41-123 | 0.0335 |
2473 | 174.80 | 55.67 | 0.063 | 8.24 ± 2.30 | 19 | 368 | 5.5 ± 0.8 | MCG+09-19-143 | 0.0335 |
2620 | 233.13 | 4.68 | 0.039 | 29.99 ± 4.77 | 43 | 498 | 6.9 ± 0.9 | UGC 9886 | 0.0351 |
3128 | 243.15 | 29.48 | 0.032 | 7.00 ± 1.73 | 27 | 313 | 10.1 ± 1.0 | NGC 6086 | 0.0352 |
3460 | 170.74 | 34.11 | 0.044 | 21.28 ± 4.31 | 26 | 359 | 5.0 ± 0.7 | UGC 6394 | 0.0358 |
3513 | 252.57 | 23.58 | 0.036 | 8.59 ± 3.13 | 24 | 362 | 11.7 ± 0.8 | NGC 6233 | 0.0361 |
3669 | 162.19 | 22.22 | 0.048 | 17.21 ± 3.22 | 30 | 426 | 12.5 ± 1.1 | MCG+04-26-010 | 0.0379 |
4047 | 174.01 | 55.08 | 0.058 | 8.88 ± 2.42 | 35 | 413 | 12.5 ± 1.2 | MCG+09-19-131 | 0.0389 |
4436 | 159.30 | 50.12 | 0.046 | 16.02 ± 2.61 | 30 | 562 | 11.0 ± 1.0 | NGC 3298 | 0.0392 |
4654 | 188.92 | 26.52 | 0.023 | 6.87 ± 2.36 | 24 | 297 | 7.0 ± 1.1 | NGC 4555 | 0.0390 |
4936 | 145.89 | 39.42 | 0.042 | 5.33 ± 1.72 | 18 | 442 | 15.7 ± 1.0 | UGC 5193 | 0.0392 |
5742 | 176.59 | 33.16 | 0.034 | 11.29 ± 2.65 | 42 | 425 | 5.2 ± 1.1 | NGC 3880 | 0.0402 |
6058 | 156.09 | 41.71 | 0.045 | 11.54 ± 2.63 | 17 | 403 | 11.5 ± 1.1 | MCG+07-22-001 | 0.0413 |
6159 | 203.99 | 33.43 | 0.026 | 5.69 ± 1.81 | 23 | 321 | 11.4 ± 1.4 | IC 4305 | 0.0427 |
8050 | 169.09 | 29.25 | 0.046 | 32.34 ± 5.90 | 68 | 582 | 17.7 ± 2.1 | MCG+05-27-037 | 0.0437 |
8102 | 238.76 | 41.58 | 0.033 | 10.37 ± 3.61 | 26 | 492 | 15.7 ± 1.4 | MCG+07-33-011 | 0.0444 |
9178 | 162.50 | 0.32 | 0.04 | 11.97 ± 3.12 | 18 | 281 | 8.1 ± 1.1 | MCG+00-28-017 | 0.0445 |
9370 | 196.24 | 43.55 | 0.038 | 17.94 ± 2.63 | 29 | 340 | 21.9 ± 1.2 | MCG+07-27-026 | 0.0457 |
9399 | 140.85 | 22.31 | 0.035 | 15.02 ± 2.88 | 35 | 561 | 10.1 ± 1.0 | UGC 4991 | 0.0451 |
9647 | 138.41 | 29.99 | 0.023 | 9.12 ± 3.31 | 29 | 347 | 11.3 ± 1.1 | NGC 2783 | 0.0452 |
9695 | 165.24 | 10.51 | 0.038 | 32.36 ± 4.54 | 47 | 577 | 16.1 ± 1.8 | NGC 3492 | 0.0453 |
9771 | 205.60 | 29.82 | 0.044 | 6.89 ± 2.19 | 33 | 482 | 13.2 ± 1.3 | NGC 5275 | 0.0461 |
10094 | 151.72 | 14.37 | 0.031 | 10.61 ± 2.70 | 35 | 364 | 14.6 ± 1.3 | NGC 3121 | 0.0468 |
10159 | 206.32 | 23.22 | 0.031 | 9.28 ± 2.71 | 31 | 406 | 11.2 ± 1.3 | LEDA 48750 | 0.0466 |
10842 | 164.55 | 1.60 | 0.04 | 24.23 ± 3.49 | 51 | 439 | 6.8 ± 0.8 | UGC 6057 | 0.0340 |
11320 | 146.72 | 54.45 | 0.045 | 32.34 ± 4.54 | 45 | 492 | 15.5 ± 1.5 | MCG+09-16-044 | 0.0458 |
11631 | 239.59 | 18.08 | 0.046 | 19.02 ± 3.00 | 41 | 504 | 2.8 ± 0.5 | 2MASX J15582067+1804512 | 0.0580 |
11844 | 216.17 | 26.63 | 0.038 | 28.27 ± 4.44 | 9 | 304 | 2.4 ± 0.5 | MCG+05-34-033 | 0.0222 |
12349 | 200.06 | 33.14 | 0.037 | 31.14 ± 3.41 | 41 | 406 | 5.2 ± 1.1 | NGC 5098 | 0.0336 |
15354 | 181.10 | 42.56 | 0.054 | 4.50 ± 1.96 | 13 | 372 | 5.8 ± 1.1 | 2MASX J12042469+4233432 | 0.0427 |
15641 | 141.97 | 29.99 | 0.028 | 14.63 ± 3.20 | 12 | 258 | 6.9 ± 1.1 | IC 2476 | 0.0472 |
15776 | 164.43 | 37.65 | 0.036 | 14.51 ± 3.01 | 14 | 291 | 4.5 ± 0.9 | MCG+06-24-039 | 0.0405 |
16150 | 123.65 | 55.14 | 0.033 | 11.97 ± 3.60 | 24 | 346 | 5.0 ± 1.1 | MCG+09-14-020 | 0.0361 |
16386 | 249.32 | 44.42 | 0.031 | 4.91 ± 1.43 | 10 | 267 | 8.9 ± 0.8 | 2MASX J16370588+4416111 | 0.0389 |
16393 | 152.71 | 54.21 | 0.047 | 22.84 ± 3.59 | 46 | 295 | 4.8 ± 0.7 | MCG+09-17-036 | 0.0298 |
21128 | 197.18 | 13.81 | 0.062 | 7.27 ± 2.43 | 13 | 376 | 4.8 ± 0.6 | 2MASX J13084384+1348248 | 0.0265 |
22635 | 230.05 | 25.72 | 0.034 | 10.93 ± 3.10 | 30 | 438 | 3.8 ± 0.6 | MCG+04-36-038 | 0.0325 |
28674 | 203.24 | 32.61 | 0.037 | 8.66 ± 1.85 | 20 | 282 | 11.9 ± 1.2 | MCG+06-30-029 | 0.0371 |
35976 | 136.98 | 49.60 | 0.036 | 25.88 ± 4.33 | 31 | 391 | 9.3 ± 1.6 | MCG+08-17-034 | 0.0571 |
39344 | 184.91 | 28.50 | 0.028 | 13.51 ± 2.73 | 21 | 270 | 9.9 ± 1.7 | LEDA 39736 | 0.0612 |
40241 | 239.17 | 20.17 | 0.049 | 7.23 ± 1.92 | 34 | 439 | 5.7 ± 1.5 | 2MASX J15564131+2010172 | 0.0555 |
46701 | 123.19 | 54.14 | 0.042 | 23.45 ± 3.74 | 17 | 369 | 9.4 ± 1.9 | 2MASX J08124599+5408228 | 0.0607 |
1 | https://www.astro.unige.ch/xgap/blog/people, accessed on 5 May 2024. |
References
- Granato, G.L.; De Zotti, G.; Silva, L.; Bressan, A.; Danese, L. A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts. Astrophys. J. 2004, 600, 580–594. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar]
- Cattaneo, A.; Haehnelt, M.G.; Rees, M.J. The distribution of supermassive black holes in the nuclei of nearby galaxies. Mon. Not. R. Astron. Soc. 1999, 308, 77–81. [Google Scholar] [CrossRef]
- Kauffmann, G.; Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 2000, 311, 576–588. [Google Scholar] [CrossRef]
- Madau, P.; Ferguson, H.C.; Dickinson, M.E.; Giavalisco, M.; Steidel, C.C.; Fruchter, A. High-redshift galaxies in the Hubble Deep Field: Colour selection and star formation history to z~4. Mon. Not. R. Astron. Soc. 1996, 283, 1388–1404. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Schaye, J.; Bird, S.; Le Brun, A.M.C. The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 2936–2965. [Google Scholar] [CrossRef]
- Springel, V.; Pakmor, R.; Pillepich, A.; Weinberger, R.; Nelson, D.; Hernquist, L.; Vogelsberger, M.; Genel, S.; Torrey, P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: Matter and galaxy clustering. Mon. Not. R. Astron. Soc. 2018, 475, 676–698. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef]
- Robotham, A.S.G.; Norberg, P.; Driver, S.P.; Baldry, I.K.; Bamford, S.P.; Hopkins, A.M.; Liske, J.; Loveday, J.; Merson, A.; Peacock, J.A.; et al. Galaxy and Mass Assembly (GAMA): The GAMA galaxy group catalogue (G3Cv1). Mon. Not. R. Astron. Soc. 2011, 416, 2640–2668. [Google Scholar] [CrossRef]
- Randall, S.W.; Nulsen, P.E.J.; Jones, C.; Forman, W.R.; Bulbul, E.; Clarke, T.E.; Kraft, R.; Blanton, E.L.; David, L.; Werner, N.; et al. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History. Astrophys. J. 2015, 805, 112. [Google Scholar] [CrossRef]
- Gastaldello, F.; Buote, D.A.; Temi, P.; Brighenti, F.; Mathews, W.G.; Ettori, S. X-Ray Cavities, Filaments, and Cold Fronts in the Core of the Galaxy Group NGC 5044. Astrophys. J. 2009, 693, 43–55. [Google Scholar] [CrossRef]
- Bîrzan, L.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Wise, M.W. Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. Astrophys. J. 2008, 686, 859. [Google Scholar] [CrossRef]
- Liu, W.; Sun, M.; Nulsen, P.; Clarke, T.; Sarazin, C.; Forman, W.; Gaspari, M.; Giacintucci, S.; Lal, D.V.; Edge, T. AGN feedback in galaxy group 3C 88: Cavities, shock, and jet reorientation. Mon. Not. R. Astron. Soc. 2019, 484, 3376–3392. [Google Scholar] [CrossRef]
- Eckert, D.; Gaspari, M.; Gastaldello, F.; Le Brun, A.M.C.; O’Sullivan, E. Feedback from Active Galactic Nuclei in Galaxy Groups. Universe 2021, 7, 142. [Google Scholar] [CrossRef]
- Salim, S.; Lee, J.C.; Janowiecki, S.; da Cunha, E.; Dickinson, M.; Boquien, M.; Burgarella, D.; Salzer, J.J.; Charlot, S. GALEX-SDSS-WISE Legacy Catalog (GSWLC): Star Formation Rates, Stellar Masses, and Dust Attenuations of 700,000 Low-redshift Galaxies. Astrophys. J. Suppl. Ser. 2016, 227, 2. [Google Scholar] [CrossRef]
- Tempel, E.; Tuvikene, T.; Kipper, R.; Libeskind, N.I. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. Astron. Astrophys. 2017, 602, A100. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Hardcastle, M.J.; Tasse, C.; Best, P.N.; Röttgering, H.J.A.; Williams, W.L.; Botteon, A.; Drabent, A.; Mechev, A.; Shulevski, A.; et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 2022, 659, A1. [Google Scholar] [CrossRef]
- Jamrozy, M.; Klein, U.; Mack, K.H.; Gregorini, L.; Parma, P. Spectral ageing in the relic radio galaxy B2 0924+30. Astron. Astrophys. 2004, 427, 79–86. [Google Scholar] [CrossRef]
- Shulevski, A.; Morganti, R.; Harwood, J.J.; Barthel, P.D.; Jamrozy, M.; Brienza, M.; Brunetti, G.; Röttgering, H.J.A.; Murgia, M.; White, G.J.; et al. Radiative age mapping of the remnant radio galaxy B2 0924+30: The LOFAR perspective. Astron. Astrophys. 2017, 600, A65. [Google Scholar] [CrossRef]
- Burns, J.O. The radio properties of cD galaxies in Abell clusters. I—An X-ray selected sample. Astron. J. 1990, 99, 14–30. [Google Scholar] [CrossRef]
- Mittal, R.; Hudson, D.S.; Reiprich, T.H.; Clarke, T. AGN heating and ICM cooling in the HIFLUGCS sample of galaxy clusters. Astron. Astrophys. 2009, 501, 835–850. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Fabian, A.C. Investigating AGN heating in a sample of nearby clusters. Mon. Not. R. Astron. Soc. 2006, 373, 959–971. [Google Scholar] [CrossRef]
- Cavagnolo, K.W.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Jones, C.; Birzan, L. A relationship between AGN jet power and radio power. Astrophys. J. 2010, 720, 1066–1072. [Google Scholar] [CrossRef]
- Tremblay, G.R.; Oonk, J.B.R.; Combes, F.; Salomé, P.; O’Dea, C.P.; Baum, S.A.; Voit, G.M.; Donahue, M.; McNamara, B.R.; Davis, T.A.; et al. Cold, clumpy accretion onto an active supermassive black hole. Nature 2016, 534, 218–221. [Google Scholar] [CrossRef]
- Oosterloo, T.; Morganti, R.; Murthy, S. Closing the feedback-feeding loop of the radio galaxy 3C 84. Nat. Astron. 2024, 8, 256–262. [Google Scholar] [CrossRef]
- Gaspari, M.; Eckert, D.; Ettori, S.; Tozzi, P.; Bassini, L.; Rasia, E.; Brighenti, F.; Sun, M.; Borgani, S.; Johnson, S.D.; et al. The X-Ray Halo Scaling Relations of Supermassive Black Holes. Astrophys. J. 2019, 884, 169. [Google Scholar] [CrossRef]
- Gaspari, M.; Sa̧dowski, A. Unifying the Micro and Macro Properties of AGN Feeding and Feedback. Astrophys. J. 2017, 837, 149. [Google Scholar] [CrossRef]
- Gonzalez, A.H.; Sivanandam, S.; Zabludoff, A.I.; Zaritsky, D. Galaxy Cluster Baryon Fractions Revisited. Astrophys. J. 2013, 778, 14. [Google Scholar] [CrossRef]
- Laganá, T.F.; de Souza, R.S.; Keller, G.R. On the influence of non-thermal pressure on the mass determination of galaxy clusters. Astron. Astrophys. 2010, 510, A76. [Google Scholar] [CrossRef]
- Eckert, D.; Ettori, S.; Coupon, J.; Gastaldello, F.; Pierre, M.; Melin, J.B.; Le Brun, A.M.C.; McCarthy, I.G.; Adami, C.; Chiappetti, L.; et al. The XXL Survey. XIII. Baryon content of the bright cluster sample. Astron. Astrophys. 2016, 592, A12. [Google Scholar] [CrossRef]
- Akino, D.; Eckert, D.; Okabe, N.; Sereno, M.; Umetsu, K.; Oguri, M.; Gastaldello, F.; Chiu, I.N.; Ettori, S.; Evrard, A.E.; et al. HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publ. Astron. Soc. Jpn. 2022, 74, 175–208. [Google Scholar] [CrossRef]
- Ayromlou, M.; Nelson, D.; Pillepich, A. Feedback reshapes the baryon distribution within haloes, in halo outskirts, and beyond: The closure radius from dwarfs to massive clusters. Mon. Not. R. Astron. Soc. 2023, 524, 5391–5410. [Google Scholar] [CrossRef]
- Davies, J.J.; Crain, R.A.; McCarthy, I.G.; Oppenheimer, B.D.; Schaye, J.; Schaller, M.; McAlpine, S. The gas fractions of dark matter haloes hosting simulated ∼L★ galaxies are governed by the feedback history of their black holes. Mon. Not. R. Astron. Soc. 2019, 485, 3783–3793. [Google Scholar] [CrossRef]
- Voit, G.M.; Oppenheimer, B.D.; Bell, E.F.; Terrazas, B.; Donahue, M. Black Hole Growth, Baryon Lifting, Star Formation, and IllustrisTNG. Astrophys. J. 2024, 960, 28. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Babul, A.; Bahé, Y.; Butsky, I.S.; McCarthy, I.G. Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe 2021, 7, 209. [Google Scholar] [CrossRef]
- Booth, C.M.; Schaye, J. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: Method and tests. Mon. Not. R. Astron. Soc. 2009, 398, 53–74. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T.R.; Pontzen, A.; Anderson, L.; Bellovary, J. The Romulus cosmological simulations: A physical approach to the formation, dynamics and accretion models of SMBHs. Mon. Not. R. Astron. Soc. 2017, 470, 1121–1139. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518–1547. [Google Scholar] [CrossRef]
- Sun, M.; Voit, G.M.; Donahue, M.; Jones, C.; Forman, W.; Vikhlinin, A. Chandra Studies of the X-Ray Gas Properties of Galaxy Groups. Astrophys. J. 2009, 693, 1142–1172. [Google Scholar] [CrossRef]
- Lovisari, L.; Reiprich, T.H.; Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 2015, 573, A118. [Google Scholar] [CrossRef]
- Schneider, A.; Teyssier, R.; Stadel, J.; Chisari, N.E.; Le Brun, A.M.C.; Amara, A.; Refregier, A. Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. J. Cosmol. Astropart. Phys. 2019, 2019, 020. [Google Scholar] [CrossRef]
- Chisari, N.E.; Mead, A.J.; Joudaki, S.; Ferreira, P.G.; Schneider, A.; Mohr, J.; Tröster, T.; Alonso, D.; McCarthy, I.G.; Martin-Alvarez, S.; et al. Modelling baryonic feedback for survey cosmology. Open J. Astrophys. 2019, 2, 4. [Google Scholar] [CrossRef]
- van Daalen, M.P.; McCarthy, I.G.; Schaye, J. Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Mon. Not. R. Astron. Soc. 2020, 491, 2424–2446. [Google Scholar] [CrossRef]
- Ponman, T.J.; Cannon, D.B.; Navarro, J.F. The thermal imprint of galaxy formation on X-ray clusters. Nature 1999, 397, 135–137. [Google Scholar] [CrossRef]
- Finoguenov, A.; Jones, C.; Böhringer, H.; Ponman, T.J. ASCA Observations of Groups at Radii of Low Overdensity: Implications for the Cosmic Preheating. Astrophys. J. 2002, 578, 74–89. [Google Scholar] [CrossRef]
- Gastaldello, F.; Buote, D.A.; Humphrey, P.J.; Zappacosta, L.; Bullock, J.S.; Brighenti, F.; Mathews, W.G. Probing the Dark Matter and Gas Fraction in Relaxed Galaxy Groups with X-Ray Observations from Chandra and XMM-Newton. Astrophys. J. 2007, 669, 158–183. [Google Scholar] [CrossRef]
- Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M.N.; et al. The XXL Survey. I. Scientific motivations—XMM-Newton observing plan—Follow-up observations and simulation programme. Astron. Astrophys. 2016, 592, A1. [Google Scholar] [CrossRef]
- Rykoff, E.S.; Rozo, E.; Busha, M.T.; Cunha, C.E.; Finoguenov, A.; Evrard, A.; Hao, J.; Koester, B.P.; Leauthaud, A.; Nord, B.; et al. redMaPPer. I. Algorithm and SDSS DR8 Catalog. Astrophys. J. 2014, 785, 104. [Google Scholar] [CrossRef]
- Tinker, J.L. A Self-Calibrating Halo-Based Group Finder: Application to SDSS. Astrophys. J. 2021, 923, 154. [Google Scholar] [CrossRef]
- Damsted, S.; Finoguenov, A.; Lietzen, H.; Mamon, G.A.; Comparat, J.; Tempel, E.; Dmitrieva, I.; Clerc, N.; Collins, C.; Gozaliasl, G.; et al. AXES-SDSS: Comparison of SDSS galaxy groups with All-sky X-ray Extended Sources. arXiv 2024, arXiv:2403.17055. [Google Scholar]
- Osmond, J.P.F.; Ponman, T.J. The GEMS project: X-ray analysis and statistical properties of the group sample. Mon. Not. R. Astron. Soc. 2004, 350, 1511–1535. [Google Scholar] [CrossRef]
- Bahar, Y.E.; Bulbul, E.; Ghirardini, V.; Sanders, J.S.; Zhang, X.; Liu, A.; Clerc, N.; Artis, E.; Balzer, F.; Biffi, V.; et al. The SRG/eROSITA All-Sky Survey: Constraints on AGN Feedback in Galaxy Groups. arXiv 2024, arXiv:2401.17276. [Google Scholar] [CrossRef]
- Eckert, D.; Molendi, S.; Paltani, S. The cool-core bias in X-ray galaxy cluster samples. I. Method and application to HIFLUGCS. A&A 2011, 526, A79. [Google Scholar] [CrossRef]
- Xu, W.; Ramos-Ceja, M.E.; Pacaud, F.; Reiprich, T.H.; Erben, T. A new X-ray-selected sample of very extended galaxy groups from the ROSAT All-Sky Survey. Astron. Astrophys. 2018, 619, A162. [Google Scholar] [CrossRef]
- Käfer, F.; Finoguenov, A.; Eckert, D.; Clerc, N.; Ramos-Ceja, M.E.; Sanders, J.S.; Ghirardini, V. Toward the low-scatter selection of X-ray clusters. Galaxy cluster detection with eROSITA through cluster outskirts. Astron. Astrophys. 2020, 634, A8. [Google Scholar] [CrossRef]
- Eckert, D.; Ettori, S.; Pointecouteau, E.; van der Burg, R.F.J.; Loubser, S.I. The gravitational field of X-COP galaxy clusters. Astron. Astrophys. 2022, 662, A123. [Google Scholar] [CrossRef]
- Ghirardini, V.; Eckert, D.; Ettori, S.; Pointecouteau, E.; Molendi, S.; Gaspari, M.; Rossetti, M.; De Grandi, S.; Roncarelli, M.; Bourdin, H.; et al. Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample. Astron. Astrophys. 2019, 621, A41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckert, D.; Gastaldello, F.; O’Sullivan, E.; Finoguenov, A.; Brienza, M.; the X-GAP Collaboration. Galaxy Groups as the Ultimate Probe of AGN Feedback. Galaxies 2024, 12, 24. https://doi.org/10.3390/galaxies12030024
Eckert D, Gastaldello F, O’Sullivan E, Finoguenov A, Brienza M, the X-GAP Collaboration. Galaxy Groups as the Ultimate Probe of AGN Feedback. Galaxies. 2024; 12(3):24. https://doi.org/10.3390/galaxies12030024
Chicago/Turabian StyleEckert, Dominique, Fabio Gastaldello, Ewan O’Sullivan, Alexis Finoguenov, Marisa Brienza, and the X-GAP Collaboration. 2024. "Galaxy Groups as the Ultimate Probe of AGN Feedback" Galaxies 12, no. 3: 24. https://doi.org/10.3390/galaxies12030024
APA StyleEckert, D., Gastaldello, F., O’Sullivan, E., Finoguenov, A., Brienza, M., & the X-GAP Collaboration. (2024). Galaxy Groups as the Ultimate Probe of AGN Feedback. Galaxies, 12(3), 24. https://doi.org/10.3390/galaxies12030024