Multidimensional Simulations of Core Convection
Abstract
:1. Introduction and Motivation
2. Simulation Challenges
2.1. Time Scales
2.1.1. Sound
2.1.2. Buoyancy
2.1.3. Convection
2.1.4. Thermal
2.1.5. Evolution
2.2. Length Scales
2.2.1. Convection Zone Radius
2.2.2. Pressure Scale Height
2.2.3. Overshoot Length
2.2.4. Radiative Diffusion Length
2.2.5. Viscous Length
2.3. Physical Effects
2.3.1. Spherical Geometry
2.3.2. Rotation
2.3.3. Magnetism
2.3.4. Microphysics
3. Current Approaches
3.1. Equations Describing the Problem
3.2. Numerical Solution Methods
3.2.1. Grid Geometry
3.2.2. Temporal Discretization
3.2.3. Spatial Discretization
3.2.4. Table of Simulation Codes
Name | (Magneto)- Hydrodynamics | EoS | Additional Physics | Spatial Discretization | Time Discretization | Select Publications | Licence |
---|---|---|---|---|---|---|---|
SLH | fully compressible | general gas | multi-species, nuc. reac., self-gravity, MHD | FV (curvilinear) | explicit or implicit | [26,53] | proprietary |
MUSIC | fully compressible | general gas | multi-species | FV (Cartesian or spherical) | implicit | [51,70] | proprietary |
Athena++ | fully compressible | general gas | multi-species, self-gravity, MHD, GR | FV (Cartesian, cylindrical or spherical), AMR | explicit, super-time-stepping | [90] | free (BSD 3-clause) |
PROMPI | fully compressible | general gas | multi-species, nuc. reac. | FV (Cartesian, cylindrical or spherical) | explicit | [74] | proprietary |
FLASH | fully compressible | general gas | multi-species, nuc. reac., self-gravity, MHD | FV (Cartesian, cylindrical or spherical), AMR | explicit | [77] | available on request |
PPMstar | fully compressible | ideal gas | two-fluid | FV (Cartesian) | explicit | [33,80,81,82] | proprietary |
CASTRO | fully compressible | general gas | multi-species, MHD, self-gravity, nuc. reac, FL diff. | FV (Cartesian), AMR | explicit | [91] | free (BSD 3-clause) |
MAESTROex | generalized pseudo-incompressible | general gas | multi-species, self-gravity, nuc. reac. | FV (Cartesian), AMR | explicit | [92,93] | free (BSD 3-clause) |
ENZO | fully compressible | general gas | MHD, self-gravity, nuc. reac., radiation | FV (Cartesian), AMR | explicit | [94,95] | free (BSD 3-clause) |
PENCIL | fully compressible | partially ionized, ideal gas | MHD, self-gravity | FD | RK | [96] | free (GPLv2) |
ASH | anelastic or Boussinesq | ideal gas | MHD | PS (spherical shell) | IMEX | [15,63,97] | proprietary |
Rayleigh | anelastic or Boussinesq | ideal gas | multi-species, MHD | PS (spherical shell) | IMEX | [66,87,98] | free (GPLv3) |
SPIN | anelastic | ideal gas | MHD | PS (spherical shell), FD | IMEX | [88] | proprietary |
MagIC | anelastic or Boussinesq | ideal gas | multi-species, MHD | PS (spherical shell), PS or FD (radial) | IMEX | [64,65] | free (GPLv3) |
Dedalus | fully compressible, pseudo-incompressible, anelastic, or Boussinesq | ideal gas | multi-species, MHD | PS (spherical, full ball or shell), cylindrical, Cartesian, SMR | IMEX | [67] | free (GPLv3) |
4. State-of-the-Art Results
4.1. Convective Boundary Mixing
4.2. Waves and Convection
4.2.1. Theoretical Considerations
4.2.2. Simulations of Wave Excitation by Core Convection
Paper | Code | Equations | Dimensionality | Mass | Luminosity | CZ Resolution |
---|---|---|---|---|---|---|
Rogers et al. [20] | SPIN | AN | 2D | ≈400 | ||
Edelmann et al. [88] | SPIN | AN | 3D | ≈400 | ||
Horst et al. [26] | SLH | FC | 2D | ≈160 | ||
Thompson et al. [82] | PPMstar | FC | 3D | ≈432 | ||
Le Saux et al. [107] | MUSIC | FC | 2D | ≈256 | ||
Ratnasingam et al. [120] | SPIN | AN | 2D | ≈512 | ||
Anders et al. [108] | Dedalus | FC | 3D | ≈512 |
4.2.3. Chemical Mixing by Waves
4.2.4. Angular Momentum Transport by Waves
4.3. Spectra of Convection
5. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro, N.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Schneider, F.R.N.; Izzard, R.G. The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars. Astron. Astrophys. 2014, 570, L13. [Google Scholar] [CrossRef] [Green Version]
- Anders, E.H.; Jermyn, A.S.; Lecoanet, D.; Fuentes, J.R.; Korre, L.; Brown, B.P.; Oishi, J.S. Convective Boundary Mixing Processes. Res. Notes Am. Astron. Soc. 2022, 6, 41. [Google Scholar] [CrossRef]
- Kaiser, E.A.; Hirschi, R.; Arnett, W.D.; Georgy, C.; Scott, L.J.A.; Cristini, A. Relative importance of convective uncertainties in massive stars. Mon. Not. R. Astron. Soc. 2020, 496, 1967–1989. [Google Scholar] [CrossRef]
- Agrawal, P.; Szécsi, D.; Stevenson, S.; Eldridge, J.J.; Hurley, J. Explaining the differences in massive star models from various simulations. Mon. Not. R. Astron. Soc. 2022, 512, 5717–5725. [Google Scholar] [CrossRef]
- Arnett, W.D.; Meakin, C. Toward Realistic Progenitors of Core-collapse Supernovae. Astrophys. J. 2011, 733, 78. [Google Scholar] [CrossRef] [Green Version]
- Mösta, P.; Ott, C.D.; Radice, D.; Roberts, L.F.; Schnetter, E.; Haas, R. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 2015, 528, 376–379. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, V.C.A. The non-uniform rotation of the Sun and its magnetic field. Mon. Not. R. Astron. Soc. 1937, 97, 458. [Google Scholar] [CrossRef] [Green Version]
- Gough, D.O.; McIntyre, M.E. Inevitability of a magnetic field in the Sun’s radiative interior. Nature 1998, 394, 755–757. [Google Scholar] [CrossRef]
- Spruit, H.C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 2002, 381, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.; Piro, A.L.; Jermyn, A.S. Slowing the spins of stellar cores. Mon. Not. R. Astron. Soc. 2019, 485, 3661–3680. [Google Scholar] [CrossRef]
- Braithwaite, J. A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 2006, 449, 451–460. [Google Scholar] [CrossRef]
- Zahn, J.P.; Brun, A.S.; Mathis, S. On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 2007, 474, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Petitdemange, L.; Marcotte, F.; Gissinger, C. Hidden dynamo spins down radiative stars. arXiv 2022, arXiv:2206.13819. [Google Scholar]
- Moffatt, K.; Dormy, E. Self-Exciting Fluid Dynamos; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Augustson, K.C.; Brun, A.S.; Toomre, J. The Magnetic Furnace: Intense Core Dynamos in B Stars. Astrophys. J. 2016, 829, 92. [Google Scholar] [CrossRef]
- Lecoanet, D.; Bowman, D.M.; Van Reeth, T. Asteroseismic inference of the near-core magnetic field strength in the main-sequence B star HD 43317. Mon. Not. R. Astron. Soc. 2022, 512, L16–L20. [Google Scholar] [CrossRef]
- Fuller, J.; Cantiello, M.; Stello, D.; Garcia, R.A.; Bildsten, L. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science 2015, 350, 423–426. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Deheuvels, S.; Ballot, J.; Lignières, F. Magnetic fields of 30 to 100 kG in the cores of red giant stars. Nature 2022, 610, 43–46. [Google Scholar] [CrossRef]
- Deheuvels, S.; Li, G.; Ballot, J.; Lignières, F. Strong magnetic fields detected in the cores of 11 red giant stars using gravity-mode period spacings. Astron. Astrophys. 2023, 670, L16. [Google Scholar] [CrossRef]
- Rogers, T.M.; Lin, D.N.C.; McElwaine, J.N.; Lau, H.H.B. Internal Gravity Waves in Massive Stars: Angular Momentum Transport. Astrophys. J. 2013, 772, 21. [Google Scholar] [CrossRef]
- Talon, S.; Charbonnel, C. Angular momentum transport by internal gravity waves. I-Pop I main sequence stars. Astron. Astrophys. 2003, 405, 1025–1032. [Google Scholar] [CrossRef]
- Townsend, R.H.D.; Goldstein, J.; Zweibel, E.G. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 2018, 475, 879–893. [Google Scholar] [CrossRef]
- Rogers, T.M.; McElwaine, J.N. On the Chemical Mixing Induced by Internal Gravity Waves. Astrophys. J. 2017, 848, L1. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Aerts, C.; Pápics, P.I.; Michielsen, M.; Gebruers, S.; Rogers, T.M.; Molenberghs, G.; Burssens, S.; Garcia, S.; Bowman, D.M. Internal mixing of rotating stars inferred from dipole gravity modes. Nat. Astron. 2021, 5, 715–722. [Google Scholar] [CrossRef]
- Aerts, C.; Rogers, T.M. Observational Signatures of Convectively Driven Waves in Massive Stars. Astrophys. J. 2015, 806, L33. [Google Scholar] [CrossRef]
- Horst, L.; Edelmann, P.V.F.; Andrássy, R.; Röpke, F.K.; Bowman, D.M.; Aerts, C.; Ratnasingam, R.P. Fully compressible simulations of waves and core convection in main-sequence stars. Astron. Astrophys. 2020, 641, A18. [Google Scholar] [CrossRef]
- Bowman, D.M.; Burssens, S.; Pedersen, M.G.; Johnston, C.; Aerts, C.; Buysschaert, B.; Michielsen, M.; Tkachenko, A.; Rogers, T.M.; Edelmann, P.V.F.; et al. Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 2019, 3, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Tobias, S. The turbulent dynamo. J. Fluid Mech. 2021, 912, P1. [Google Scholar] [CrossRef]
- Kupka, F.; Muthsam, H.J. Modelling of stellar convection. Living Rev. Comput. Astrophys. 2017, 3, 1. [Google Scholar] [CrossRef]
- Lecoanet, D.; Cantiello, M.; Quataert, E.; Couston, L.A.; Burns, K.J.; Pope, B.J.S.; Jermyn, A.S.; Favier, B.; Le Bars, M. Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon? Astrophys. J. 2019, 886, L15. [Google Scholar] [CrossRef] [Green Version]
- Jermyn, A.S.; Anders, E.H.; Lecoanet, D.; Cantiello, M. An Atlas of Convection in Main-sequence Stars. Astrophys. J. Suppl. Ser. 2022, 262, 19. [Google Scholar] [CrossRef]
- Anders, E.H.; Jermyn, A.S.; Lecoanet, D.; Brown, B.P. Stellar Convective Penetration: Parameterized Theory and Dynamical Simulations. Astrophys. J. 2022, 926, 169. [Google Scholar] [CrossRef]
- Woodward, P.R.; Lin, P.H.; Mao, H.; Andrassy, R.; Herwig, F. Simulating 3-D Stellar Hydrodynamics using PPM and PPB Multifluid Gas Dynamics on CPU and CPU+GPU Nodes. J. Phys. Conf. Ser. 2019, 1225, 012020. [Google Scholar] [CrossRef]
- Anders, E.H.; Pedersen, M.G. Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints. Galaxies 2023, 11, 56. [Google Scholar] [CrossRef]
- Jofre, L.; Domino, S.P.; Iaccarino, G. A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures. Flow Turbul. Combust. 2018, 100, 341–363. [Google Scholar] [CrossRef]
- Vasil, G.M.; Lecoanet, D.; Burns, K.J.; Oishi, J.S.; Brown, B.P. Tensor calculus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and derivations. J. Comput. Phys. X 2019, 3, 100013. [Google Scholar] [CrossRef]
- Abt, H.A.; Levato, H.; Grosso, M. Rotational Velocities of B Stars. Astrophys. J. 2002, 573, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Vasil, G.M.; Julien, K.; Featherstone, N.A. Rotation suppresses giant-scale solar convection. Proc. Natl. Acad. Sci. USA 2021, 118, e2022518118. [Google Scholar] [CrossRef]
- Jones, C.A.; Boronski, P.; Brun, A.S.; Glatzmaier, G.A.; Gastine, T.; Miesch, M.S.; Wicht, J. Anelastic convection-driven dynamo benchmarks. Icarus 2011, 216, 120–135. [Google Scholar] [CrossRef]
- Yadav, R.K.; Gastine, T.; Christensen, U.R.; Wolk, S.J.; Poppenhaeger, K. Approaching a realistic force balance in geodynamo simulations. Proc. Natl. Acad. Sci. USA 2016, 113, 12065–12070. [Google Scholar] [CrossRef]
- Cantiello, M.; Fuller, J.; Bildsten, L. Asteroseismic Signatures of Evolving Internal Stellar Magnetic Fields. Astrophys. J. 2016, 824, 14. [Google Scholar] [CrossRef] [Green Version]
- Stello, D.; Cantiello, M.; Fuller, J.; Huber, D.; García, R.A.; Bedding, T.R.; Bildsten, L.; Silva Aguirre, V. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars. Nature 2016, 529, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Physical Kinetics: Volume 10 (Course of Theoretical Physics); Butterworth-Heinemann: Oxford, UK, 1981. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics (Course of Theoretical Physics: Volume 6), 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K.J.; Vasil, G.M.; Oishi, J.S.; Brown, B.P.; Stone, J.M.; O’Leary, R.M. A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 2017, 455, 4274–4288. [Google Scholar] [CrossRef]
- Timmes, F.X.; Arnett, D. The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics. Astrophys. J. Suppl. Ser. 1999, 125, 277–294. [Google Scholar] [CrossRef]
- Kraichnan, R.H.; Montgomery, D. REVIEW ARTICLE: Two-dimensional turbulence. Rep. Prog. Phys. 1980, 43, 547–619. [Google Scholar] [CrossRef]
- Boffetta, G.; Ecke, R.E. Two-Dimensional Turbulence. Annu. Rev. Fluid Mech. 2012, 44, 427–451. [Google Scholar] [CrossRef]
- Rogers, T.M.; Glatzmaier, G.A. Penetrative Convection within the Anelastic Approximation. Astrophys. J. 2005, 620, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Courant, R.; Friedrichs, K.O.; Lewy, H. Über die partiellen Differentialgleichungen der mathematischen Physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M.V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T. Benchmarking the Multidimensional Stellar Implicit Code MUSIC. Astron. Astrophys. 2017, 600, A7. [Google Scholar] [CrossRef] [Green Version]
- LeVeque, R.J. Finite Volume Methods for Hyperbolic Problems; Cambridge University Press: Cambridge, UK, 2002; Volume 31. [Google Scholar]
- Miczek, F.; Röpke, F.K.; Edelmann, P.V.F. New numerical solver for flows at various Mach numbers. Astron. Astrophys. 2015, 576, A50. [Google Scholar] [CrossRef]
- Viallet, M.; Goffrey, T.; Baraffe, I.; Folini, D.; Geroux, C.; Popov, M.V.; Pratt, J.; Walder, R. A Jacobian-free Newton–Krylov method for time-implicit multidimensional hydrodynamics. Physics-based preconditioning for sound waves and thermal diffusion. Astron. Astrophys. 2016, 586, A153. [Google Scholar] [CrossRef] [Green Version]
- Barsukow, W.; Edelmann, P.V.F.; Klingenberg, C.; Miczek, F.; Röpke, F.K. A Numerical Scheme for the Compressible Low–Mach Number Regime of Ideal Fluid Dynamics. J. Sci. Comput. 2017, 72, 623–646. [Google Scholar] [CrossRef] [Green Version]
- Liou, M.S. A sequel to AUSM, Part II: AUSM +-up for all speeds. J. Comput. Phys. 2006, 214, 137–170. [Google Scholar] [CrossRef]
- Li, X.s.; Gu, C.w. An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour. J. Comput. Phys. 2008, 227, 5144–5159. [Google Scholar] [CrossRef]
- Rieper, F. A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 2011, 230, 5263–5287. [Google Scholar] [CrossRef]
- Minoshima, T.; Miyoshi, T. A low-dissipation HLLD approximate Riemann solver for a very wide range of Mach numbers. J. Comput. Phys. 2021, 446, 110639. [Google Scholar] [CrossRef]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Glatzmaier, G.A. Introduction to Modelling Convection in Planets and Stars; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Glatzmaier, G.A. Numerical simulations of stellar convective dynamos. I. The model andmethod. J. Comput. Phys. 1984, 55, 461–484. [Google Scholar] [CrossRef]
- Clune, T.C.; Elliott, J.R.; Miesch, M.S.; Toomre, J.; Glatzmaier, G.A. Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comput. 1999, 25, 361–380. [Google Scholar] [CrossRef]
- Wicht, J. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 2002, 132, 281–302. [Google Scholar] [CrossRef]
- Gastine, T.; Wicht, J. Effects of compressibility on driving zonal flow in gas giants. Icarus 2012, 219, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, N.; Hindman, B. The Spectral Amplitude Of Stellar Convection And Its Scaling In The High-Rayleigh-Number Regime. Astrophys. J. 2016, 818, 32. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.J.; Vasil, G.M.; Oishi, J.S.; Lecoanet, D.; Brown, B.P. Dedalus: A flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2020, 2, 023068. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, P.V.F.; Horst, L.; Berberich, J.P.; Andrassy, R.; Higl, J.; Leidi, G.; Klingenberg, C.; Röpke, F.K. Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers. Astron. Astrophys. 2021, 652, A53. [Google Scholar] [CrossRef]
- Calhoun, D.A.; Helzel, C.; Leveque, R.J. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains. SIAM Rev. 2008, 50, 723–752. [Google Scholar] [CrossRef] [Green Version]
- Baraffe, I.; Clarke, J.; Morison, A.; Vlaykov, D.G.; Constantino, T.; Goffrey, T.; Guillet, T.; Le Saux, A.; Pratt, J. A study of convective core overshooting as a function of stellar mass based on two-dimensional hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2023, 519, 5333–5344. [Google Scholar] [CrossRef]
- Fryxell, B.; Mueller, E.; Arnett, D. Instabilities and Clumping in SN 1987A. I. Early Evolution in Two Dimensions. Astrophys. J. 1991, 367, 619. [Google Scholar] [CrossRef]
- Colella, P.; Woodward, P.R. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef] [Green Version]
- Colella, P.; Glaz, H.M. Efficient Solution Algorithms for the Riemann Problem for Real Gases. J. Comput. Phys. 1985, 59, 264–289. [Google Scholar] [CrossRef] [Green Version]
- Meakin, C.A.; Arnett, D. Turbulent Convection in Stellar Interiors. I. Hydrodynamic Simulation. Astrophys. J. 2007, 667, 448–475. [Google Scholar] [CrossRef] [Green Version]
- Viallet, M.; Meakin, C.; Arnett, D.; Mocák, M. Turbulent Convection in Stellar Interiors. III. Mean-field Analysis and Stratification Effects. Astrophys. J. 2013, 769, 1. [Google Scholar] [CrossRef] [Green Version]
- Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I. 3D hydrodynamic simulations of carbon burning in massive stars. Mon. Not. R. Astron. Soc. 2017, 471, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F.X.; Zingale, M.; Lamb, D.Q.; MacNeice, P.; Rosner, R.; Truran, J.W.; Tufo, H. FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. Astrophys. J. Suppl. Ser. 2000, 131, 273–334. [Google Scholar] [CrossRef]
- Couch, S.M.; Chatzopoulos, E.; Arnett, W.D.; Timmes, F.X. The Three-dimensional Evolution to Core Collapse of a Massive Star. Astrophys. J. 2015, 808, L21. [Google Scholar] [CrossRef]
- Fields, C.E.; Couch, S.M. Three-dimensional Hydrodynamic Simulations of Convective Nuclear Burning in Massive Stars Near Iron Core Collapse. Astrophys. J. 2021, 921, 28. [Google Scholar] [CrossRef]
- Woodward, P.R.; Jayaraj, J.; Lin, P.; Knox, M.; Porter, D.; Fryer, C.; Dimonte, G.; Joggerst, C.; Rockefeller, G.; Dai, W.; et al. Simulating turbulent mixing from richtmyer-meshkov and rayleigh-taylor instabilities in converging geometries using moving cartesian grids. In Proceedings of the 2012 Nuclear Explosives Code Development Conference (NECDC 2012), Washington, DC, USA, 4–5 December 2012. [Google Scholar]
- Herwig, F.; Woodward, P.R.; Mao, H.; Thompson, W.R.; Denissenkov, P.; Lau, J.; Blouin, S.; Andrassy, R.; Paul, A. 3D hydrodynamic simulations of massive main-sequence stars. I. Dynamics and mixing of convection and internal gravity waves. arXiv 2023, arXiv:2303.05495. [Google Scholar] [CrossRef]
- Thompson, W.; Herwig, F.; Woodward, P.R.; Mao, H.; Denissenkov, P.; Bowman, D.M.; Blouin, S. 3D hydrodynamic simulations of massive main-sequence stars II. Convective excitation and spectra of internal gravity waves. arXiv 2023, arXiv:2303.06125. [Google Scholar] [CrossRef]
- Zhang, W.; Almgren, A.; Beckner, V.; Bell, J.; Blaschke, J.; Chan, C.; Day, M.; Friesen, B.; Gott, K.; Graves, D.; et al. AMReX: A framework for block-structured adaptive mesh refinement. J. Open Source Softw. 2019, 4, 1370. [Google Scholar] [CrossRef]
- Grete, P.; Vlaykov, D.G.; Schmidt, W.; Schleicher, D.R.G. Comparative statistics of selected subgrid-scale models in large-eddy simulations of decaying, supersonic magnetohydrodynamic turbulence. Phys. Rev. E 2017, 95, 033206. [Google Scholar] [CrossRef] [Green Version]
- Hristov, B.; Collins, D.C.; Hoeflich, P.; Weatherford, C.A.; Diamond, T.R. Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae. Astrophys. J. 2018, 858, 13. [Google Scholar] [CrossRef]
- Vasil, G.M.; Lecoanet, D.; Brown, B.P.; Wood, T.S.; Zweibel, E.G. Energy Conservation and Gravity Waves in Sound-proof Treatments of Stellar Interiors. II. Lagrangian Constrained Analysis. Astrophys. J. 2013, 773, 169. [Google Scholar] [CrossRef]
- Matsui, H.; Heien, E.; Aubert, J.; Aurnou, J.; Avery, M.; Brown, B.; Buffett, B.; Busse, F.; Christensen, U.; Davies, C.; et al. Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst. 2016, 17, 1586–1607. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, P.V.F.; Ratnasingam, R.P.; Pedersen, M.G.; Bowman, D.M.; Prat, V.; Rogers, T.M. Three-dimensional Simulations of Massive Stars. I. Wave Generation and Propagation. Astrophys. J. 2019, 876, 4. [Google Scholar] [CrossRef] [Green Version]
- Lecoanet, D.; Brown, B.P.; Zweibel, E.G.; Burns, K.J.; Oishi, J.S.; Vasil, G.M. Conduction in Low Mach Number Flows. I. Linear and Weakly Nonlinear Regimes. Astrophys. J. 2014, 797, 94. [Google Scholar] [CrossRef] [Green Version]
- Stone, J.M.; Tomida, K.; White, C.J.; Felker, K.G. The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers. Astrophys. J. Suppl. Ser. 2020, 249, 4. [Google Scholar] [CrossRef]
- Almgren, A.; Sazo, M.; Bell, J.; Harpole, A.; Katz, M.; Sexton, J.; Willcox, D.; Zhang, W.; Zingale, M. CASTRO: A Massively Parallel Compressible Astrophysics Simulation Code. J. Open Source Softw. 2020, 5, 2513. [Google Scholar] [CrossRef]
- Fan, D.; Nonaka, A.; Almgren, A.; Willcox, D.; Harpole, A.; Zingale, M. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver. J. Open Source Softw. 2019, 4, 1757. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Nonaka, A.; Almgren, A.S.; Harpole, A.; Zingale, M. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver. Astrophys. J. 2019, 887, 212. [Google Scholar] [CrossRef]
- Bryan, G.L.; Norman, M.L.; O’Shea, B.W.; Abel, T.; Wise, J.H.; Turk, M.J.; Reynolds, D.R.; Collins, D.C.; Wang, P.; Skillman, S.W.; et al. ENZO: An Adaptive Mesh Refinement Code for Astrophysics. Astrophys. J. Suppl. Ser. 2014, 211, 19. [Google Scholar] [CrossRef]
- Brummel-Smith, C.; Bryan, G.; Butsky, I.; Corlies, L.; Emerick, A.; Forbes, J.; Fujimoto, Y.; Goldbaum, N.; Grete, P.; Hummels, C.; et al. ENZO: An Adaptive Mesh Refinement Code for Astrophysics (Version 2.6). J. Open Source Softw. 2019, 4, 1636. [Google Scholar] [CrossRef]
- Collaboration, T.P.C.; Brandenburg, A.; Johansen, A.; Bourdin, P.A.; Dobler, W.; Lyra, W.; Rheinhardt, M.; Bingert, S.; Haugen, N.E.L.; Mee, A.; et al. The Pencil Code, a modular MPI code for partial differential equations and particles: Multipurpose and multiuser-maintained. J. Open Source Softw. 2021, 6, 2807. [Google Scholar] [CrossRef]
- Browning, M.K.; Brun, A.S.; Toomre, J. Simulations of Core Convection in Rotating A-Type Stars: Differential Rotation and Overshooting. Astrophys. J. 2004, 601, 512–529. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, N.A.; Edelmann, P.V.F.; Gassmoeller, R.; Matilsky, L.I.; Orvedahl, R.J.; Wilson, C.R. Geodynamics/Rayleigh: Rayleigh Version 1.1.0. 2022. Available online: https://zenodo.org/record/6522806 (accessed on 6 July 2023).
- Deupree, R.G. Two-dimensional Hydrodynamic Simulations of Zero-Age Main-Sequence Convective Cores. Astrophys. J. 2000, 543, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Gilet, C.; Almgren, A.S.; Bell, J.B.; Nonaka, A.; Woosley, S.E.; Zingale, M. Low Mach Number Modeling of Core Convection in Massive Stars. Astrophys. J. 2013, 773, 137. [Google Scholar] [CrossRef]
- Higl, J.; Müller, E.; Weiss, A. Calibrating core overshooting parameters with two-dimensional hydrodynamical simulations. Astron. Astrophys. 2021, 646, A133. [Google Scholar] [CrossRef]
- Varghese, A.; Ratnasingam, R.P.; Vanon, R.; Edelmann, P.V.F.; Rogers, T.M. Chemical Mixing Induced by Internal Gravity Waves in Intermediate-mass Stars. Astrophys. J. 2023, 942, 53. [Google Scholar] [CrossRef]
- Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M.V.; Walder, R.; Folini, D. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star. Astron. Astrophys. 2017, 604, A125. [Google Scholar] [CrossRef] [Green Version]
- Baraffe, I.; Pratt, J.; Vlaykov, D.G.; Guillet, T.; Goffrey, T.; Le Saux, A.; Constantino, T. Two-dimensional simulations of solar-like models with artificially enhanced luminosity. I. Impact on convective penetration. Astron. Astrophys. 2021, 654, A126. [Google Scholar] [CrossRef]
- Mao, H.; Woodward, P.; Herwig, F.; Denissenkov, P.A.; Blouin, S.; Thompson, W. 3D hydrodynamic simulations of massive main-sequence stars. III. The effect of radiation pressure and diffusion leading to a 1D equilibrium model. arXiv 2023, arXiv:2304.10470. [Google Scholar] [CrossRef]
- Roxburgh, I.W. Integral constraints on convective overshooting. Astron. Astrophys. 1989, 211, 361–364. [Google Scholar]
- Le Saux, A.; Baraffe, I.; Guillet, T.; Vlaykov, D.G.; Morison, A.; Pratt, J.; Constantino, T.; Goffrey, T. Two-dimensional simulations of internal gravity waves in a 5 M⊙ zero-age-main-sequence model. Mon. Not. R. Astron. Soc. 2023, 522, 2835–2849. [Google Scholar] [CrossRef]
- Anders, E.H.; Lecoanet, D.; Cantiello, M.; Burns, K.J.; Hyatt, B.A.; Kaufman, E.; Townsend, R.H.D.; Brown, B.P.; Vasil, G.M.; Oishi, J.S.; et al. The photometric variability of massive stars due to gravity waves excited by core convection. arXiv 2023, arXiv:2306.08023. [Google Scholar] [CrossRef]
- Lecoanet, D.; Cantiello, M.; Anders, E.H.; Quataert, E.; Couston, L.A.; Bouffard, M.; Favier, B.; Le Bars, M. Surface manifestation of stochastically excited internal gravity waves. Mon. Not. R. Astron. Soc. 2021, 508, 132–143. [Google Scholar] [CrossRef]
- Press, W.H. Radiative and other effects from internal waves in solar and stellar interiors. Astrophys. J. 1981, 245, 286–303. [Google Scholar] [CrossRef]
- Garcia Lopez, R.J.; Spruit, H.C. Li Depletion in F Stars by Internal Gravity Waves. Astrophys. J. 1991, 377, 268. [Google Scholar] [CrossRef]
- Lighthill, M.J. On Sound Generated Aerodynamically. I. General Theory. Proc. R. Soc. Lond. Ser. A 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Goldreich, P.; Keeley, D.A. Solar seismology. II. The stochastic excitation of the solar p-modes by turbulent convection. Astrophys. J. 1977, 212, 243–251. [Google Scholar] [CrossRef]
- Goldreich, P.; Kumar, P. Wave Generation by Turbulent Convection. Astrophys. J. 1990, 363, 694. [Google Scholar] [CrossRef]
- Belkacem, K.; Samadi, R.; Goupil, M.J.; Dupret, M.A.; Brun, A.S.; Baudin, F. Stochastic excitation of nonradial modes. II. Are solar asymptotic gravity modes detectable? Astron. Astrophys. 2009, 494, 191–204. [Google Scholar] [CrossRef]
- Pinçon, C.; Belkacem, K.; Goupil, M.J. Generation of internal gravity waves by penetrative convection. Astron. Astrophys. 2016, 588, A122. [Google Scholar] [CrossRef] [Green Version]
- Mathis, S.; Neiner, C.; Tran Minh, N. Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars. Astron. Astrophys. 2014, 565, A47. [Google Scholar] [CrossRef] [Green Version]
- Augustson, K.C.; Mathis, S.; Astoul, A. A Model of Rotating Convection in Stellar and Planetary Interiors. II. Gravito-inertial Wave Generation. Astrophys. J. 2020, 903, 90. [Google Scholar] [CrossRef]
- Stevenson, D.J. Turbulent thermal convection in the presence of rotation and a magnetic field: A heuristic theory. Geophys. Astrophys. Fluid Dyn. 1979, 12, 139–169. [Google Scholar] [CrossRef]
- Ratnasingam, R.P.; Rogers, T.M.; Chowdhury, S.; Handler, G.; Vanon, R.; Varghese, A.; Edelmann, P.V.F. Internal gravity waves in massive stars. II. Frequency analysis across stellar mass. Astron. Astrophys. 2023, 674, A134. [Google Scholar] [CrossRef]
- Lecoanet, D.; Quataert, E. Internal gravity wave excitation by turbulent convection. Mon. Not. R. Astron. Soc. 2013, 430, 2363–2376. [Google Scholar] [CrossRef] [Green Version]
- Le Saux, A.; Guillet, T.; Baraffe, I.; Vlaykov, D.G.; Constantino, T.; Pratt, J.; Goffrey, T.; Sylvain, M.; Réville, V.; Brun, A.S. Two-dimensional simulations of solar-like models with artificially enhanced luminosity. II. Impact on internal gravity waves. Astron. Astrophys. 2022, 660, A51. [Google Scholar] [CrossRef]
- Jermyn, A.S. Nonlinear Mixing driven by Internal Gravity Waves. arXiv 2022, arXiv:2209.08344. [Google Scholar]
- Zahn, J.P. Circulation and turbulence in rotating stars. Astron. Astrophys. 1992, 265, 115–132. [Google Scholar]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J. The Quasi-Biennial Oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Rogers, T.M. On the Differential Rotation of Massive Main-sequence Stars. Astrophys. J. 2015, 815, L30. [Google Scholar] [CrossRef] [Green Version]
- Triana, S.A.; Moravveji, E.; Pápics, P.I.; Aerts, C.; Kawaler, S.D.; Christensen-Dalsgaard, J. The Internal Rotation Profile of the B-type Star KIC 10526294 from Frequency Inversion of its Dipole Gravity Modes. Astrophys. J. 2015, 810, 16. [Google Scholar] [CrossRef] [Green Version]
- Ogura, Y.; Phillips, N.A. Scale Analysis of Deep and Shallow Convection in the Atmosphere. J. Atmos. Sci. 1962, 19, 173–179. [Google Scholar] [CrossRef]
- Durran, D.R. Improving the Anelastic Approximation. J. Atmos. Sci. 1989, 46, 1453–1461. [Google Scholar] [CrossRef]
- Staritsin, E.I. Turbulent entrainment at the boundaries of the convective cores of main-sequence stars. Astron. Rep. 2013, 57, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Andrassy, R.; Higl, J.; Mao, H.; Mocák, M.; Vlaykov, D.G.; Arnett, W.D.; Baraffe, I.; Campbell, S.W.; Constantino, T.; Edelmann, P.V.F.; et al. Dynamics in a stellar convective layer and at its boundary: Comparison of five 3D hydrodynamics codes. Astron. Astrophys. 2022, 659, A193. [Google Scholar] [CrossRef]
- Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J.W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; et al. Application of a Theory and Simulation-based Convective Boundary Mixing Model for AGB Star Evolution and Nucleosynthesis. Astrophys. J. 2016, 827, 30. [Google Scholar] [CrossRef]
- Battino, U.; Tattersall, A.; Lederer-Woods, C.; Herwig, F.; Denissenkov, P.; Hirschi, R.; Trappitsch, R.; den Hartogh, J.W.; Pignatari, M.; NuGrid Collaboration. NuGrid stellar data set-III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Mon. Not. R. Astron. Soc. 2019, 489, 1082–1098. [Google Scholar] [CrossRef]
- Scott, L.J.A.; Hirschi, R.; Georgy, C.; Arnett, W.D.; Meakin, C.; Kaiser, E.A.; Ekström, S.; Yusof, N. Convective core entrainment in 1D main-sequence stellar models. Mon. Not. R. Astron. Soc. 2021, 503, 4208–4220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecoanet, D.; Edelmann, P.V.F. Multidimensional Simulations of Core Convection. Galaxies 2023, 11, 89. https://doi.org/10.3390/galaxies11040089
Lecoanet D, Edelmann PVF. Multidimensional Simulations of Core Convection. Galaxies. 2023; 11(4):89. https://doi.org/10.3390/galaxies11040089
Chicago/Turabian StyleLecoanet, Daniel, and Philipp V. F. Edelmann. 2023. "Multidimensional Simulations of Core Convection" Galaxies 11, no. 4: 89. https://doi.org/10.3390/galaxies11040089
APA StyleLecoanet, D., & Edelmann, P. V. F. (2023). Multidimensional Simulations of Core Convection. Galaxies, 11(4), 89. https://doi.org/10.3390/galaxies11040089