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Abstract: The cores of main sequence intermediate- and high-mass stars are convective. Mixing at the
radiative–convective boundary, waves excited by the convection, and magnetic fields generated by
convective dynamos all influence the main sequence and post-main sequence evolution of these stars.
These effects must be understood to accurately model the structure and evolution of intermediate-
and high-mass stars. Unfortunately, there are many challenges in simulating core convection due
to the wide range of temporal and spatial scales, as well as many important physics effects. In this
review, we describe the latest numerical strategies to address these challenges. We then describe
the latest state-of-the-art simulations of core convection, summarizing their main findings. These
simulations have led to important insights into many of the processes associated with core convection.
Two outstanding problems with multidimensional simulations are, 1. it is not always straightforward
to extrapolate from simulation parameters to the parameters of real stars; and 2. simulations using
different methods sometimes appear to arrive at contradictory results. To address these issues,
next generation simulations of core convection must address how their results depend on stellar
luminosity, dimensionality, and turbulence intensity. Furthermore, code comparison projects will be
essential to establish robust parameterizations that will become the new standard in stellar modeling.

Keywords: magnetohydrodynamics; convection zones; internal waves; computational methods

1. Introduction and Motivation

All main-sequence stars have convection zones; while lower-mass stars with M . 1.5 M�
have convective envelopes, higher-mass stars with M & 1.5 M� have convective cores.
These higher-mass stars with convective cores are rare, but disproportionately important in
astrophysics. Massive stars (M & 8 M�) are the progenitors of neutron stars and black holes,
and both massive stars and intermediate-mass stars (1.5 M� . M . 8 M�) chemically
enrich their environments through winds and/or explosive mass-loss. The lives and deaths
of intermediate-mass and massive stars are influenced by the convective processes in their
cores while they are on the main sequence.

Despite their importance, there remain significant uncertainties in the main-sequence
lifetime of stars with convective cores (e.g., [1]). While the convection zone is chemically
homogeneous, fresh H fuel can be mixed into the core by convective boundary mixing,
extending the star’s main-sequence lifetime. We use the term convective boundary mixing
to encompass any physical mechanism which brings radiative-zone material into the
convection zone (e.g., convective overshoot and convective penetration Anders et al. [2]).
Kaiser et al. [3] examined a series of plausible models of convective boundary mixing, and
found variations of ∼20% in the main-sequence lifetimes of stars between 15 and 20 M�.
These differences compound over the life of the star; they found differences in He core
masses of∼40%, and differences in CO core masses of∼60%. Realistic models of convective
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boundary mixing must be implemented in stellar evolution codes and population synthesis
models in order to accurately predict properties of stellar remnants [4] and nucleosynthetic
yields [5].

Magnetic fields are also very important in intermediate-mass and massive stars. Strong
stellar magnetic fields may power superluminous supernova and seed ∼1015 G magnetar
magnetic fields [6]. Torques from the Lorentz force can lead to very efficient angular
momentum transport [7,8]. Although there is substantial controversy over magnetic field
generation in the radiative zones of stars [9–13], it is well-established that convection
can generate magnetic fields (e.g., [14]) The cores of intermediate-mass and massive stars
likely harbor large-scale magnetic fields [15], though the effects of these magnetic fields on
convective boundary mixing, angular momentum transport, and the subsequent post-main-
sequence evolution of these stars is as-yet unknown. Recently, the presence of magnetic
fields has been inferred from asteroseismic analysis in a main-sequence B star [16], and
RGB stars with masses ≈ 1.5 M� [17–19]. These magnetic fields could be generated by core
convective dynamos while the stars were on the main sequence, or they may be remnants
of fossil magnetic fields.

Although the most vigorous motions in intermediate-mass and massive stars occur in
their convective cores, their radiative envelopes are anything but quiescent. These radiative
zones host a wide variety of waves; in particular, internal gravity waves, the propagating
version of g-modes. In intermediate-mass and massive stars, internal gravity waves are
generated by convection, as well as by opacity gradients in the outer part of the star. These
waves can transport angular momentum [20–22], as well as chemicals (e.g., [23]) in stellar
radiative envelopes. The latest asteroseismic inferences of chemical mixing in stars may
be able to probe mixing by waves [24]. Furthermore, convectively excited waves may be
visible at the stellar surface (e.g., [25,26]). Bowman et al. [27] have detected ubiquitous
low-frequency variability in massive stars, which could be from convectively excited waves.
If so, this variability could encode important properties of core convection.

While many stellar processes are adequately described by one-dimensional stellar
structure and evolution calculations, convection is a fundamentally multidimensional
phenomenon that must be parameterized. (Luckily the thermal structure of the convection
zone is well-known; the convection is efficient so the temperature gradient is adiabatic.
Thus, mixing length theory is not necessary for core convection and core convection zones
are not affected by different choices or implementations for mixing length parameters.)
Convective boundary mixing, dynamo magnetic field generation, and wave-driven angular
momentum and chemical transport all affect the evolution of intermediate-mass and
massive stars, and must be included for high-fidelity stellar modeling, comparing to
observations, and making predictions for population synthesis and nucleosynthetic models.
In this review, we discuss the current state-of-the-art multidimensional simulations of stellar
core convection, and how these simulations are being used to understand the processes
which govern stellar evolution.

2. Simulation Challenges

While core convection is important in astrophysics, it is very difficult to study from
first principles. The fluid motions of core convection are governed by the Navier–Stokes
equation, but are also influenced by, e.g., magnetic fields, rotation, nuclear reactions, and
the opacity and equation of state of the constituent plasma. There are no relevant analytic
solutions to this system of algebraic and partial differential equations, so the equations must
be simulated numerically. We now encounter the fundamental challenge of astrophysical
fluid dynamics, to run a direct numerical simulation of a star using current hardware would
require the entire power output of an M dwarf [28]. Others have described some of the
general challenges of studying stellar convection in solar-type stars [29]. Here, we describe
some of the main challenges facing numerical simulations of core convection; Section 3
describes how different simulation codes address these challenges.
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There are many important processes associated with core convection, each of which
have different characteristic time and length scales. A major challenge in simulating core
convection is capturing these very discrepant time and length scales. We will illustrate these
ranges by using a zero-age main sequence 10 M� star as an example. Although the precise
values of each time and length scale is different for intermediate- and high-mass stars of
different masses and ages, the order of magnitude is similar. We use a stellar structure
model from Lecoanet et al. [30], but different stellar modeling choices do not significantly
impact the values reported here. Jermyn et al. [31] describes how some of these time and
length scales vary with mass and age over the main sequence.

2.1. Time Scales
2.1.1. Sound

A typical sound speed in the convective core of a 10 M� zero-age main sequence
star is cs ∼ 7× 108 cm/s. The radius of the convection zone is Rc ∼ 6× 1010 cm, so the
sound-crossing time (or dynamical) across the convection zone is

tsound =
Rc

cs
∼ 102 s. (1)

This estimates the time scale over which fluid motions in the convection zone reach pressure
equilibrium. This is one of the shortest global time scales of the star, meaning that the fluid
is always close to pressure equilibrium. An important practical concern is the sound-wave
Courant–Friedrichs–Lewy (CFL) condition, which states that numerical simulations which
use explicit timestepping methods to solve the compressible Navier–Stokes equations
must take timesteps of size .h/cs, where h is the simulation grid resolution. Thus, a
high-resolution simulation with 103 grid points across the convection zone can only take
timesteps of size .0.1 s if the simulation uses an explicit timestepping scheme.

2.1.2. Buoyancy

The radiative zone of a star is stably stratified and admits waves known as internal
gravity waves or buoyancy waves. The shortest possible period of an internal gravity
wave is given by the buoyancy time

tb =
2π

N
= 2π

(
g
cp

∂s
∂r

)−1/2
∼ 103 s, (2)

where N is known as the Brunt–Väisälä frequency or the buoyancy frequency, g is the
gravitational acceleration, cp is the ratio of specific heats at constant pressure, s is the
specific entropy, and r is the radius. The buoyancy time is typically similar to the sound
time as they are both roughly Hp/cs, where Hp is the pressure scale height. Note, however,
that sound waves propagate on time scales shorter than tsound, whereas buoyancy waves
propagate on time scales longer than tb. The buoyancy time gives an estimate of the
strength of stable stratification in the radiative zone.

2.1.3. Convection

We estimate the convective time as the ratio of the radius of the convection zone Rc to
the convective velocity uc,

tc =
Rc

uc
= Rc

(
Lc

4πr2ρ

)−1/3
∼ 106 s. (3)

This measures the time it takes for a fluid parcel to move from the center of the star to the
edge of the convection zone. We estimate the convective velocity by

ρu3
c = Fc =

Lc

4πr2 , (4)
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where Fc is the convective flux, Lc is the convective luminosity, and ρ is the density. The
convective luminosity is the difference of the total luminosity and the radiative luminosity.

Here we see that the convective time is ∼104 times longer than the sound-crossing
time. The former means that simulations which use explicit timestepping schemes require
timesteps that are 104 smaller than simulations using implicit timestepping schemes. Such
a simulation with 103 grid points across the convection requires O(107) timesteps per
convection time. The convection time is also ∼103 times longer than the buoyancy time.
That means the radiative zone is a thousand times as stably stratified as the convection
zone is unstable to convection. Thus, convection produces only very slight motions in the
radiative zone.

2.1.4. Thermal

Stars maintain flux equilibrium on the thermal, or Kelvin–Helmholtz, time scale. Here
we estimate the thermal time scale using the radiative diffusivity krad and the radius of the
convective core,

tth =
R2

c
krad
∼ 1012 s. (5)

The radiative diffusivity is given by

krad =
16σT3

3κcpρ2 , (6)

where σ is the Stefan–Boltzmann constant, T is the temperature, and κ is the opacity. Thus,
there are about one million convection times in a single thermal time. When running a
convection simulation, there is often a quick transient phase O(tc) over which convection
establishes itself. While many convective properties are steady after this transient phase,
there are some secular changes which occur over the thermal time. Most significantly, the
region near the boundary between the convective and radiative zone takes a thermal time
to equilibrate [32].

2.1.5. Evolution

The longest time scale relevant for core convection is the main-sequence lifetime of
the star. This is the nuclear burning time scale. For a 10 M� star, this is about

te ∼ 1015 s, (7)

or about 1000 thermal times. It is neither possible nor necessary to run multidimensional
convection simulations on evolution times. Because te � tth, it is sufficient to solve
for the thermal equilibrium of the convective system. To capture the evolving thermal
equilibrium across the main-sequence lifetime, one can either (i) perform a limited number
of simulations at different stages of evolution; or (ii) parameterize the equilibrium state in
terms of properties that vary across the main-sequence lifetime (e.g., ratio of buoyancy to
convective time scales).

2.2. Length Scales
2.2.1. Convection Zone Radius

The radius of the convection zone of a 10 M� zero age main sequence star is about

Rc ∼ 6× 1010 cm. (8)

Absent rotational effects, the core convection organizes itself into a dipole flow going
through the center of the star and returning along the radiative–convective boundary
(e.g., [33]). Hence, convective flows can organize on length scales as large as Rc.
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2.2.2. Pressure Scale Height

The pressure scale height

Hp = p
(
−dp

dr

)−1
∼ 3× 1010 cm (9)

measures the length scale over which background thermodynamic quantities vary in the
star. If fluid moves across multiple density scale heights, compressibility effects can lead to
important asymmetries and organizations of the flow. However, in core convection, the
pressure scale height is similar to the convection zone radius, so compressibility plays a
minor role.

2.2.3. Overshoot Length

How far do convective motions overshoot into the radiative zone? This is important
for describing convective boundary mixing and the generation of internal gravity waves
by convection. Here, we estimate the overshoot length by equating the kinetic energy of
convective flows 1

2 ρu2
c to the potential energy cost for rising a fluid element a height `ov in

the radiative zone 1
2 ρ`2

ovN2,

`ov =
uc

N
∼ 6× 107 cm. (10)

This estimate of the overshoot length is smaller than the convection zone radius by
a factor of 103; see Anders and Pedersen [34] for other ways of estimating the overshoot
length. Simulations thus require a very fine resolution near the radiative–convective
boundary to accurately simulate overshooting dynamics.

2.2.4. Radiative Diffusion Length

Radiation is an essential energy transport mechanism in stars. However, radiative
diffusion also affects small-scale fluid motions in the convection zone. On the radiative
diffusion length scale, fluid motions will diffuse their thermal content within one eddy
turnover time. Motions smaller than the radiative diffusion length scale are not affected
by buoyancy. In Section 2.1.3, we estimated the convective turnover time for the largest
scale convective flows. Similarly, one can define the turnover time of a small-scale eddy of
size 1/k with velocity uk to be τ` = (k u`)

−1. We will assume a Kolmogorov k−5/3 kinetic
energy spectrum, where k is the wavenumber associated with convective motions. This
implies the eddy turnover time scales ∼ k−2/3. Then the radiative diffusion length scale is

`d = Rc

(
ucRc

krad

)−3/4
∼ 2× 106 cm. (11)

The radiative diffusion length is smaller than the overshoot length, but not significantly
so. A simulation with 3 grid points per radiative diffusion length would require ∼105 grid
points across the convection zone. This is beyond current computational capabilities.

2.2.5. Viscous Length

The viscosity of stellar plasmas is significantly smaller than the radiative diffusivity.
This mean that there are fluid motions below the radiative diffusion length, even if they are
no longer driven by buoyancy. These motions should follow a Kolmogorov kinetic energy
cascade, continuously transfer energy to smaller scales until it is viscously dissipated.
Similar to the radiative diffusion length, we estimate the viscous length is

`v = Rc

(
ucRc

ν

)−3/4
∼ 300 cm, (12)

where ν is the viscosity [31]. This is the smallest important length scale for core convection;
below `v, there are negligible motions. Because it is so much smaller than the radius of the
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convection zone, there is no hope to simulate all scales of motion in core convection. That
is to say, numerical simulations are less turbulent than real stars. Numerical simulations
must introduce dissipation on much larger scales than `v, which is sometimes captured by
an artificial viscosity. Fortunately, energy in turbulence is predominately transferred from
large scales to small scales, which is easy to simulate. Nevertheless, there is also backscatter,
in which small scale flows can influence large scale flows (e.g., [35]). This does not occur
properly in numerical simulations, which do not capture the full range of scales of core
convection.

2.3. Physical Effects

Beyond the wide range of time and length scales, there are many physical effects
which are challenging to include in numerical simulations of core convection. Here, we
will include a brief description of the main challenges.

2.3.1. Spherical Geometry

Core convection occurs in a roughly spherical region of a star. This makes it natural to
use spherical coordinates to describe core convection. However, the spherical coordinate
system has coordinate singularities at r = 0 and at the poles (θ = 0, π). Different variables
must satisfy different regularity conditions at the poles [36], which can be difficult to
impose. Some simulations avoid these coordinate singularities by excising small regions
near the origin and/or the poles, but these artificial surfaces can lead to extra friction and
change large-scale flow characteristics. Without rotation, core convection organizes into a
large-scale dipole flow which passes directly through the origin, excising a small region
around the origin can disrupt this flow.

Another strategy is to solve the problem in Cartesian geometry. While this avoids
coordinate singularities, it does not conform to the spherical symmetry of the star. In
particular, recall that the overshoot length scale is roughly 1000 times smaller than the con-
vection zone radius. That means the radiative–convective boundary is very nearly spherical.
Simulations require very fine grid spacing near the radiative–convective boundary so they
can adequately separate convective from radiative regions. This is easier to accomplish
when using spherical geometry, as one can use small radial grid spacing near the radiative–
convective boundary. When using Cartesian coordinates, higher radial resolution near the
radiative–convective boundary requires multidimensional grid refinement.

2.3.2. Rotation

Intermediate-mass and massive stars rotate, which influences the convection in their
cores. Typical photometric rotation periods for B stars are about T = 4 days [37]. This
corresponds to a rotational timescale of

trot =
1

2Ω
∼ 3× 104 s, (13)

where Ω = 2π/T is the rotation frequency. Because tb � trot � tc, rotation is subdominant
in the radiative zone, but plays an important role in convection. The Coriolis force leads
to anisotropic convective motions. The flow organizes into cells aligned with the rotation
axis with typical vertical extents of Rc, but typical horizontal sizes of Ro Rc, where Ro is the
Rossby number. While these anisotropic cells carry the stellar luminosity more efficiently
as non-rotation convection, their relevant length scale is smaller than Rc; since trot � tc we
can estimate Ro using the estimates of Vasil et al. [38],

Ro =

(
uc

2ΩRc

)3/5
∼ 0.1. (14)

This means we expect core convection to be strongly influenced by rotation, with a
length scale perpendicular to the rotation axis of 0.1 Rc, rather than the large-scale dipolar
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flow which dominates in non-rotating simulations. This demonstrates the importance of
rotation on core convection. Because the rotation time is short relative to the convection
time, numerical simulations must ensure they conserve angular momentum [39].

2.3.3. Magnetism

The cores of intermediate- and high-mass stars are highly conductive plasmas, which
can generate magnetic fields via the dynamo effect [14]. Turbulence easily generates small-
scale dynamos, tangled magnetic fields on the viscous length scale which are in equiparti-
tion with the small-scale velocity. Rotation organizes the convective flows, and can lead
to a large-scale dynamo magnetic fields (e.g., in the Sun). These large-scale fields can
sometimes be superequipartition, i.e., have larger magnetic energy than kinetic energy [40].
Large fields would likely impact energy transport, convective boundary mixing, and the
generation of internal gravity waves by core convection.

Recently, asteroseismology has been used to infer the presence of strong magnetic
fields in the cores of intermediate- and high-mass stars. Cantiello et al. [41] estimated
that magnetic fields of strength ∼105 G would have a significant influence on g-mode
asteroseismology of γ-Dor and slowly pulsating B (SPB) stars. Indeed, Ref. [16] recently
inferred the presence of a ≈500 kG magnetic field near the convective core of the SPB
star, HD 43317. It is unclear if this magnetic field was dynamo-generated or is of fossil
origin. As these stars evolve off the main sequence, their cores become stably stratified,
but they can maintain some of their core magnetic field generated on the main sequence.
Such magnetic fields may explain depressed dipole modes in red giant branch (RGB)
stars [42], and has been used to estimate a core magnetic field of ≈107 G in the RGB star
KIC8561221 [17]. More recently, Li et al. [18] has measured 50–100 kG magnetic fields in
the cores of several RGB stars. Although magnetoasteroseismology remains in its infancy,
preliminary results suggest main sequence stars with convective cores generate or maintain
large-scale magnetic fields.

Magnetic fields can be included in numerical simulations of core convection by solving
the magnetohydrodynamic equations. The main difficulty in solving these equations is
maintaining a divergenceless magnetic field (∇ · B = 0). The magnetic field evolves
according to the induction equation, which preserves the divergence of the magnetic field.
However, numerical errors can lead to a non-zero (exponentially growing) divergence of
the magnetic field, even when initialized with a divergenceless field. Special numerical
methods are required to keep∇ · B small.

2.3.4. Microphysics

Microphysics prescriptions for nuclear reaction rates, equation of state, and opacities
should be included in convection simulations. Nuclear reactions are very slow relative to
the convection time (te � tc), so it is likely sufficient to use a radially dependent nuclear
energy generation rate to drive convection. Many simulations use an ideal gas equation
of state with constant ratio of specific heats. This is a good approximation for stars with
M . 30 M�, but for more massive stars, radiation pressure becomes important and should
be included in the equation of state [31]. The radiative luminosity produces a net cooling
effect in the outer part of the convection zone, and is set by the plasma’s opacity. This
opacity depends on the temperature, pressure, and chemical composition of the plasma.
Within the convection zone, the chemical composition is nearly homogeneous and the star
is nearly adiabatic, so a radially dependent opacity is sufficient. However, the temperature,
pressure, and chemical dependence of the opacity are important for setting the structure of
the radiative–convective boundary in thermal equilibrium [34]. Thus, studies of convective
boundary mixing should include realistic opacities.
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3. Current Approaches

Multidimensional multiphysics simulations have a long tradition in theoretical as-
trophysics. While the basic equations describing the physics are mostly uncontroversial,
trade-offs have to be made to make their solution computationally feasible.

3.1. Equations Describing the Problem

A plasma in the typical density and temperature ranges of a stellar core is well de-
scribed using the Navier–Stokes equations. These equations are generally applicable when
the mean free path between collisions of the constituent particles is orders of magnitude
smaller than the size at which the macroscopic properties, such as density, velocity, or
temperature change [43].

The Navier–Stokes equations form a system of conservation laws, which can best be
seen if they are expressed in conserved variables, density ρ, momentum densities ρu, ρv,
and ρw in the three spatial dimensions, total energy density ρE, and the partial density of
the ith species ρXi.

The Navier–Stokes have the form (e.g., [44]),

∂~U
∂t

+
∂~F(~U)

∂x
+

∂~G(~U)

∂y
+

∂~H(~U)

∂z
= ∂x~Fd + ∂y~Gd + ∂z~Hd + ~S. (15)

This is expressed in terms of the flux in the Cartesian directions,

~U =



ρ
ρu
ρv
ρw
ρE
ρXi

,~F =



ρu
ρu2 + p

ρuv
ρuw

u(E + p)
ρuXi

, ~G =



ρv
ρuv

ρv2 + p
ρvs.w

v(E + p)
ρvs.Xi

, ~H =



ρw
ρuw

ρvs.w
ρw2 + p

w(E + p)
ρwXi

. (16)

The internal energy density ρε can be calculated from the total energy density using
ρε = ρE− 1

2 ρ
(
u2 + v2 + w2). The pressure p is a function of ρ, ε, and the composition mass

fraction Xi in general and is given by the equation of state. In the following, we call ~F, ~G,
and ~H the hydrodynamic terms.

The diffusive terms take the form

~Fd = (0, τxx, τxy, τxz, uτxx + vs.τxy + wτxz + K∂xT, 0)T , (17)

~Gd =
(
0, τyx, τyy, τyz, uτyx + vs.τyy + wτyz + K∂yT, 0

)T , (18)

~Hd = (0, τzx, τzy, τzz, uτzx + vs.τzy + wτzz + K∂zT, 0)T , (19)

with the thermal conductivity and radiative diffusion captured by K and the components
of the viscous stress tensor,

τxx =
4
3

η∂xu− 2
3

η(∂yvs. + ∂zw), (20)

τyy =
4
3

η∂yvs.− 2
3

η(∂zw + ∂xu), (21)

τzz =
4
3

η∂zw− 2
3

η(∂xu + ∂yv), (22)

τxy = τyx = η(∂yu + ∂xv), (23)

τyz = τzy = η(∂zvs. + ∂yw), (24)

τzx = τxz = η(∂xw + ∂zu). (25)

This introduces the shear viscosity η. The bulk viscosity can be ignored in the case of a fully
ionized, non-relativistic gas, which is the case relevant for core convection. To estimate the
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importance of viscous effects in comparison to hydrodynamics it is customary to use the
Reynolds number Re = ρuL

η . If this number is high, viscous effects are of minor importance
and are often ignored in hydrodynamics schemes. The Navier–Stokes equations without the
viscous terms are called the Euler equations. Values in stars are typically above 1010, which
means viscosity can safely be neglected. Yet, depending on the particular hydrodynamics
scheme, a small amount of viscosity might be needed for the solution to converge to the
physically correct one [45].

As mentioned above, an equation of state (EoS) is needed to calculate the pressure
from the conserved variables ~U. How realistic a choice of EoS is depends on the type of star.
In general, the core of any star after the zero-age main sequence and before core collapse is
well described by an EoS consisting of the contributions of an ideal gas of nuclei, Fermi
gas electrons and positrons at arbitrary degeneracy, and a Bose gas of photons (black-body
radiation). The conditions in the core allow us to assume full ionization and that all these
components are in local thermodynamic equilibrium. Timmes and Arnett [46] give exact
expressions for all these components. While the degeneracy does not play an important
role for stars on the main sequence, radiation pressure plays a major role in more massive
stars even on the main sequence due to their hotter interiors. Jermyn et al. [31] state that
the effect is negligible in stars with masses less than 9 M�, but for stars above 20 M� the
correction is between 30% and 100% depending on age.

3.2. Numerical Solution Methods
3.2.1. Grid Geometry

While the actual physics of fluid dynamics in a star is inherently three-dimensional (3D)
as no symmetries can be exploited in the dynamical case, two-dimensional (2D) simulations
continue to be commonly used in simulations of stellar convection. Two-dimensional
domains are the simplest that support convection arising from first principles and their
significantly reduced computational demand makes them appealing for test calculations
and larger parameter studies. Yet, in particular, the behavior of turbulence is fundamentally
different between 2D and 3D. In the 2D case, energy is transported to larger scales, which
causes a flow dominated by eddies the size of the whole convective region [47,48]. In the
realistic 3D case, energy is transported to smaller scale structures until a size is reached in
which viscous forces dominate. This different morphology can have significant impact on
transport within the convection zone, as well as convective boundary mixing.

In the 2D case, assumptions need to be made about the geometry of the third dimen-
sion. The simplest approach is to just remove the components and quantities related to
the third dimension. It is effectively equivalent to the assumption that the domain extends
infinitely in the third dimension. In this picture, a spherical object like a star turns into an
infinite cylinder. This is typically used in the so-called annulus geometry (e.g., [49]), which
simulates an equatorial slice through the star. The main downside of such an approach is
that the cell areas and cell volumes do not scale with the square of radius as they should,
which causes wrong results for the flux of radiation and self-gravity. Yet, if a simulation
code treats these effects separately from the geometry, such as subtracting a background
state from the equations and using fixed gravity calculated from the spherical case, these
simulations are still very valuable as they capture the basic behavior of both convection
and waves in the star.

Another approach to 2D simulations is using azimuthal symmetry. This only leaves
the radial and latitudinal coordinates and means that the face areas and volumes of the cells
have to be calculated accordingly. This has the big advantage that it captures the actual
geometry of a spherical star in two spatial dimensions. This method is used by some of the
codes which have a 2D mode, such as MUSIC or SLH.

Three-dimensional simulations of convection in stars typically use either a Cartesian
or spherical mesh. The Cartesian case has the advantage that it is very simple in terms
of implementation and it is trivial to have the same resolution everywhere. Additionally,
it is very amenable to be combined with mesh-refining techniques. One major downside



Galaxies 2023, 11, 89 10 of 31

of this approach is that it represents a box inside a star, which means that the boundaries
of the simulation do not align with the natural structure of the star, which is given by
radial layers. This problem can be avoided using an immersed boundary at the expense
of additional complexity. Here the boundary condition is imposed on a spherical shell (or
possibly another shape) within the Cartesian simulation domain. Typically, no calculations
are performed outside this boundary.

If spherical coordinates are used, they are often implemented as a spherical shell. This
is to avoid the singularity at the origin. While the spherical shell captures the spherical
nature of a star very well and makes it easy to impose spherical boundary conditions,
existence of an inner boundary possibly has an impact on the result of the simulation
because it influences or even prevents flows through the center of the star.

3.2.2. Temporal Discretization

To solve the underlying PDEs (partial differential equations) describing the stellar
interior using a numerical algorithm, the continuous solution has to represented using
a finite number of values. This mapping process is called discretization. For hyperbolic
PDEs, such as the Navier–Stokes equations, it is convenient to distinguish between the
discretization of the spatial derivatives and the time derivatives. A common approach is the
method of lines, in which the spatial discretization is performed first and this semi-discrete
system (i.e., still containing the continuous time derivative) is then evolved in time using
methods for ordinary differential equations (ODEs). This makes the various methods
developed for ODEs instantly available for the time-stepping of the PDEs.

There are several factors to consider in choosing the time-stepping method. A crucial
one is stability. An unstable method will amplify small fluctuations until they completely
dominate the solution. Courant et al. [50] showed a generally necessary condition for the
stability of the discretization of a PDE is that the numerical domain of dependence of a time
step is greater or equal than the physical domain of dependence. The numerical domain of
dependence refers to which parts of the domain the solution in the next step is dependent
on, for example two grid cells in every direction. This is also called the stencil and only
depends on the numerical method used. The physical domain of dependence on the other
hand is a property of the PDEs equal to the distance information, for example a sound
wave, travels during a time step.

ODE solvers for time stepping are typically grouped into explicit and implicit methods.
A method is called explicit if the new time step can be calculated using an explicit expression
only depending on information from the previous time steps. The big advantage of
such a method is that no additional algebra needs to be performed to solve a, possibly
nonlinear, system of equations, which is computationally very expensive. A method is
called implicit if the update is only given by an implicit, possibly nonlinear, system of
equations involving information from the previous and the new time step. Depending
on the equations solved this system can be linear or nonlinear. In the former case the
matrix representing the system is usually of a simple structure, which is suited for direct
solution methods. Examples of a linear system are the terms related to diffusion or viscosity
or a linearized form of the equations of hydrodynamics. Even solving a linear system
is computationally more demanding than an explicit method, partly due to the need for
global communication. If a nonlinear system, such as the one that arises from the full
equations of hydrodynamics, is involved, the computational cost is even higher. Here, a
typical approach is to use an iterative method, which often relies on knowing the derivative
of the expression. While implicit time steps are more expensive, the larger time step size
can offset the total computational cost for simulation a fixed physical.

Apart from stability there is also the matter of accuracy. This is typically characterized
by the method’s order of accuracy. A scheme is called order s if its error reduces as O(∆ts)
as the time step ∆t is reduced to 0. The higher accuracy of high-order methods comes at the
price of combining multiple evaluations of the spatial discretization for the calculation of a
single new time step. This can either happen by computing several subintervals, called a
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single-step method, or by combining information from previous time steps, called a multi-step
method. There are implicit and explicit variants of either of these.

Just for the hydrodynamics part of the equations the time step ∆t scales with the
minimum of ∆x/(u + cs), which the grid spacing ∆x, the fluid velocity u, and the sound
speed cs. The diffusive terms scale with ∆x2. This means that for explicit schemes increasing
the resolution will cause the time step to be seriously restricted by the diffusive terms. That
is why many codes use a hybrid implicit–explicit (IMEX) approach, which calculates the
hydrodynamics terms explicitly and the diffusive terms implicitly. Additionally, a diffusion
equation only results in a linear system to be solved, which is significantly cheaper than a
nonlinear system. If the time step does not change, the bulk of the computational work can
even reused, which is something that some codes exploit for efficiency by only changing
the time step if conditions change significantly.

The size of the ∆t depends on the spatial and temporal discretization method. Explicit
algorithms typically use the time step given by the CFL criterion, as this stability constraint
is much more restrictive than the threshold for time-stepping accuracy that is typically
chosen considering the other uncertainties in the simulation. This is different for implicit
methods, which have a very large stability threshold or none at all. Here, the time step is
chosen based on accuracy considerations. A typical choice is the advective CFL condition,
which just considers the fluid velocity, but not the sound waves (e.g., [26,51]). LeVeque [52]
describes time-stepping methods and the associated stability criteria in more detail.

The concrete choice of an ideal time-stepping method depends on the characteristics
of the flow. Generally, the additional effort of implicit methods will only be beneficial if
they promise significantly increased time steps. This is almost always the case for diffusion
terms, but for hydrodynamics that is only true in the case of low Mach numbers.

Fully implicit 3D simulations of hydrodynamics have only recently become feasible
due to advances in computing and significant development efforts [53,54]. The break-even
point at which the fully implicit approach is more efficient than a fully explicit approach
is reported at Mach numbers of about 10−2 [54]. Core convection, especially in early
evolutionary phases, such as core hydrogen burning, is in this regime, which is why both
approaches are used in practice. Even if an explicit method is used, the diffusion terms
are almost always calculated using an implicit method due to the even more restrictive
stability criterion.

3.2.3. Spatial Discretization

There is a wide choice of methods used to discretize the spatial derivatives of the
Navier–Stokes equations. The methods typically used in stellar astrophysics can be catego-
rized into three groups:

Finite-difference methods represent each quantity by its values at discrete points and
calculate the spatial derivatives using the finite-difference approximation. A linear com-
bination of neighboring points, called the stencil, is used to calculate the derivative at a
certain order of accuracy. This is a straightforward approach that is comparably easy in its
implementation. One major drawback is that the finite difference approximation works
poorly close to discontinuities, which naturally occur close to shocks. At the low Mach
numbers present in most situations where core convection occurs this is not an issue, but
it can be a significant problem in late evolutionary stages, where the Mach numbers are
closer to 1.

The class of finite-volume schemes is designed with flow discontinuities in mind. The
idea is to partition the computational domain into non-overlapping volumes, called cells or
zones, and store the averages of the conserved variables on these cells. By the nature of
Equation (15) being a conservation law the changes of these averages can be determined
by calculating fluxes between neighboring cells. Results from this approach fulfill the
conservation of mass, momentum, energy, and chemical species down to machine precision
by construction.
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There are two main choices to be made for a finite-volume method. The first is the
choice of numerical flux function. This is a function of the fluid state left and right of an
interface that determines the flux of the conserved quantities between these neighboring
cells. A trade-off has to be made between accurately representing the Navier–Stokes
equations and stabilizing the flow enough to prevent being dominated by numerical noise.
Many of the usual choices were designed with flow discontinuities, such as shocks, in
mind and work excellently for representing these. The usually smooth flows at low Mach
numbers pose a challenge to these flux functions, with the solution often completely
dominated by numerical artifacts [26,53,55]. The reason is that the artificial viscosity terms
that are added to a scheme to make it stable do not change with the same power of the
Mach number as the physical terms from the PDE. There is a large variety of methods that
change this scaling behavior and make sure the physical solution is also retained at low
Mach numbers (e.g., [53,56–59]).

The other aspect concerns the spatial order of the scheme. Just assuming that the cell
values are just constant over a cell and, therefore, using the respective cell averages as
inputs to the numerical flux function results in a scheme that is first order accurate in space.
A procedure called reconstruction is used to increase the spatial order of the scheme. Here,
the value in a cell and its neighbors is used to replace the assumption of constant values in
a cell with another function, typically a linear or parabolic function. Using a linear function
will make the method second order in space, a parabolic method would make it third order
in space. Linear or higher order reconstruction has the problem that create oscillations
in the reconstructed state, that are not there in the underlying flow. These can grow to a
degree that they completely destroy the result. This is mostly a problem at Mach numbers
close to 1, where it is remedied by introducing so-called limiters. These locally reduce the
order of the scheme to keep it stable. While a common component of most finite-volume
codes, the low Mach number flows typically present in core convection can be simulated
without using limiters [26]. Toro [60] and LeVeque [52] give an overview of the various
aspects of finite-volume methods.

A very different approach to discretization is given by spectral methods. These rely
on representing the state of the fluid as a linear combination of a set of basis functions
instead of values at specific points or averages over cells. Typical basis functions are the
Fourier basis, spherical harmonics, or Chebyshev polynomials. The big advantage of many
spectral bases is that it often reduces the calculation of a derivative to a simple algebraic
problem. In the example of the Fourier basis, a function f (x) = ∑N

k=0 fkeikx, represented
using the coefficients fk, can be differentiated by simply multiplying the coefficients with ik.
A well-chosen basis can also remove grid singularities, which limit the time step or cause
artificial boundaries. For example, spherical harmonics do not have a singularity at the
poles and Zernike polynomials avoid the singularity at the center of the mesh.

Solving the Navier–Stokes equations completely in spectral space results in systems
of equations, which are often unfavorable for efficient computation. A common approach
followed instead is a pseudo-spectral method, in which the linear terms are solved in spectral
space and the nonlinear terms are solved in physical space, with the appropriate transforms
being performed as needed. Glatzmaier [61] gives a thorough introduction to using pseudo-
spectral methods in the context of stellar convection. This approach was first introduced
to the astrophysics community through the code of Glatzmaier [62] and has recently been
significantly improved in terms of numerical efficiency in the ASH [63], MagIC [64,65],
and Rayleigh [66] codes. The Dedalus code [67] follows an even more general approach
by implementing a generic spectral solver for PDEs, which can be be used for solving the
equations of (magneto-)hydrodynamics among other applications.

3.2.4. Table of Simulation Codes

There is a multitude of codes suited for the simulation of core convection. We list a
selection of these codes in Table 1, along with their key properties according to the criteria
mentioned above. This table does not strictly list only codes which have been applied to
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core convection in a publication, but also codes which support all the necessary methods to
address it. Kupka and Muthsam [29] provide an alternative list of codes, that also includes
codes that have only been used in shell convection so far.

The Seven-League Hydro code (SLH) is a finite-volume code solving the fully com-
pressible Euler equations, optionally including magnetic fields. Its main distinguishing fea-
ture is its capability for fully implicit time stepping using a variety of implicit Runge–Kutta
methods and the availability of several low Mach number flux functions and well-balanced
gravity [68]. It uses a structured curvilinear mesh, which can be used to represent Cartesian,
cylindrical, or spherical coordinates, but also enables more uncommon configurations,
such as a cubed-sphere mesh [69]. Additionally, it supports magnetic fields and arbitrary
nuclear reaction networks. It has been used for simulating core convection in a 3 M� ZAMS
star [26].

The MUSIC code also solves the fully compressible Euler equations using a finite-
volume method with implicit time-stepping. It has a fully implicit approach using the
Crank–Nicolson method. An important difference from most of the other codes discussed
here is its use of a staggered grid discretization. That means that density and energy are
stored on cell centers, but velocity is stored at the cell interfaces. This gives the code good
properties for low Mach number flows even without resorting to special low Mach number
flux functions [51,54]. It supports Cartesian and spherical geometry, with the option for
a 2D spherical mesh with azimuthal symmetry. Baraffe et al. [70] used MUSIC to study
overshooting in convective cores.

Athena++ is a finite-volume code that solves the fully compressible Euler equations,
with the option of magnetic fields and general relativity. It uses block-based adaptive
mesh refinement (AMR) on a mesh using Cartesian, cylindrical, or spherical coordinates,
which makes it possible to refine the mesh just where it is needed to track smaller scale
physics. Being a fully explicit code would be severely limiting the time step for Athena++
if diffusive physics is included. This is avoided by introducing a Runge–Kutta–Legendre
super-time-stepping scheme for the diffusive terms and computing the other terms with a
normal explicit scheme in an operator split fashion.

PROMPI is a successor of the Prometheus code [71] that has been parallelized using MPI
(Message Passing Interface). It is a finite-volume code using the piecewise-parabolic method
(PPM) [72] with extensions for a general equation of state [73]. Meakin and Arnett [74] used
it in the simulation of hydrogen core burning in a 23 M� star and in oxygen and carbon
shell burning [75,76].

FLASH [77] is another code using PPM. It provides AMR and a rich set of additional
physics, including nuclear burning and magnetohydrodynamics. While originally designed
with stellar explosions in mind, it has been applied to shell burning in late evolutionary
stages [78,79].

PPMstar solves the fully compressible Euler equations using a finite-volume scheme on
a uniform Cartesian mesh with explicit time-stepping. It is highly optimized for extremely
large HPC systems, allowing it to run at very high resolutions, such as 17283. In order
to trace the mixing of species to high accuracy it uses the Piecewise-Parabolic Boltzmann
(PPB) scheme [80], although this limits the code to tracking two fluids at most. PPMstar
has been used in a study of core convection and wave excitation in a 25 M� main-sequence
star [81,82].

Castro is another finite-volume hydrodynamics code using explicit time-stepping. It
supports AMR through the AMRex framework [83]. It contains a rich set of additional
physics, MHD, a general equation of state, a nuclear reaction network, and radiation
hydrodynamics through a multigroup flux-limited diffusion. It was mostly used in the
context of explosive phenomena, such as supernovae, but is also applicable for convection
simulations, especially if it involves higher Mach numbers.

The ENZO code employs finite-volume (magneto-)hydrodynamics with AMR. It has
been used for the study of turbulence (e.g., [84]), although this was mostly focused on
supersonic turbulence, which is not relevant for stellar convection. Hristov et al. [85]
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used it to study the impact of magnetic fields on subsonic deflagration fronts in Type Ia
supernovae.

MAESTROex uses the same AMR finite-volume mesh as Castro, but changes the
equations of hydrodynamics to be efficiently solved at low Mach numbers. Its version of the
pseudo-incompressible equations have been modified to work with stratified atmospheres,
nuclear flames, and general equations of state (e.g., [86]). As an addition to the mesh of
Castro, MAESTROex is calculating a one-dimensional base state in either plane-parallel or
spherical geometry, which is needed in its version of the pseudo-incompressible equations.
The time-stepping is performed using an explicit predictor–corrector method, with a special
splitting approach to make sure the divergence constraints are fulfilled after applying
reaction terms. The downside of the pseudo-incompressible approach is that it does not
converge to the correct compressible solution as Mach numbers approach 1, though this is
not an important limitation for studying core convection.

The PENCIL code is a fully compressible, finite-difference code, supporting Cartesian,
cylindrical, and spherical coordinates. It uses explicit time-stepping with a third-order
Runge–Kutta method and uses a sixth-order spatial discretization by default. While PEN-
CIL has not been used in a study of core convection to date, its high-order discretization and
capability for combustion, self-gravity, and MHD make it suited for the task, in principle.

The ASH code solves the Boussinesq or the anelastic equations of (magneto-)hydrodynamics
using a pseudo-spectral discretization. It uses spherical harmonics for the angular direction
and one or more stacked domains of Chebyshev polynomials for the radial direction.
The temporal discretization is split between an explicit Adams–Bashforth method for the
nonlinear terms and an implicit Crank–Nicolson method for the implicit terms.

The Rayleigh code uses the same type of spatial discretization and time-stepping as the
ASH code, but changes the parallelization to use a two-dimensional domain decomposition
instead of the one-dimensional radial decomposition used in ASH. This enables Rayleigh
to scale efficiently up to at least 104 CPU cores [87].

The SPIN code follows the same type of discretization, but uses finite differences for
the radial direction. This allows the radial mesh to be adjusted to the underlying stellar
model. The code was used for simulations of core convection in a 3 M� ZAMS star with an
artificially increased luminosity [88].

The MagIC code also solves the anelastic or Boussinesq equations on a spherical
shell using spherical harmonics. For the radial discretization it offers the choice of using
Chebyshev polynomials or finite differences. MagIC also adopts the IMEX approach for
time-stepping, but, in contrast to the previously discussed pseudo-spectral codes, it offers a
larger variety of methods, including single-step and multi-step methods.

The Dedalus pseudo-spectral framework can solve nearly arbitrary partial differential
equations using spectral methods. The user specifies the equations to be solved in plain text.
Dedalus can solve the Boussinesq, anelastic, generalized pseudo-incompressible, and fully
compressible Navier–Stokes equations [89]. It has been used to solve both hydrodynamic
and magnetohydrodynamic equations, and existing simulations include other physical
effects, such as self-gravity and nuclear reaction networks. Dedalus can solve equations
in Cartesian, cylindrical, or spherical geometry, typically with static mesh refinement in
a single (“radial”) direction. For spherical geometry, the angular variation of simulation
variables is represented with spin-weighted spherical harmonics, and simulations can
be run in full ball geometry (down to r = 0) using generalized Zernike polynomials for
radial basis functions [30,36], or in spherical shells using Jacobi polynomials for radial
basis functions. Several different multi-stage and multi-step implicit-explicit timestepping
methods are implemented in Dedalus. When the user specifies the equations they wish
to solve, all terms on the left-hand side of the equals sign are treated implicitly, all terms
on the right-hand side of the equals sign are treated explicitly. Dedalus can only implicitly
timestep terms which are linear in the simulation variables. In particular, Dedalus can solve
the fully compressible equations with implicit timestepping of the sound waves.
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Table 1. This table lists codes, which are suitable for the simulation of core convection. They are characterized by the properties introduced in Section 3. Abbreviations:
FD (finite-difference), FV (finite-volume), PS (pseudo-spectral), AMR (adaptive mesh refinement), IMEX (implicit-explicit), nuc. reac. (nuclear reactions), GR (general
relativity), FL diff. (flux-limited diffusion).

Name (Magneto)-
Hydrodynamics EoS Additional Physics Spatial Discretization Time Discretization Select Publications Licence

SLH fully compressible general gas multi-species, nuc. reac.,
self-gravity, MHD FV (curvilinear) explicit or implicit [26,53] proprietary

MUSIC fully compressible general gas multi-species FV (Cartesian or
spherical) implicit [51,70] proprietary

Athena++ fully compressible general gas multi-species,
self-gravity, MHD, GR

FV (Cartesian,
cylindrical or spherical),

AMR
explicit,

super-time-stepping [90] free (BSD 3-clause)

PROMPI fully compressible general gas multi-species, nuc. reac. FV (Cartesian,
cylindrical or spherical) explicit [74] proprietary

FLASH fully compressible general gas multi-species, nuc. reac.,
self-gravity, MHD

FV (Cartesian,
cylindrical or spherical),

AMR
explicit [77] available on request

PPMstar fully compressible ideal gas two-fluid FV (Cartesian) explicit [33,80–82] proprietary

CASTRO fully compressible general gas
multi-species, MHD,

self-gravity, nuc. reac,
FL diff.

FV (Cartesian), AMR explicit [91] free (BSD 3-clause)

MAESTROex generalized
pseudo-incompressible general gas multi-species,

self-gravity, nuc. reac. FV (Cartesian), AMR explicit [92,93] free (BSD 3-clause)

ENZO fully compressible general gas MHD, self-gravity, nuc.
reac., radiation FV (Cartesian), AMR explicit [94,95] free (BSD 3-clause)

PENCIL fully compressible partially ionized, ideal
gas MHD, self-gravity FD RK [96] free (GPLv2)

ASH anelastic or Boussinesq ideal gas MHD PS (spherical shell) IMEX [15,63,97] proprietary
Rayleigh anelastic or Boussinesq ideal gas multi-species, MHD PS (spherical shell) IMEX [66,87,98] free (GPLv3)

SPIN anelastic ideal gas MHD PS (spherical shell), FD IMEX [88] proprietary

MagIC anelastic or Boussinesq ideal gas multi-species, MHD PS (spherical shell), PS
or FD (radial) IMEX [64,65] free (GPLv3)

Dedalus
fully compressible,

pseudo-incompressible,
anelastic, or Boussinesq

ideal gas multi-species, MHD
PS (spherical, full ball or

shell), cylindrical,
Cartesian, SMR

IMEX [67] free (GPLv3)
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4. State-of-the-Art Results
4.1. Convective Boundary Mixing

Mixing at the radiative–convective boundary can mix fresh fuel into convective cores,
increasing main-sequence lifetimes. This mixing encompasses several different physical
mechanisms including (i) growth of the convection zone (“entrainment”); (ii) transport
of fluid across the radiative–convective boundary (“overshoot”); and (iii) developing an
adiabatic region outside the Schwarzschild boundary (“penetration”). These mechanisms
are discussed in depth in Anders and Pedersen [34], along with observational, theoretical,
and numerical evidence for each mechanism. Here, we briefly summarize the numerical
studies of convective boundary mixing in simulations of core convection. Figure 1 shows
snapshots of core convection simulations produced with various codes.

Even the earliest numerical simulations of core convection showed convective bound-
ary mixing. Deupree [99] ran low-resolution 2D simulations of stars with masses ranging
from 1.2 M� to 20 M�, and measured overshoot lengths of 0.3–0.5 HP by evolving passive
tracer fields. Several years later, Browning et al. [97] ran low-resolution 3D ASH simu-
lations of a 2 M� A star, finding evidence of both convective penetration and overshoot,
with a typical overshoot length of 0.2 HP. In both cases, the authors note that increasing
the resolution decreases the overshoot length; furthermore, Browning et al. [97] decreased
the stable stratification in the radiative zone to decrease numerical costs. These early
simulations show much a larger overshoot than both higher resolution simulations, and
theoretical predictions for realistic stars, suggesting viscosity/numerical resolution played
a significant role in convective boundary mixing.

Other early simulations with PROMPI measured the entrainment rate in a 23 M�
model with luminosity boosted by 10 using 2D and 3D wedges containing only the outer
third of the convection zone [74]. However, the entrainment rate in these simulations is
orders of magnitude higher than more recent, higher resolution simulations. For instance,
Gilet et al. [100] ran simulations of a 15 M� star using Cartesian geometry with the MAE-
STRO code. In their simulations, they calculate the bulk Richardson number Rib = 3× 105,
much larger than the Rib = 60 of Meakin and Arnett [74], but in line with the theoretical
expectation Rib ∼ (tc/tb)

2 ∼ 106. Gilet et al. [100] calculate the mass entrainment rate by
measuring the change in mass of the convective core. Using high-resolution PPMstar simu-
lations of a 25 M� star with luminosity boosted by different factors, Woodward et al. [33]
found the mass entrainment rate scales with uc ∼ L1/3, consistent with Gilet et al. [100]
when extrapolated down to the realistic luminosity. On the other hand, Higl et al. [101] ran
a series of 2D simulations of 1.3–3.5 M� stars using Cartesian grids, and found mass en-
trainment rates orders of magnitude larger than Gilet et al. [100] and Woodward et al. [33],
when scaled appropriately for luminosity. Although convective velocities appear to be
somewhat larger in 2D simulations than 3D simulations, there is still a substantial discrep-
ancy between entrainment rates calculated by different groups, even when using the same
code (e.g., MAESTRO).

In addition to entrainment rates, Higl et al. [101], they also try to parameterize the con-
vective boundary mixing in terms of an exponential overshoot parameter fov. For this, they
run a series of 2D hydrodynamic simulations initialized from 1D stellar structure models
with different fov. If the fov from the stellar structure model is too large, they find there
is negligible mass entrainment in their 2D hydrodynamic simulations. This indicates the
hydrodynamic simulation is not able to support such an extended convection zone, which
allows them to place upper bounds on fov which are O(10−2). This is consistent with the
penetrative convection mechanism, and similar to the simulations of Anders et al. [32]; and,
indeed, Higl et al. [101] see direct evidence of convective penetration in their simulations.

Other efforts to parameterize convective boundary mixing include a series of papers
analyzing simulations using the anelastic approximation of Rogers and Glatzmaier [49].
First, Rogers et al. [20] describes a series of rotating 2D simulations in cylindrical geom-
etry of a 3 M� zero-age main sequence star with artificially boosted luminosity. They
calculate an overshoot distance based on the first sign change in the average kinetic en-
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ergy flux outside the convection zone, with typically lengths of 0.1–0.5 HP. They also
note their simulations have significantly superadiabatic stratification outside the convec-
tion zone—suggesting convective penetration—again extending to lengths up to ∼0.5 HP.
Edelmann et al. [88] ran similar simulations of a 3 M� zero-age main sequence star with
artificially boosted luminosity, but in 3D spherical geometry. They measure convective
penetration by measuring the instantaneous distance between the surface of zero radial
velocity and the convection zone boundary, which was most likely to ∼0.5 HP; however,
they do not report if this region is adiabatic. Recently, Varghese et al. [102] derived chemical
diffusivites using passive tracer particles in a series of 2D simulations in polar coordinates
of stars with masses 3–20 M�. Outside the convection zone, they found the diffusivity
dropped as a Gaussian with length scale 0.1–0.2 times the pressure scale height. This is
a significantly larger overshoot than Higl et al. [101], who measured diffusivities using
passive tracer particles in the same way. Note that the convective velocities in Varghese
et al. [102] are similar to those predicted by MLT, whereas Higl et al. [101] finds velocities
∼10 times larger; one would expect for the simulations with large convective velocities
to have large overshoot lengths. There remain order-of-magnitude discrepancies in the
convective overshoot length when using similar analyzes on 2D simulations solving similar
equations (with filtered sound waves), with similar background stellar models.

Very recently, Baraffe et al. [70] ran a series of 2D meridional simulations (e.g.,
∂/∂φ = 0) of the fully compressible Euler equations with MUSIC. They simulate stars
near the zero-age main sequence with masses ranging from 3 M� to 20 M�. While most
simulations use the stellar luminosity, they also study the effect of boosting the luminosity
in their 3 M� simulations. They measure a convective overshooting length scale by calcu-
lating the distance from the radiative–convective boundary to the first zero of the radial
heat flux, `δT . Following the extreme value statistics arguments of Pratt et al. [103] and
Baraffe et al. [104], they equate the overshooting length to the time average of the angular
maximum of `δT . They find that the overshooting length is proportional to the convective
velocity and to the square root of the radius of the convection zone. For zero-age main se-
quence stars from 3 M� to 20 M�, this corresponds to ∼0.05 to ∼0.2 pressure scale heights,
similar to overshoot lengths measured with other methods described above. They also
find nearly adiabatic regions outside the convection, as predicted by theories of convective
penetration, but did not run the simulations long enough to determine the equilibrium size
of the penetration zone.

Even more recently, Herwig et al. [81] studied convection in a 25 M� star near the main
sequence. Their simulations with PPMstar include r . 0.5 R? and use Cartesian geometry.
Because their code explicitly resolves sound waves, they boost the stellar luminosity
by different factors &101.5; typical simulations boost the luminosity by 103. They find
an entrainment rate proportional to the luminosity boosting; extrapolated to realistic
luminosities they find Ṁ ∼ 10−11 cm2/s, similar what Gilet et al. [100] found for a 15 M�
star. Beyond the convective boundary, they find diffusive mixing which they interpret as
being due to shear instabilities of internal gravity waves (see below for further discussion).
Mao et al. [105] analyze similar PPMstar simulations which include radiative diffusion.
They find that the entrainment of Herwig et al. [81] slows down with time, and builds
up an adiabatically stratified region outside of the convection zone. These are hallmarks
of convective penetration [34]. They find that the entropy profiles evolve in the same
way in simulations with a range of luminosity boosting factors, but that the evolution is
faster in simulations with higher luminosities. Although their penetration zone does not
completely equilibrate in size by the end of their simulation, they use the framework of
Roxburgh [106] to develop a method for including the effects of convective penetration in
1D stellar evolution codes.
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Figure 5. from Low Mach Number Modeling of Core Convection in Massive Stars
Gilet et al. 2013 ApJ 773 137 doi:10.1088/0004-637X/773/2/137
https://dx.doi.org/10.1088/0004-637X/773/2/137
© 2013. The American Astronomical Society. All rights reserved.
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Figure 1. Snapshots from simulations of core convection. Top row includes simulations used to study
convective boundary mixing; bottom two rows includes simulations used to study internal gravity
waves. (a) Radial velocity from Gilet et al. [100]; © AAS. Reproduced with permission. (b) Velocity
magnitude from Higl et al. [101]. (c) Vorticity magnitude from Mao et al. [105]. (d) Vorticity from
Rogers et al. [20]; © AAS. Reproduced with permission. (e) Temperature fluctuations from Edelmann
et al. [88]; © AAS. Reproduced with permission. (f) Temperature fluctuations from Horst et al. [26]; ©
ESO. Reproduced with permission. (g) Radial velocity from Le Saux et al. [107]; we only reproduce
the northern hemisphere of their axisymmetric simulation. (h) Horizontal velocity magnitude from
Herwig et al. [81]. (i) Radial velocity from Anders et al. [108].

4.2. Waves and Convection

While intermediate- and high-mass stars have convective cores, their envelopes are
primarily radiative (outside of a narrow surface convection zone, see Jiang and Cantiello
2023). This radiative zone supports a range of waves. The waves are classified by their main
restoring force, p-modes, or sound waves, are associated with pressure forces; g-modes,
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or gravity waves, are associated with buoyancy forces; and r-modes, or Rossby waves,
are associated with Coriolis forces. All three types of waves are excited by convection. If
the waves have long lifetimes and reach sufficient amplitude, they may be detectable at
the surface via asteroseismology (e.g., [27]). The properties of such waves could provide
insights into the properties of core convection. Furthermore, waves transport chemicals
and angular momentum, affects which should be included in stellar evolution models. In
this section, we will first briefly review some theoretical aspects of wave excitation and
propagation, then discuss results from multidimensional simulations of core convection, as
well as their implications for chemical and angular momentum transport.

4.2.1. Theoretical Considerations

Waves generated by convection are interesting because they influence parts of a star
far from the convection zone. If a wave is generated in the convection zone and damps
deep within the radiative zone, it transports angular momentum from the convection
zone to the damping location. Waves which can propagate far from the convection zone
without significant damping have the largest influence on stellar structure and are the best
candidates for direct detection via asteroseismology.

The impact and observability of waves excited by convection depends on the am-
plitude of the waves. The wave amplitude is set by a balance between the convective
excitation rate and the radiative damping rate. Here, we will describe theoretical models
of the convective excitation rate. These two processes are analyzed separately because
the convective excitation occurs in (or near) the convection zone, and is thought to be a
universal property of convection, whereas the radiative damping occurs in the radiative
zone. Care must be taken when comparing predictions of excitation rates to simulations,
which typically measure wave amplitudes [109].

While initial work on wave generation by convection in stars made a variety of
heuristic arguments [110,111], the earlier Lighthill theory of wave excitation by turbulence
provides a more systematic method for calculating the convective excitation rate [112]. In
the Lighthill theory, the Navier–Stokes equations are written in the form

L.~U = N(~U), (26)

where ~U is a vector of perturbation variables, L is a linear operator, and N is a non-linear
operator. Waves follow the dispersion relation L.~U = 0. The idea of the Lighthill theory is
that the nonlinear terms N(~U) arising from turbulence act as a source term for waves. The
waves are then given by the equation

~U =
∫

G(~x′, t′;~x, t) N(~U)(~x, t) d3~x′dt′, (27)

where G is the Green’s function of the linear operator L. Equation (27) is an exact form of
the Navier–Stokes equations without any approximations.

To use Equation (27), one typically assumes the source term for the waves N(~U) is
dominated by convective turbulence. This is valid if the waves are linear and do not affect
the convection. The challenge then becomes how to model the statistical properties of
N(~U). This approach was already used in Goldreich and Keeley [113] to calculate p-mode
excitation in the sun. Later, Goldreich and Kumar [114] used the same approach to estimate
g-mode excitation. A main result is that the convective excitation rate of sound waves
is weaker than the convective excitation rate of gravity waves by Ma13/2, where Ma is
the Mach number of the convection. Using a typical Mach number of 10−3 (Section 2),
we estimate excitation rate of gravity waves is higher than the excitation rate of sound
waves by a factor of ∼1020. Thus, research on wave excitation by convection has focused
on gravity waves rather than sound waves.

For a spherically symmetric star and neglecting rotation, the angular structure of waves
are given by spherical harmonics Y`,m(θ, φ). The dispersion relation L.~U = 0 determines the
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radial structure of the wave as a function of ` and its angular frequency ω; it is independent
of m. Absent damping and nonlinear effects, the wave luminosity

L = 4πr2ρ0ur p′ (28)

is constant with radius, where ρ0(r) is the stellar density profile, and ur, p′ are the radial
velocity and pressure perturbation of the wave. However, some gravity waves experi-
ence significant radiative damping. An outward-propagating gravity wave’s luminosity
decays as

L(r) = L(r0) exp

(
−
∫ r

r0

krad(r′)
N(r′)3[`(`+ 1)]3/2

r′3ω4 dr′
)

, (29)

where krad is the radiative diffusivity. Radiative damping is most significant for low ω
and high `. In many theories of convective excitation of waves, the mostly efficiently
excited waves have low frequencies, ω close to 1/tc. For the 10M� zero-age main sequence
star considered in Section 2, these waves would have ω ∼ 1/tc ∼ 10−6 Hz, N ∼ 1/tb ∼
10−3 Hz, r ∼ Rc ∼ 6× 1010 cm, and krad ∼ 3× 109 cm2/s. Such an ` = 1 wave has a
damping length of 6× 107 cm ∼ Rc/1000. Although these waves may be efficiently excited
by convection, they play little role in stellar evolution because they damp before they
can propagate far from the convection zone. However, waves with higher frequencies
ω = 10−5 Hz damp over 10Rc, so may be astrophysically relevant.

This illustrates the importance of the frequency (and `) dependence of the convec-
tive excitation rate. Different assumptions about the convective source term N(~U) in
Equation (27) lead to different predictions. Goldreich and Kumar [114] assume convection
can be decomposed into eddies, each of which has a strength predicted by the Kolomogorov
theory of turbulence and is coherent for its local turnover time. These assumptions predict
the energy flux from convection into waves is a power-law in frequency and `,

Fw = Fc Ma (ωtc)
a[`(`+ 1)]b/2, (30)

where Fc is the convective flux, and very steep power-law indices a ≈ −6.5 and b ≈ 3.
Belkacem et al. [115] modeled the convective source term using a three-dimensional ASH
simulation of solar convection. The time-correlation function of the velocities in the simula-
tion were well-fit by a Lorentzian, which would give a very different frequency dependence
than Equation (30), which implicitly assumes a Gaussian time-correlation function. More
recently, Pinçon et al. [116] calculated the wave excitation from overshooting plumes. They
predict the energy flux from plums into waves is a Gaussian in frequency and `,

Fw ∼ exp
(
−ω2/ν2

p

)
exp

(
−`(`+ 1)b2/r2

)
, (31)

where ν−1
p is the plume lifetime πb2 is the horizontal area of the plume. These different

models give very different predictions for the frequency and ` dependence of the convective
excitation rate, and, hence, wave amplitudes. Simulations are needed to distinguish
between these theories and determine whether or not they are effective descriptions of
wave excitation by convection.

Up to now, we have not discussed the effects of rotation. Rotation affects both waves
(leading to inertial waves, Rossby waves, and rotationally modified gravity waves), and
convection. The wave properties are very different depending on their frequency relative
to 2Ω, where Ω is the rotation frequency [117]. While intermediate frequency waves with
2Ω � ω � N are only weakly perturbed by rotation, if ω . 2Ω, waves will be strongly
influenced by rotation. In particular, there are now modes which propagate as inertial
waves in the convective core, but gain gravity-wave character in the radiative zone; these
modes may be more easily excited by convection than non-rotating gravity waves which
are evanescent in the convection zone. This effect was included in Augustson et al. [118],
which also uses the Stevenson [119] model for rotating convection. They found rotation
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could potentially enhance the convective excitation rate by orders of magnitude. These
works show rotation likely has a major effect on both wave excitation and propagation in
stars, which should be further studied both theoretically and numerically.

4.2.2. Simulations of Wave Excitation by Core Convection

Even early simulations of core convection [74,97] found that convective excites gravity
waves, although the waves were not studied quantitatively. Since then, several papers
have studied gravity wave excitation by core convection in great detail. We summarize
key features of these studies in Table 2. As a whole, these works confirm that as the waves
propagate outward in the star away from the convection zone, their amplitude seems to
evolve roughly as expected by Equations (28) and (29). At high frequencies, convection
excites standing modes at the g-mode frequencies of the star. The early simulations of
Rogers et al. [20] found some evidence for nonlinear wave interactions, but more recent
investigations [26,82,88,107,108] do not see significant wave nonlinearity away from the
radiative–convective boundary.

Table 2. Key features of studies of convective excitation of internal gravity waves. The CZ resolution
is an estimate of the number of grid points across the convective zone radius. Abbreviations: AN
(anelastic), FC (fully compressible).

Paper Code Equations Dimensionality Mass Luminosity CZ Resolution

Rogers et al. [20] SPIN AN 2D 3 M� 5× 104 L? ≈400
Edelmann et al. [88] SPIN AN 3D 3 M� 106 L? ≈400

Horst et al. [26] SLH FC 2D 3 M� 103 L? ≈160
Thompson et al. [82] PPMstar FC 3D 25 M� 103 L? ≈432
Le Saux et al. [107] MUSIC FC 2D 5 M� 1− 104 L? ≈256

Ratnasingam et al. [120] SPIN AN 2D 3–13 M� ∼103 L? ≈512
Anders et al. [108] Dedalus FC 3D 3–40 M� L? ≈512

Of these papers, only Anders et al. [108] studies the wave excitation rate. They find
the wave luminosity follows the power-law form of Equation (30), with a = −6.5 and b = 4,
very close to the predictions of Goldreich and Kumar [114]. The discrepancy in b is because
Goldreich and Kumar [114] calculated wave excitation by convective envelopes; Lecoanet
and Quataert [121] showed the same theory applied to core convective predicts b = 4.

The remaining papers report quantities related to the wave amplitude. This compli-
cates the interpretation of these simulations many of which have boosted luminosities,
as the wave amplitude is set by a balance between excitation and damping rates, but
the excitation rate and damping rate scale differently with luminosity. Rogers et al. [20]
calculates the kinetic energy of the waves as a function of frequency and wavenumber,
E(ω, `). They find it is a good approximation to write E(ω, `) = f (ω)g(`). Although this
separable form may seem consistent with the theoretical predictions of [114], Equation (30)
is only valid for a range of frequencies larger than ∼ `2/3, which makes it not separable.
They find f (ω) and g(`) are well-fit by broken power-laws. While the power-law expo-
nents varied somewhat for different simulation parameters, typical dependencies were
ω−1 at low frequencies, ω−4 at high frequencies, and `−1 at low wavenumbers, `−4 at high
wavenumbers. They also ran simulations with a range of rotation rates, but did not find
that rotation significantly affected the wave spectra or amplitudes (this appears to be rather
different from the theoretical results of Augustson et al. [118]).

Edelmann et al. [88] also analyzes the kinetic energy of the waves right outside of
the convection zone as a function of frequency and wavenumber, but does not assume
separability. They instead analyze the frequency-dependence of the kinetic energy for
fixed wavenumbers `. As in Rogers et al. [20], they find broken power-laws, with typical
dependence ω−1/2 at low frequencies and ω−5 at high frequencies, although the exponents
vary somewhat with `. They find the frequency of the break in the power laws scales
linearly with `. This frequency dependence can be represented as a sum of Gaussians of
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different widths and amplitudes, similar to the excitation rate predictions by overshooting
plumes in Pinçon et al. [116].

Edelmann et al. [88], Horst et al. [26], and Ratnasingam et al. [120] all report the
wave velocity and temperature further out in the radiative zone as a function of frequency
only (e.g., summed over `). Edelmann et al. [88] finds vr ∼ ω−0.8, Horst et al. [26] finds
vr ∼ ω−0.2, and Ratnasingam et al. [120] finds vr ∼ ω−0.25 −ω−1, depending on the mass
of the star. For the temperature spectrum, Edelmann et al. [88] finds a maximum at ∼6 d−1

followed by a roughly exponential decay. Ratnasingam et al. [120] finds a plateau at low
frequencies, followed by a power-law decay at high frequency with T ∼ ω−1.1 − ω−1.65,
depending on the mass of the star. To better compare to observations, Horst et al. [26]
calculates the frequency spectrum of the temperature fluctuations averaged over half the
surface of their domain. This mimics the fact that only half a star’s surface is visible
at a time. They find the temperature fluctuations peak at ∼1 d−1, then decay as a ω−2

power-law at higher frequencies.
Herwig et al. [81] primarily analyzes the horizontal and radial velocity spectra as

a function of spherical harmonic degree ` (e.g., summed over frequencies). They find
vr ∼ `−5/3 and vh ∼ `7/16 at moderate `, and both decrease as `−9/2 for high `. The
transition between these regimes can occur at different `, perhaps as a function of N2.
Thompson et al. [82] then analyzes the luminosity fluctuations of these waves (proportional
to the temperature fluctuations). They find the luminosity fluctuations averaged over a
hemisphere (similar to a disk-integrated photometric measurement) peaks at the convective
frequency of their simulation (∼2µHz), and decreases as a power law L ∼ ω−2.33. This is
similar to the temperature fluctuation spectra of Horst et al. [26].

Le Saux et al. [107] run a series of simulations with different convective luminosities.
They calculate the wave energy flux (similar to the wave luminosity) in their simulations.
For simulations with realistic luminosities, the wave flux has a broad peak at low frequen-
cies, and then decreases as a power law at higher frequencies. They interpret the low-
frequency excitation to be by convective plumes, and the high-frequency excitation to be
by Reynolds stresses (similar to [20]). The high-frequency behavior matches Equation (30)
with a ≈ −6.5 (similar to [108]). Similar work for solar-type stars also found a ≈ −6.5
and b ≈ 4 [122]. As the luminosity increases, they find the peak of the spectrum shifts to
higher frequencies, and the amplitude of the spectrum increases. Together with [122], this
illustrates the challenges of interpreting simulations with boosted luminosities, as radiative
damping of waves is strongly frequency dependent.

One goal of these simulations is to determine the luminosity fluctuations at the stellar
surface from waves excited by convection. Bowman et al. [27] detected ubiquitous low-
frequency variability in stars with convective cores. The amplitude of the luminosity
fluctuations is ∼10–103 µmag at frequencies below a characteristic frequency ∼1 d−1, and
decays as a power-law with exponent around −2 above the characteristic frequency. It
is difficult to compare simulations to these observations because the simulations do not
extend to the surface and because it is not straightforward to determine which simulation
variable corresponds to brightness variations.

In Rogers et al. [20] and Edelmann et al. [88], the tangential velocity at the top bound-
ary is used as a proxy for surface brightness variations. There is a good match in the
frequency spectra in the 2D and 3D simulations, and both are similar to the brightness
variations of observed stars (see also [25]). However, the simulations have too little power
at low frequencies .2 d−1, and the decay in power at high frequencies is more rapid
in the simulations than in the observations. The ∼ω−2 decay in the temperature spec-
trum of Horst et al. [26] and the luminosity spectrum of Thompson et al. [82] is simi-
lar to observations. Thompson et al. [82] notes that using the iterative pre-whitening of
Bowman et al. [27] removes the highest-amplitude luminosity perturbations and repro-
duces the Lorentzian spectra of Bowman et al. [27]. Ratnasingam et al. [120] calculated
temperature fluctuations averaged over half their simulation, and including limb-darkening
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effects. They found these temperature fluctuation spectra were in very good agreement
with rescaled observed photometric variability spectra.

None of the above papers quantitatively compare the amplitudes of the perturbations
in the simulations to the amplitudes of observed variability. The simulated amplitudes are
likely unrealistically high as in each case the simulations use boosted luminosities [107]. Fur-
ther theoretical developments are required to “un-boost” these simulations to make more
quantitative comparisons to observations. However, the recent work of Anders et al. [108]
predict the amplitude of observed variability from simulations using realistic luminosities.
They balance the convective excitation rate from numerical simulations with the radiative
damping rate from the GYRE non-adiabatic pulsation code. They find the amplitude of
internal gravity waves excited by core convection is .0.1µmag for ZAMS stars with masses
3–40M�, much lower than observed variability.

4.2.3. Chemical Mixing by Waves

A major open question in stellar astrophysics is: what determines the transport of
chemicals in the radiative zones of stars? Recent asteroseismic studies have constrained
chemical diffusivities in the radiative zones of stars with convective cores [24]. One possible
source of chemical transport is waves. The theory for chemical transport by waves is
described in Jermyn [123]. Linear waves do not produce net transport of chemicals, but the
nonlinear Stokes drift does lead to net chemical transport. The Stokes drift is in the direction
of wave propagation and has magnitude us ∼ u2

r /ug, where ur is the radial velocity of the
wave and ug is its radial group velocity. While this drift causes transport, it is only in the
direction of the wave propagation, so cannot be thought of as a diffusive process. However,
chemical species can still diffuse due to the random superposition of Stokes drifts from
many waves, some of which transport outward, some of which transport inward. Such a
diffusion would be proportional to u2

s ∼ u4
r . Jermyn [123] presents a detailed calculation of

this wave diffusivity, which is proportional to the wave velocity to the fourth power.
This theoretical model is not supported by numerical simulations. Rogers and McEl-

waine [23] introduced passive tracer particles into 2D cylindrical anelastic simulations of a
3 M� zero-age main sequence star, similar to those of Rogers et al. [20], but without lumi-
nosity boosting. They find the particles diffuse, with a diffusivity which varies with radius.
They find the diffusivity is given by Dw = u2

w/τ, where uw is the wave velocity and τ = 1 s.
The diffusivity ranges from 108 cm2/s near the convection zone to 1010 cm2/s near the top
of the simulation (0.7 R?). In a recent follow-up paper, Varghese et al. [102] performed a
similar analysis for 2D simulations with stellar masses between 3 M� and 20 M�, from
the zero-age main sequence to the terminal-age main sequence. They demonstrated the
chemical diffusivities are converged with respect to the number of particles and numerical
choices associated with the particle particle tracking. They find that across their simulations,
the wave diffusivity is given by u2

w/τ with τ = 1 s. Despite the similar simulations and
results to Rogers and McElwaine [23], the diffusivities for the 3 M� zero-age main sequence
model ranges from 104 cm2/s near the convection zone to 106 cm2/s near the top of the
simulation (0.9 R?). This may be because the simulations analyzed in [102] have lower
diffusivities than the simulations of [23] (private communications, Varghese, 2023).

Higl et al. [101] ran similar simulations to Rogers and McElwaine [23]. They ran 2D
pseudo-incompressible simulations in cylindrical geometry of a 3 M� zero-age main se-
quence star, but find convective velocities∼ 10 times larger than Rogers and McElwaine [23].
They noticed there was significant chemical mixing outside of their convection zone, so
measured the diffusivity of passive tracer particles, using the same algorithm as Rogers
and McElwaine [23]. As the mixing occurs outside the convection zone, they interpret
this diffusivity as being due to internal gravity waves. However, they find the dif-
fusivity decreases steadily as they increase their simulation resolution, meaning they
can only place upper bounds on mixing from internal gravity waves. Their highest-
resolution simulation places an upper bound Dw < 107 cm2/s across most of the ra-
diative zone. Rogers et al. [20] and Varghese et al. [102] find that vw is proportional to
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the convective velocity; since Higl et al. [101] has convective velocities ∼10 times larger
than Rogers et al. [20] and Varghese et al. [102], their upward bounds would correspond
to Dw < 105 cm2/s for the more realistic convective velocities of Rogers et al. [20] and
Varghese et al. [102]. This is much smaller than the diffusivities measured in Rogers et al.
[20], though consistent with Varghese et al. [102], as they find Dw ∼ 104 cm2/s in the inner
part of the star, and Higl et al. [101] only simulate to 0.5 R?. Nevertheless, Higl et al. [101]
illustrates the need to study how chemical mixing from waves depends on the resolution
of the underlying wave simulation.

Herwig et al. [81] measure the chemical diffusivity outside of their convection zone,
and attribute it to mixing from internal gravity waves. They specifically invoke the mech-
anism of shear-induced mixing [124], in which the diffusivity scales like the vorticity
squared, or like the 1/Ri, where Ri is the Richardson number. They find their measured
diffusivities scale like 1/Ri for low luminosity boosting factors, but like 1/Ri2 for higher
luminosity boosting factors. Extrapolating to higher resolution and realistic stellar lumi-
nosities, they estimate Dw ∼ 104 cm2/s near the radiative-convective boundary for their
25 M� stellar model.

4.2.4. Angular Momentum Transport by Waves

Gravity waves represent a non-local form of angular momentum transport in a star.
When waves are excited by convection, angular momentum is transferred from the convec-
tion into the waves. The waves deposit this angular momentum when they damp, which
can be far from the convection zone. The angular momentum transport by gravity waves
is known to be an anti-diffusive process which can spontaneously generate differential
rotation. This is observed in the Earth’s atmosphere where convectively excited gravity
waves drive the quasi-biennial oscillation (QBO; [125]).

The 2D simulations of Rogers et al. [20] exhibit the anti-diffusive nature of wave-
driven angular momentum transport. Even though their simulations start with solid-body
rotation, in some simulations they find the surface layers begin to spin up due to wave-
driven angular momentum transport. The surface layers spin up first because the wave
amplitude is largest near the surface because the density is low and waves propagate with
roughly constant luminosity (Equation (28)). After the surface spins up, subsequent waves
which reach the surface encounter a critical layer, causing them to damp and deposit their
angular momentum. The entire radiative zone begins to spin up from the outside in. This
is very similar to one phase of the QBO. Some simulations develop prograde rotation while
others develop retrograde rotation. They hypothesize the differential rotation may undergo
oscillations on timescales longer than the simulation time.

Rogers [126] ran a series of 2D cylindrical anelastic simulations similar to those in
Rogers et al. [20], but varied the luminosity of the model and their initial rotation rate. She
found that simulations with small luminosities could develop strong differential rotation
between their core and envelope. Simulations with higher luminosities also produced
differential rotation, but with lower magnitude. One of the simulations produced a differ-
ential rotation profile similar to the profile inferred from asteroseismic modeling of KIC
10526294 [127]. The simulations of Rogers [126] all have luminosities boosted by &103, so
they likely exhibit more efficient angular momentum transport than real stars. As Rogers
found different results for different luminosities, this work highlights the importance of
estimating angular momentum transport by waves excited by convection carrying realistic
luminosities.

4.3. Spectra of Convection

The common theoretical expectation of the spectra of kinetic energy in core convection
is that of isotropic turbulence. That means the spatial spectrum should scale with k−5/3

over a large range of k, called the inertial subrange, with k being the magnitude of the three-
dimensional wavenumber. In their 3D simulations Gilet et al. [100] see good agreement
with this prediction in a range from k = 10 to k = 100 for the kinetic energy spectrum
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averaged over the whole convection zone. This also holds for individual components in
the three spatial directions, with a slight discrepancy between the two angular directions
at low wavenumbers only, which the authors attribute to the overall flow morphology at
large length scales.

The anelastic simulations of Edelmann et al. [88] show a steeper spectrum with k−2

to k−3. They hypothetize that this could be evidence of Bolgiano–Obukhov scaling, but
defer this to more detailed simulations of the core itself, which was not the focus of that
work. Horst et al. [26] used the same background state as Edelmann et al. [88] but ran fully
compressible 2D simulations using a lower luminosity. They see a scaling of k−2.1 at the
top of the convection zone.

Herwig et al. [81] study the radial dependence of the kinetic energy within the convec-
tion zone. They find an almost perfect k−5/3 spectrum deep in the convection zone but this
becomes much flatter towards the convective–radiative interface. The explanation is that
there is less space for large scale radial motions in the remaining distance to the interface,
making the small scale motions relatively more important. This is supported by the fact
that the spectrum based on horizontal velocities only is not subject to this effect.

5. Perspectives

Core convection plays an important role in the structure and evolution of intermediate-
and high-mass stars, but there remain many uncertainties in how to parameterize this
intrinsically multidimensional process in one-dimensional stellar evolution models. In
this review, we have described recent efforts to run multidimensional simulations of core
convection. This is very challenging, as there are a wide range of temporal scales, spatial
scales, and physical efforts that are important to capture. Two of the largest issues are the
short sound crossing time scale, and the long thermal time scale. As described in Section 2,
the sound time scale is ∼104 faster than the convection time, while the thermal time scale is
∼106 slower than the convection time, for typical stars of interest.

There are multiple strategies for addressing fast sound waves (equivalently, the low
Mach number of convective flows); see Section 3 for more details. One is to solve the
full Navier–Stokes equations as usual, using explicit timestepping methods (e.g., PPMstar,
PROMPI). The CFL criterion requires such a simulation to take timesteps of size ∼ ∆x/cs
where ∆x is the grid spacing and cs is the sound speed. These codes require lots of
timesteps, but use fast algorithms that can still make them efficient. Another strategy is
to use implicit timestepping algorithms (e.g., MUSIC, SLH, Dedalus). These algorithms
allow simulations to take timesteps of size ∼ ∆x/uc, where uc is the convective velocity.
While implicit methods are more computationally expensive per timestep than explicit
methods, each timestep can be larger by cs/uc ∼ 104. Finally, one can solve a different set
of underlying equations that do not admit sound waves, e.g., the anelastic (e.g., [128]) or
the pseudo-incompressible equations [129]. This approach is adopted by, e.g., MAESTRO,
the Rogers group, ASH, Rayleigh, and allows one to take large timesteps of size ∼ ∆x/uc
without requiring implicit timestepping of sound waves. However, these equations involve
solving an elliptic equation which increases the computational cost, as well as algorithmic
complexity, of each timestep.

Another common strategy is to artificially increase the luminosity of the star. The
convective velocities scale like luminosity to the one third power, so increasing the lumi-
nosity by a factor of 103 increases the convective velocity by a factor of 10. That would then
decrease the convective time by a factor of 10, making the ratio of convective to sound time
scales closer to 103. This approach is used both by codes using explicit timestepping (e.g.,
PPMstar), as well as some which use implicit timestepping (e.g., some configurations of
the SLH code Horst et al. [26]). However, great care must be taken when comparing these
simulation results to real stars, Baraffe et al. [104] and Le Saux et al. [122] have shown that
changing the luminosity has significant and complex effects on both convective boundary
mixing and convective excitation of waves (though Anders et al. [32] finds convective
penetration is roughly independent of luminosity).
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Another major challenge in modeling core convection is the very long thermal time.
This is particularly important for understanding convective boundary mixing. Entrain-
ment rates which match stellar observations are orders of magnitude smaller than those
measured in simulations [130]. This indicates that simulations are not initialized near ther-
mal equilibrium, so these high entrainment rates are transients that may not be relevant
in stellar evolution (which is slow relative to the thermal time). One possible thermal
equilibrium is an extended adiabatic layer beyond the Schwarzschild boundary, which
is known as convective penetration (see Section 5). As simulations cannot be run for a
thermal time, new strategies must be developed for finding these thermal equilibria. This
includes increasing the stellar luminosity (which decreases the thermal time), as well as the
“accelerated evolution” technique employed in Anders et al. [32].

It is also important to simulate the high turbulent intensity of core convection. Turbu-
lence acts differently in two- and three-dimensional simulations, and modeling realistic
flows requires three dimensions. Furthermore, one must ensure there is sufficient scale
separation between the radius of the convective core, which represents the size of large-
scale fluid motions, and the dissipation scale of the simulation. While no simulation will
achieve the very small dissipation scales of real stars, there is great effort to decrease the
dissipation scale as much as possible. Luckily, it appears that current simulations have
sufficiently small dissipation scales that the large-scale convective dynamics are insensitive
to the dissipation scale. However, other effects, such as wave mixing, may remain strongly
resolution dependent [101].

The simulations presented in this review have yielded exciting preliminary results on
core convection. While many works analyze simulations with boosted luminosities and/or
run in two dimensions, the numerical tools and computational resources now exist to run
three-dimensional simulations with realistic stellar luminosities. Going forward, these
more realistic simulations will be crucial for providing more insights into the processes
occurring in stars.

While some aspects of core convection, including kinetic energy spectra and average
convective velocities, are similar across comparable simulations, there are discrepancies in
other aspects. Many groups have run simulations with different algorithms and analyzes,
and have arrived at different answers to important questions regarding convective bound-
ary mixing and wave mixing. In fact, sometimes groups using similar codes and similar
analyzes also find very different results. To produce robust parameterizations for use in
one-dimensional stellar modeling, different computational groups must work together to
understand the differences between their simulations to determine what occurs in real stars.
This will require inter-group comparisons, such as Andrassy et al. [131], which established
consistent convective entrainment rates across a range of codes in an idealized convection
problem with Mach number 0.04. Future code comparison projects focused on convec-
tive boundary mixing and convective wave excitation will be able to provide accurate
parameterizations of these multidimensional phenomena for stellar evolution modeling.

Even though hydrodynamics simulations of convection can greatly improve our
understanding of the physical processes occurring in stars, their overall evolution can
only be studied using hydrostatic stellar evolution codes, simply due to the disparity
of the evolutionary and dynamical timescales. That is why it is important to use the
insights gained in hydrodynamic simulations and use them in stellar evolution codes
(e.g., [70,132–134]).
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