Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization
Abstract
:1. Introduction
1.1. The Definition and Classification of Kardashev Scale
1.2. Carl Sagan’s Formulation of the Continuous Kardashev Scale
2. Methodology and Calculations
2.1. Fossil Fuels
2.1.1. Uninfluenced Model for Fossil Fuels
2.1.2. Influenced Model for Fossil Fuels
2.2. Nuclear and Renewable Energy
3. Conclusions
4. Discussion and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kardashev, N.S. Transmission of Information by Extraterrestrial Civilizations. Sov. Astron. 1964, 8, 217. Available online: https://articles.adsabs.harvard.edu/pdf/1964SvA.8.217K (accessed on 6 May 2022).
- Lemarchand, G.A. Detectability of Extraterrestrial Technological Activities. SETIQuest 1995, 1, 3–13. Available online: http://www.coseti.org/lemarch1.htm (accessed on 6 May 2022).
- Dyson, F.J. Search for Artificial Stellar Sources of Infrared Radiation. Science 1960, 131, 1667–1668. [Google Scholar] [CrossRef] [PubMed]
- Tate, K. Dyson Spheres: How Advanced Alien Civilizations Would Conquer the Galaxy. Space.com, 14 January 2014. Available online: https://www.space.com/24276-dyson-spheres-how-advanced-alien-civilizations-would-conquer-the-galaxy-infographic.html(accessed on 6 May 2022).
- Bradbury, R. Matrioshka Brains,1999. Available online: https://www.gwern.net/docs/ai/1999-bradbury-matrioshkabrains.pdf (accessed on 6 May 2022).
- Dyson, F.J. The Search for Extraterrestrial Technology, in Perspectives in Modern Physics (Essays in Honor of Hans Bethe); Marshak, R.E., Ed.; John Wiley & Sons: New York, NY, USA, 1966. [Google Scholar]
- Dvorsky, G. Remembering Robert Bradbury. In Sentient Developments; 2011; Available online: http://www.sentientdevelopments.com/2011/03/remembering-robert-bradbury.html (accessed on 6 May 2022).
- Criswell, D.R. Solar System Industrialization: Implications for interstellar migrations. In Interstellar Migration and the Human Experience; Ben, R.F., Eric, M.J., Eds.; University of California Press: Berkeley, CA, USA, 1985; pp. 50–87. [Google Scholar]
- Reeves, H. Atoms of Silence: An Exploration of Cosmic Evolution; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Beech, M. Rejuvenating the Sun and Avoiding other Global Catastrophes; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Hsiao, T.Y.; Goto, T.; Hashimoto, T.; Santos, D.J.D.; On, A.Y.L.; Kilerci-Eser, E.; Wong, Y.H.V.; Kim, S.J.; Wu, C.K.-W.; Ho, S.C.-C.; et al. A Dyson sphere around a black hole. Mon. Not. R. Astron. Soc. 2021, 506, 2. [Google Scholar] [CrossRef]
- Sagan, C. The Cosmic Connection: An Extraterrestrial Perspective; Cambridge University Press: Cambridge, UK, 1973; ISBN 13:978-0440133018. [Google Scholar]
- Kaku, M. The Physics of Interstellar Travel: To One Day, Reach the Stars. Available online: https://mkaku.org/home/articles/the-physics-of-interstellar-travel/ (accessed on 18 August 2008).
- Namboodiripad, A.; Nimal, C.N. Predicting the Timeline for Earth Achieving Kardashev Scale Type 1 Status. J. Sci. Technol. 2021, 6, 2456–5660. [Google Scholar]
- Hanson, R. The Great Filter—Are We Almost Past It? 1998. Available online: http://hanson.gmu.edu/greatfilter.html (accessed on 4 March 2022).
- Jiang, J.H.; Rosen, P.E.; Fahy, K.A. Avoiding the “Great Filter”: A Projected Timeframe for Human Expansion Off-World. Galaxies 2021, 9, 53. [Google Scholar] [CrossRef]
- Opinions of the CCCP of China and the State Council on Completely, Accurately and Comprehensively Implementing the New Development Concept in Achieving Carbon Neutralization. 22 September 2021. Available online: http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm (accessed on 6 May 2022).
- European Climate Law. Official Journal of the European Union, 7 September 2021.
- Mansoori, G.A.; Agyarko, L.B.; Estevez, L.A.; Fallahi, B.; Gladyshev, G.; dos Santos, R.G.; Niaki, S.; Perišić, O.; Sillanpää, M.; Tumba, K.; et al. Fuels of the Future for Renewable Energy Sources (Ammonia, Biofuels, Hydrogen). arXiv 2021, arXiv:2102.00439. [Google Scholar]
- Wang, M.; Han, J.; Dunn, J.B.; Cai1, H.; Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 2012, 7, 045905. [Google Scholar] [CrossRef] [Green Version]
- IEA. Data and Statistics. Available online: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energy%20transition%20indicators&indicator=ETISharesInPowerGen (accessed on 6 May 2022).
- Wilson, E.O. Debate at the Harvard Museum of Natural History; Harvard Museum of Natural History: Cambridge, MA, USA, 2009. [Google Scholar]
- Smičiklas, I.; Sljivic-Ivanovic, M. Radioactive Contamination of the Soil: Assessments of Pollutants Mobility with Implication to Remediation Strategies. In Soil Contamination–Current Consequences and Further Solutions; Larramendy, M., Soloneski, S., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Dresler, S.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Kováčik, J.; Blicharski, T. Effect of Long-Term Strontium Exposure on the Content of Phytoestrogens and Allantoin in Soybean. Int. J. Mol. Sci. 2018, 19, 3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepstad, S.L. The 2010 Amazon Drought. Science 2011, 331, 554. [Google Scholar]
Year | Decay Rate | Year | Decay Rate |
---|---|---|---|
t0 | 2.057% | 2040 | 20.567% |
2030 | 2.057% | 2041 | 22.418% |
2031 | 3.908% | 2042 | 24.269% |
2032 | 5.759% | 2043 | 26.120% |
2033 | 7.610% | 2044 | 27.971% |
2034 | 9.461% | 2045 | 29.822% |
2035 | 11.312% | 2046 | 31.673% |
2036 | 13.163% | 2047 | 33.525% |
2037 | 15.014% | 2048 | 35.376% |
2038 | 16.865% | 2049 | 37.227% |
2039 | 18.716% | 2050 | 39.078% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.H.; Feng, F.; Rosen, P.E.; Fahy, K.A.; Das, P.; Obacz, P.; Zhang, A.; Zhu, Z.-H. Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization. Galaxies 2022, 10, 68. https://doi.org/10.3390/galaxies10030068
Jiang JH, Feng F, Rosen PE, Fahy KA, Das P, Obacz P, Zhang A, Zhu Z-H. Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization. Galaxies. 2022; 10(3):68. https://doi.org/10.3390/galaxies10030068
Chicago/Turabian StyleJiang, Jonathan H., Fuyang Feng, Philip E. Rosen, Kristen A. Fahy, Prithwis Das, Piotr Obacz, Antong Zhang, and Zong-Hong Zhu. 2022. "Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization" Galaxies 10, no. 3: 68. https://doi.org/10.3390/galaxies10030068
APA StyleJiang, J. H., Feng, F., Rosen, P. E., Fahy, K. A., Das, P., Obacz, P., Zhang, A., & Zhu, Z. -H. (2022). Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization. Galaxies, 10(3), 68. https://doi.org/10.3390/galaxies10030068