Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities
Abstract
:1. Introduction
2. Science Drivers
2.1. Black Hole Shadow and Jet Physics
2.2. Telescope Calibration and Astrometry
2.3. Stand-Alone 86 GHz Science
3. Array Specifications and Performance
3.1. Array
3.2. Synthetic Data
3.3. Performance Metrics
3.4. Multi-Frequency Calibration Techniques
- At (sub)millimeter observing wavelengths, the most rapidly-fluctuating contribution to the visibility phase comes from the troposphere, whose timescale typically decreases with increasing observing frequency and whose magnitude is proportional to .
- Atmospheric absorption and receiver noise temperatures are lower at 86 GHz than they are at higher frequencies, essentially making each telescope more sensitive and permitting higher S/N to be achieved within any given integration time.
- Dimensionless baseline lengths are proportional to , meaning that the spatial scales probed by any given baseline are larger when observing at lower frequencies. As many VLBI sources (e.g., AGN) are resolved at (sub)millimeter observing wavelengths, shorter baselines typically have higher correlated flux densities at lower frequencies in this regime, again permitting higher S/N to be achieved within any given integration time.
4. Technical Interoperability
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett. 2019, 875, L2. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett. 2019, 875, L3. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L4. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett. 2019, 875, L6. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett. 2021, 910, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett. 2021, 910, L13. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett. 2022, 930, L13. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett. 2022, 930, L14. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett. 2022, 930, L15. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett. 2022, 930, L16. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration, et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett. 2022, 930, L17. [Google Scholar] [CrossRef]
- Doeleman, S.; Blackburn, L.; Dexter, J.; Gomez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Farah, J.R.; Fish, V.; Loinard, L.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull. Am. Astron. Soc. 2019, 51, 256. [Google Scholar]
- Bustamante, S.; Blackburn, L.; Narayanan, G.; Schloerb, F.P.; Hughes, D. The Role of the Large Millimeter Telescope in Black Hole Science with the Next-Generation Event Horizon Telescope. Galaxies 2023, 11, 2. [Google Scholar] [CrossRef]
- Chael, A.; Issaoun, S.; Pesce, D.W.; Johnson, M.D.; Ricarte, A.; Fromm, C.M.; Mizuno, Y. Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. arXiv 2022, arXiv:2210.12226. [Google Scholar]
- Issaoun, S.; Johnson, M.D.; Blackburn, L.; Brinkerink, C.D.; Mościbrodzka, M.; Chael, A.; Goddi, C.; Martí-Vidal, I.; Wagner, J.; Doeleman, S.S.; et al. The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA. Astron. J. 2019, 871, 30. [Google Scholar] [CrossRef]
- Issaoun, S.; Johnson, M.D.; Blackburn, L.; Broderick, A.; Tiede, P.; Wielgus, M.; Doeleman, S.S.; Falcke, H.; Akiyama, K.; Bower, G.C.; et al. Persistent Non–Gaussian Structure in the Image of Sagittarius A* at 86 GHz. Astron. J. 2021, 915, 99. [Google Scholar] [CrossRef]
- Gwinn, C.R.; Kovalev, Y.Y.; Johnson, M.D.; Soglasnov, V.A. Discovery of Substructure in the Scatter-broadened Image of Sgr A*. Astrophys. J. Lett. 2014, 794, L14. [Google Scholar] [CrossRef]
- Psaltis, D.; Johnson, M.; Narayan, R.; Medeiros, L.; Blackburn, L.; Bower, G. A Model for Anisotropic Interstellar Scattering and its Application to Sgr A*. arXiv 2018, arXiv:1805.01242. [Google Scholar]
- Chael, A.; Narayan, R.; Johnson, M.D. Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc. 2019, 486, 2873–2895. [Google Scholar] [CrossRef]
- Porcas, R.W.; Rioja, M.J. VLBI phase-reference investigations at 86 GHz. In Proceedings of the 6th EVN Symposium, Bonn, Germany, 25–28 June 2002; p. 65. [Google Scholar]
- Asaki, Y.; Saito, M.; Kawabe, R.; Morita, K.I.; Sasao, T. Phase compensation experiments with the paired antennas method. Radio Sci. 1996, 31, 1615–1626. [Google Scholar] [CrossRef]
- Middelberg, E.; Roy, A.L.; Walker, R.C.; Falcke, H. VLBI observations of weak sources using fast frequency switching. A&A 2005, 433, 897–909. [Google Scholar] [CrossRef]
- Dodson, R.; Rioja, M.J. VLBA Scientific Memorandum n. 31: Astrometric calibration of mm-VLBI using “Source/Frequency Phase Referenced” observations. arXiv 2009, arXiv:0910.1159. [Google Scholar]
- Rioja, M.; Dodson, R. High-precision Astrometric Millimeter Very Long Baseline Interferometry Using a New Method for Atmospheric Calibration. Astron. J. 2011, 141, 114. [Google Scholar] [CrossRef]
- Han, S.T.; Lee, J.W.; Kang, J.; Oh, C.S.; Byun, D.Y.; Je, D.H.; Chung, M.H.; Wi, S.O.; Song, M.; Kang, Y.W.; et al. Korean VLBI Network Receiver Optics for Simultaneous Multifrequency Observation: Evaluation. Publ. Astron. Soc. Pac. 2013, 125, 539. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R.; Jung, T.; Sohn, B.W. The Power of Simultaneous Multifrequency Observations for mm-VLBI: Astrometry up to 130 GHz with the KVN. Astron. J. 2015, 150, 202. [Google Scholar] [CrossRef]
- Algaba, J.C.; Zhao, G.Y.; Lee, S.S.; Byun, D.Y.; Kang, S.C.; Kim, D.W.; Kim, J.Y.; Kim, J.S.; Kim, S.W.; Kino, M.; et al. Interferometric Monitoring of GAMMA–RAY Bright Active Galactic Nuclei II: Frequency Phase Transfer. J. Korean Astron. Soc. 2015, 48, 237–255. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Jung, T.; Sohn, B.W.; Kino, M.; Honma, M.; Dodson, R.; Rioja, M.; Han, S.T.; Shibata, K.; Byun, D.Y.; et al. Source-Frequency Phase-Referencing Observation of AGNS with KAVA Using Simultaneous Dual-Frequency Receiving. J. Korean Astron. Soc. 2019, 52, 23–30. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Algaba, J.C.; Lee, S.S.; Jung, T.; Dodson, R.; Rioja, M.; Byun, D.Y.; Hodgson, J.; Kang, S.; Kim, D.W.; et al. The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer. Astron. J. 2018, 155, 26. [Google Scholar] [CrossRef]
- Lee, S.S.; Lobanov, A.P.; Krichbaum, T.P.; Witzel, A.; Zensus, A.; Bremer, M.; Greve, A.; Grewing, M. A Global 86 GHz VLBI Survey of Compact Radio Sources. Astron. J. 2008, 136, 159–180. [Google Scholar] [CrossRef]
- Hada, K.; Doi, A.; Kino, M.; Nagai, H.; Hagiwara, Y.; Kawaguchi, N. An origin of the radio jet in M87 at the location of the central black hole. Nature 2011, 477, 185–187. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astron. J. 2016, 817, 131. [Google Scholar] [CrossRef]
- Kim, J.Y.; Krichbaum, T.P.; Lu, R.S.; Ros, E.; Bach, U.; Bremer, M.; de Vicente, P.; Lindqvist, M.; Zensus, J.A. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. A&A 2018, 616, A188. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R. Precise radio astrometry and new developments for the next-generation of instruments. A&A 2020, 28, 6. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R.; Asaki, Y. The Transformational Power of Frequency Phase Transfer Methods for ngEHT. Galaxies 2023, 11, 16. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, G.Y.; Shen, Z.Q.; Rioja, M.J.; Dodson, R.; Cho, I.; Zhao, S.S.; Eubanks, M.; Lu, R.S. Applications of the Source-Frequency Phase-Referencing Technique for ngEHT Observations. Galaxies 2023, 11, 3. [Google Scholar] [CrossRef]
- Marcaide, J.M.; Shapiro, I.I. VLBI study of 1038+528A and B: Discovery of wavelength dependence of peak brightness location. Astron. J. 1984, 276, 56–59. [Google Scholar] [CrossRef]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. A&A 2017, 25, 4. [Google Scholar] [CrossRef]
- Kim, J.Y.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Agudo, I.; Thum, C.; Hodgson, J.A.; MacDonald, N.R.; Ros, E.; Lu, R.S.; et al. Spatially resolved origin of millimeter-wave linear polarization in the nuclear region of 3C 84. A&A 2019, 622, A196. [Google Scholar] [CrossRef]
- Paraschos, G.F.; Kim, J.Y.; Krichbaum, T.P.; Zensus, J.A. Pinpointing the jet apex of 3C 84. A&A 2021, 650, L18. [Google Scholar] [CrossRef]
- Oh, J.; Hodgson, J.A.; Trippe, S.; Krichbaum, T.P.; Kam, M.; Paraschos, G.F.; Kim, J.Y.; Rani, B.; Sohn, B.W.; Lee, S.S.; et al. A persistent double nuclear structure in 3C 84. Mon. Not. R. Astron. Soc. 2022, 509, 1024–1035. [Google Scholar] [CrossRef]
- Gómez, J.L.; Traianou, E.; Krichbaum, T.P.; Lobanov, A.; Fuentes, A.; Lico, R.; Zhao, G.Y.; Bruni, G.; Kovalev, Y.Y.; Lahteenmaki, A.; et al. Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron. V. Space and ground millimeter-VLBI imaging of OJ 287. arXiv 2021, arXiv:2111.11200. [Google Scholar] [CrossRef]
- Boccardi, B.; Perucho, M.; Casadio, C.; Grandi, P.; Macconi, D.; Torresi, E.; Pellegrini, S.; Krichbaum, T.P.; Kadler, M.; Giovannini, G.; et al. Jet collimation in NGC 315 and other nearby AGN. A&A 2021, 647, A67. [Google Scholar] [CrossRef]
- Casadio, C.; MacDonald, N.R.; Boccardi, B.; Jorstad, S.G.; Marscher, A.P.; Krichbaum, T.P.; Hodgson, J.A.; Kim, J.Y.; Traianou, E.; Weaver, Z.R.; et al. The jet collimation profile at high resolution in BL Lacertae. A&A 2021, 649, A153. [Google Scholar] [CrossRef]
- Nair, D.G.; Lobanov, A.P.; Krichbaum, T.P.; Ros, E.; Zensus, J.A.; Kovalev, Y.Y.; Lee, S.S.; Mertens, F.; Hagiwara, Y.; Bremer, M.; et al. Global millimeter VLBI array survey of ultracompact extragalactic radio sources at 86 GHz. A&A 2019, 622, A92. [Google Scholar] [CrossRef]
- Rani, B.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Hodgson, J.A.; Fuhrmann, L.; Zensus, J.A. Jet outflow and gamma-ray emission correlations in S5 0716+714. A&A 2014, 571, L2. [Google Scholar] [CrossRef]
- Rani, B.; Krichbaum, T.P.; Marscher, A.P.; Hodgson, J.A.; Fuhrmann, L.; Angelakis, E.; Britzen, S.; Zensus, J.A. Connection between inner jet kinematics and broadband flux variability in the BL Lacertae object S5 0716+714. A&A 2015, 578, A123. [Google Scholar] [CrossRef]
- Casadio, C.; Marscher, A.P.; Jorstad, S.G.; Blinov, D.A.; MacDonald, N.R.; Krichbaum, T.P.; Boccardi, B.; Traianou, E.; Gómez, J.L.; Agudo, I.; et al. The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016–2017. A&A 2019, 622, A158. [Google Scholar] [CrossRef]
- Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T.P.; Agudo, I.; Beuchert, T.; Lindqvist, M.; Mannheim, K.; Wilms, J.; et al. Sub-milliarcsecond imaging of a bright flare and ejection event in the extragalactic jet 3C 111. A&A 2020, 644, A85. [Google Scholar] [CrossRef]
- Traianou, E.; Krichbaum, T.P.; Boccardi, B.; Angioni, R.; Rani, B.; Liu, J.; Ros, E.; Bach, U.; Sokolovsky, K.V.; Lisakov, M.M.; et al. Localizing the γ-ray emitting region in the blazar TXS 2013+370. A&A 2020, 634, A112. [Google Scholar] [CrossRef]
- Tetarenko, A.J.; Sivakoff, G.R.; Miller-Jones, J.C.A.; Rosolowsky, E.W.; Petitpas, G.; Gurwell, M.; Wouterloot, J.; Fender, R.; Heinz, S.; Maitra, D.; et al. Extreme jet ejections from the black hole X-ray binary V404 Cygni. Mon. Not. R. Astron. Soc. 2017, 469, 3141–3162. [Google Scholar] [CrossRef]
- Dodson, R.; Rioja, M.J.; Jung, T.; Goméz, J.L.; Bujarrabal, V.; Moscadelli, L.; Miller-Jones, J.C.A.; Tetarenko, A.J.; Sivakoff, G.R. The science case for simultaneous mm-wavelength receivers in radio astronomy. New Astron. Rev. 2017, 79, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Matthews, L.D.; Greenhill, L.J.; Goddi, C.; Chandler, C.J.; Humphreys, E.M.L.; Kunz, M.W. A Feature Movie of SiO Emission 20-100 AU from the Massive Young Stellar Object Orion Source I. Astron. J. 2010, 708, 80–92. [Google Scholar] [CrossRef]
- Issaoun, S.; Goddi, C.; Matthews, L.D.; Greenhill, L.J.; Gray, M.D.; Humphreys, E.M.L.; Chandler, C.J.; Krumholz, M.; Falcke, H. VLBA imaging of the 3 mm SiO maser emission in the disk-wind from the massive protostellar system Orion Source I. A&A 2017, 606, A126. [Google Scholar] [CrossRef]
- Selina, R.J.; Murphy, E.J.; McKinnon, M.; Beasley, A.; Butler, B.; Carilli, C.; Clark, B.; Durand, S.; Erickson, A.; Grammer, W.; et al. The ngVLA Reference Design. In Proceedings of the Science with a Next Generation Very Large Array; Murphy, E., Ed.; Astronomical Society of the Pacific Conference Series; NASA/ADS: Cambridge, MA, USA, 2018; Volume 517, p. 15. [Google Scholar]
- McKinnon, M.; Beasley, A.; Murphy, E.; Selina, R.; Farnsworth, R.; Walter, A. ngVLA: The Next Generation Very Large Array. Bull. Am. Astron. Soc. 2019, 51, 81. [Google Scholar]
- Roelofs, F.; Blackburn, L.; Lindahl, G.; Doeleman, S.S.; Johnson, M.D.; Arras, P.; Chatterjee, K.; Emami, R.; Fromm, C.; Fuentes, A.; et al. The ngEHT Analysis Challenges. Galaxies 2022, arXiv:2212.1135511, 12. [Google Scholar] [CrossRef]
- Raymond, A.W.; Palumbo, D.; Paine, S.N.; Blackburn, L.; Córdova Rosado, R.; Doeleman, S.S.; Farah, J.R.; Johnson, M.D.; Roelofs, F.; Tilanus, R.P.J.; et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl. Ser. 2021, 253, 5. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Narayan, R.; Doeleman, S.S.; Wardle, J.F.C.; Bouman, K.L. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astron. J. 2016, 829, 11. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Bouman, K.L.; Blackburn, L.L.; Akiyama, K.; Narayan, R. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astron. J. 2018, 857, 23. [Google Scholar] [CrossRef]
- Kovac, J.M.; Barkats, D. CMB from the South Pole: Past, Present, and Future. arXiv 2007, arXiv:0707.1075. [Google Scholar]
- Palumbo, D.C.M.; Doeleman, S.S.; Johnson, M.D.; Bouman, K.L.; Chael, A.A. Metrics and Motivations for Earth-Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope. Astron. J. 2019, 881, 62. [Google Scholar] [CrossRef]
- Dodson, R.; Rioja, M.J.; Jung, T.H.; Sohn, B.W.; Byun, D.Y.; Cho, S.H.; Lee, S.S.; Kim, J.; Kim, K.T.; Oh, C.S.; et al. Astrometrically Registered Simultaneous Observations of the 22 GHz H2O and 43 GHz SiO Masers toward R Leonis Minoris Using KVN and Source/Frequency Phase Referencing. Astron. J. 2014, 148, 97. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R.; Jung, T.; Sohn, B.W.; Byun, D.Y.; Agudo, I.; Cho, S.H.; Lee, S.S.; Kim, J.; Kim, K.T.; et al. Verification of the Astrometric Performance of the Korean VLBI Network, Using Comparative SFPR Studies with the VLBA at 14/7 mm. Astron. J. 2014, 148, 84. [Google Scholar] [CrossRef]
- Chael, A.; Johnson, M.D.; Lupsasca, A. Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astron. J. 2021, 918, 6. [Google Scholar] [CrossRef]
Station | EHT | ngEHTa | ngEHTb | GMVA |
---|---|---|---|---|
ALMA | X | - | - | X |
APEX | X | - | - | - |
SMA | X | - | - | - |
JCMT | X | - | - | - |
LMT | X | - | - | X |
SMT | X | - | - | - |
KPTO | X | - | - | - |
NOEMA | X | - | - | X |
PV | X | - | - | X |
SPT | X | - | - | - |
GLT | X | - | - | X |
BAJA | - | X | X | - |
BAR | - | X | - | - |
CAS | - | - | X | - |
CAT | - | X | - | - |
CNI | - | X | X | - |
GAM | - | X | X | - |
GARS | - | X | - | - |
HAY | - | X | - | - |
LLA | - | - | X | - |
NZ | - | X | X | - |
OVRO | - | X | - | - |
PIKE | - | - | X | - |
SGO | - | X | X | - |
GBT | - | - | - | X |
BR | - | - | - | X |
FD | - | - | - | X |
KP | - | - | - | X |
LA | - | - | - | X |
MK | - | - | - | X |
NL | - | - | - | X |
OV | - | - | - | X |
PT | - | - | - | X |
EF | - | - | - | X |
YS | - | - | - | X |
ONS | - | - | - | X |
MET | - | - | - | X |
KVN | - | - | - | X |
Station | 86 GHz | 230 GHz | 345 GHz |
---|---|---|---|
ALMA | X | X | X |
APEX | - | X | X |
SMA | - | X | X |
JCMT | X | X | X |
LMT | X | X | planned |
SMT | - | X | X |
KPTO | - | X | - |
NOEMA | X | X | X |
PV | X | X | X |
SPT | - | X | X |
GLT | X | X | X |
BAJA | X | X | X |
BAR | X | X | X |
CAS | X | X | X |
CAT | X | X | X |
CNI | X | X | X |
GAM | X | X | - |
GARS | X | X | X |
HAY | X | X | X |
LLA | X | X | X |
NZ | X | X | X |
OVRO | X | X | X |
PIKE | X | X | X |
SGO | X | X | X |
ngVLA | X | - | - |
GBT | X | - | - |
BR | X | - | - |
FD | X | - | - |
KP | X | - | - |
LA | X | - | - |
MK | X | - | - |
NL | X | - | - |
OV | X | - | - |
PT | X | - | - |
EF | X | - | - |
YS | X | - | - |
ONS | X | - | - |
MET | X | - | - |
KVN | X | X | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issaoun, S.; Pesce, D.W.; Roelofs, F.; Chael, A.; Dodson, R.; Rioja, M.J.; Akiyama, K.; Aran, R.; Blackburn, L.; Doeleman, S.S.; et al. Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 2023, 11, 28. https://doi.org/10.3390/galaxies11010028
Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, et al. Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies. 2023; 11(1):28. https://doi.org/10.3390/galaxies11010028
Chicago/Turabian StyleIssaoun, Sara, Dominic W. Pesce, Freek Roelofs, Andrew Chael, Richard Dodson, María J. Rioja, Kazunori Akiyama, Romy Aran, Lindy Blackburn, Sheperd S. Doeleman, and et al. 2023. "Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities" Galaxies 11, no. 1: 28. https://doi.org/10.3390/galaxies11010028
APA StyleIssaoun, S., Pesce, D. W., Roelofs, F., Chael, A., Dodson, R., Rioja, M. J., Akiyama, K., Aran, R., Blackburn, L., Doeleman, S. S., Fish, V. L., Fitzpatrick, G., Johnson, M. D., Narayanan, G., Raymond, A. W., & Tilanus, R. P. J. (2023). Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies, 11(1), 28. https://doi.org/10.3390/galaxies11010028