Probing Plasma Composition with the Next Generation Event Horizon Telescope (ngEHT)
Abstract
:1. Plasma Composition: Observational Studies
2. Theoretical Approaches in Creating Pairs
3. Radiative Transfer of Pair Plasma
4. Positron Effects in the Semi-Analytical Models
4.1. Polarized Images
4.2. Spectral Analysis
4.3. Multi-Frequency Analysis
5. Positrons in GRMHD KHARMA Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; McKinney, J.C. Prograde and retrograde black holes: Whose jet is more powerful? Mon. Not. R. Astron. Soc. 2012, 423, L55–L59. [Google Scholar] [CrossRef]
- Tchekhovskoy, A. Launching of Active Galactic Nuclei Jets. In The Formation and Disruption of Black Hole Jets; Astrophysics and Space Science Library, Contopoulos, I., Gabuzda, D., Kylafis, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 414, p. 45. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Anantua, R.; Emami, R.; Loeb, A.; Chael, A. Determining the Composition of Relativistic Jets from Polarization Maps. Astrophys. J. 2020, 896, 30. [Google Scholar] [CrossRef]
- Emami, R.; Anantua, R.; Chael, A.A.; Loeb, A. Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87* and Sgr A*. Astrophys. J. 2021, 923, 272. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Fabian, A.C.; Celotti, A.; Rees, M.J. The matter content of the jet in M87: Evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 1996, 283, 873–880. [Google Scholar] [CrossRef]
- Curtis, H.D. The Planetary Nebulae. Publications of Lick Observatory. 1918, 13, 55–74. [Google Scholar]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87. Astrophys. J. 2012, 746, 151. [Google Scholar] [CrossRef] [Green Version]
- Biretta, J.A.; Stern, C.P.; Harris, D.E. The Radio to X-ray Spectrum of the M87 Jet and Nucleus. Astron. J. 1991, 101, 1632. [Google Scholar] [CrossRef]
- Palmer, H.P.; Rowson, B.; Anderson, B.; Donaldson, W.; Miley, G.K. Radio Diameter Measurements with Interferometer Baselines of One Million and Two Million Wavelengths. Nature 1967, 213, 789–790. [Google Scholar] [CrossRef]
- Reid, M.J.; Schmitt, J.H.M.M.; Owen, F.N.; Booth, R.S.; Wilkinson, P.N.; Shaffer, D.B.; Johnston, K.J.; Hardee, P.E. VLBI observations of the nucleus and jet of M 87. Astrophys. J. 1982, 263, 615–623. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Lister, M.L.; Homan, D.C.; Kellermann, K.I. The Inner Jet of the Radio Galaxy M87. Astrophys. J. 2007, 668, L27–L30. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J.C.; Liu, H.B.; Inoue, M.; Koch, P.M.; Ho, P.T.P.; Matsushita, S.; et al. Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys. J. 2014, 783, L33. [Google Scholar] [CrossRef] [Green Version]
- Kino, M.; Takahara, F.; Hada, K.; Akiyama, K.; Nagai, H.; Sohn, B.W. Magnetization Degree at the Jet Base of M87 Derived from the Event Horizon Telescope Data: Testing the Magnetically Driven Jet Paradigm. Astrophys. J. 2015, 803, 30. [Google Scholar] [CrossRef] [Green Version]
- Mertens, F.; Lobanov, A.P.; Walker, R.C.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. A&A 2016, 595, A54. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys. J. 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Krichbaum, T.P.; Lu, R.S.; Ros, E.; Bach, U.; Bremer, M.; de Vicente, P.; Lindqvist, M.; Zensus, J.A. The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale. A&A 2018, 616, A188. [Google Scholar] [CrossRef]
- Chael, A.; Narayan, R.; Johnson, M.D. Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc. 2019, 486, 2873–2895. [Google Scholar] [CrossRef]
- Meisenheimer, K.; Roeser, H.J.; Schloetelburg, M. The synchrotron spectrum of the jet in M87. A&A 1996, 307, 61. [Google Scholar]
- Kim, J.Y.; Krichbaum, T.P.; Broderick, A.E.; Wielgus, M.; Blackburn, L.; Gómez, J.L.; Johnson, M.D.; Bouman, K.L.; Chael, A.; Akiyama, K.; et al. Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. A&A 2020, 640, A69. [Google Scholar] [CrossRef] [Green Version]
- Wardle, J.F.C.; Homan, D.C.; Ojha, R.; Roberts, D.H. Electron-positron jets associated with the quasar 3C279. Nature 1998, 395, 457–461. [Google Scholar] [CrossRef]
- Hirotani, K.; Iguchi, S.; Kimura, M.; Wajima, K. Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C 345. Astrophys. J. 2000, 545, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Marscher, A.P.; Jorstad, S.G.; Gómez, J.L.; McHardy, I.M.; Krichbaum, T.P.; Agudo, I. Search for Electron-Positron Annihilation Radiation from the Jet in 3C 120. Astrophys. J. 2007, 665, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Celotti, A.; Fabian, A.C. The kinetic power and luminosity of parsec-scale radio jets - an argument for heavy jets. Mon. Not. R. Astron. Soc. 1993, 264, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. 2021, 910, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. 2021, 910, L13. [Google Scholar] [CrossRef]
- Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev. 1934, 46, 1087–1091. [Google Scholar] [CrossRef]
- Beskin, V.S.; Istomin, Y.N.; Parev, V.I. Filling the Magnetosphere of a Supermassive Black-Hole with Plasma. Soviet Astron. 1992, 36, 642. [Google Scholar]
- Hirotani, K.; Okamoto, I. Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole. Astrophys. J. 1998, 497, 563–572. [Google Scholar] [CrossRef]
- Ford, A.L.; Keenan, B.D.; Medvedev, M.V. Electron-positron cascade in magnetospheres of spinning black holes. Phys. Rev. D 2018, 98, 063016. [Google Scholar] [CrossRef] [Green Version]
- Levinson, A.; Cerutti, B. Particle-in-cell simulations of pair discharges in a starved magnetosphere of a Kerr black hole. A&A 2018, 616, A184. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Yuan, Y.; Yang, H. Physics of Pair Producing Gaps in Black Hole Magnetospheres. Astrophys. J. 2018, 863, L31. [Google Scholar] [CrossRef]
- Parfrey, K.; Philippov, A.; Cerutti, B. First-Principles Plasma Simulations of Black-Hole Jet Launching. Phys. Rev. Lett. 2019, 122, 035101. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Gammie, C.F.; Dolence, J.C.; Shiokawa, H. Pair Production in Low-luminosity Galactic Nuclei. Astrophys. J. 2011, 735, 9. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Tchekhovskoy, A. Horizon-scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87. Astrophys. J. 2015, 809, 97. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.N.; Ryan, B.R.; Gammie, C.F. Pair Drizzle around Sub-Eddington Supermassive Black Holes. Astrophys. J. 2021, 907, 73. [Google Scholar] [CrossRef]
- Ryan, B.R.; Dolence, J.C.; Gammie, C.F. General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport. Astrophys. J. 2015, 807, 31. [Google Scholar] [CrossRef] [Green Version]
- Ryan, B.R.; Ressler, S.M.; Dolence, J.C.; Tchekhovskoy, A.; Gammie, C.; Quataert, E. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations. Astrophys. J. 2017, 844, L24. [Google Scholar] [CrossRef] [Green Version]
- Ryan, B.R.; Ressler, S.M.; Dolence, J.C.; Gammie, C.; Quataert, E. Two-temperature GRRMHD Simulations of M87. Astrophys. J. 2018, 864, 126. [Google Scholar] [CrossRef]
- Wardle, J.F.C.; Homan, D.C. Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources. Astrophys. Space Sci. 2003, 288, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J. A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc. 2016, 462, 115–136. [Google Scholar] [CrossRef]
- Blandford, R.; Anantua, R. The Future of Black Hole Astrophysics in the LIGO-VIRGO-LPF Era. J. Phys. Conf. Ser. 2017, 840, 012023. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef] [Green Version]
- Anantua, R.; Dúran, J.; Ngata, N.; Oramas, L.; Emami, R.; Ricarte, A.; Curd, B.; Röder, J.; Broderick, A.; Wayland, J.; et al. Emission Modeling in the EHT-ngEHT Age. Galaxies 2023, 11, 4. [Google Scholar] [CrossRef]
- Doeleman, S.S.; Weintroub, J.; Rogers, A.E.E.; Plambeck, R.; Freund, R.; Tilanus, R.P.J.; Friberg, P.; Ziurys, L.M.; Moran, J.M.; Corey, B.; et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 2008, 455, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Doeleman, S.S.; Fish, V.L.; Schenck, D.E.; Beaudoin, C.; Blundell, R.; Bower, G.C.; Broderick, A.E.; Chamberlin, R.; Freund, R.; Friberg, P.; et al. Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 2012, 338, 355. [Google Scholar] [CrossRef] [Green Version]
- Prieto, M.A.; Fernández-Ontiveros, J.A.; Markoff, S.; Espada, D.; González-Martín, O. The central parsecs of M87: Jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 2016, 457, 3801–3816. [Google Scholar] [CrossRef] [Green Version]
- Prather, B.; Wong, G.; Dhruv, V.; Ryan, B.; Dolence, J.; Ressler, S.; Gammie, C. iharm3D: Vectorized General Relativistic Magnetohydrodynamics. J. Open Source Softw. 2021, 6, 3336. [Google Scholar] [CrossRef]
- Ricarte, A.; Qiu, R.; Narayan, R. Black hole magnetic fields and their imprint on circular polarization images. Mon. Not. R. Astron. Soc. 2021, 505, 523–539. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Gammie, C.F. IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc. 2018, 475, 43–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emami, R.; Anantua, R.; Ricarte, A.; Doeleman, S.S.; Broderick, A.; Wong, G.; Blackburn, L.; Wielgus, M.; Narayan, R.; Tremblay, G.; et al. Probing Plasma Composition with the Next Generation Event Horizon Telescope (ngEHT). Galaxies 2023, 11, 11. https://doi.org/10.3390/galaxies11010011
Emami R, Anantua R, Ricarte A, Doeleman SS, Broderick A, Wong G, Blackburn L, Wielgus M, Narayan R, Tremblay G, et al. Probing Plasma Composition with the Next Generation Event Horizon Telescope (ngEHT). Galaxies. 2023; 11(1):11. https://doi.org/10.3390/galaxies11010011
Chicago/Turabian StyleEmami, Razieh, Richard Anantua, Angelo Ricarte, Sheperd S. Doeleman, Avery Broderick, George Wong, Lindy Blackburn, Maciek Wielgus, Ramesh Narayan, Grant Tremblay, and et al. 2023. "Probing Plasma Composition with the Next Generation Event Horizon Telescope (ngEHT)" Galaxies 11, no. 1: 11. https://doi.org/10.3390/galaxies11010011
APA StyleEmami, R., Anantua, R., Ricarte, A., Doeleman, S. S., Broderick, A., Wong, G., Blackburn, L., Wielgus, M., Narayan, R., Tremblay, G., Alcock, C., Hernquist, L., Smith, R., Liska , M., Natarajan, P., Vogelsberger, M., Curd, B., & Kramer , J. A. (2023). Probing Plasma Composition with the Next Generation Event Horizon Telescope (ngEHT). Galaxies, 11(1), 11. https://doi.org/10.3390/galaxies11010011