Understanding High-Energy (UV and X-ray) Emission from AGB Stars—Episodic Accretion in Binary Systems
Abstract
:1. Introduction
2. UV and X-ray Emission as a Probe of Binarity
2.1. UV Emission
2.2. X-ray Emission
3. Accretion Activity or Chromospheric Emission
3.1. Models of Chromospheric Emission
3.2. Search for X-ray Emission from nuvAGB Stars
4. Summary and Conclusions
- A survey of ∼3500 galactic AGB stars (sp.types M4–M10) reveals that a significant fraction of this population show UV emission (≳9% NUV and FUV, and ≳20% NUV).
- The UV emission is variable, indicative of variable accretion activity, presumably due to a binary companion; this inference is supported by a detailed spectroscopic study of the star Y Gem.
- For stars with , simple chromosphere models cannot produce the observed UV emission, and accretion activity in a binary is the most likely mechanism for UV emission (supported by X-ray studies).
- For stars with , simple chromosphere models can produce the observed UV emission; however the, X-ray detection of one out of two such stars suggests that some fraction of these may also be in binary systems but with low accretion rates.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Decin, L. Evolution and Mass Loss of Cool Ageing Stars: A Daedalean Story. Annu. Rev. Astron. Astrophys. 2021, 59, 337–389. [Google Scholar] [CrossRef]
- Olofsson, H. The study of evolved stars with ALMA. Astrophys. Space Sci. 2008, 313, 201–207. [Google Scholar] [CrossRef]
- Sahai, R.; Trauger, J.T. Multipolar Bubbles and Jets in Low-Excitation Planetary Nebulae: Toward a New Understanding of the Formation and Shaping of Planetary Nebulae. Astron. J. 1998, 116, 1357–1366. [Google Scholar] [CrossRef]
- Sahai, R.; Morris, M.; Sánchez Contreras, C.; Claussen, M. Preplanetary Nebulae: A Hubble Space Telescope Imaging Survey and a New Morphological Classification System. Astron. J. 2007, 134, 2200–2225. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134–164. [Google Scholar] [CrossRef] [Green Version]
- Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Sánchez Contreras, C. Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae. Astron. Astrophys. 2001, 377, 868–897. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.; Sánchez Contreras, C.; Claussen, M. Normal, Nascent and Stalled Pre-Planetary Nebulae. Planet. Nebul. Our Galaxy Beyond 2006, 234, 499–500. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Chen, X.; De Marco, O.; Fryer, C.L.; Gaburov, E.; Ge, H.; Glebbeek, E.; Han, Z.; Li, X.-D.; et al. Common envelope evolution: Where we stand and how we can move forward. Astron. Astrophys. Rev. 2013, 21, 59–141. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Close Stellar Binary Systems by Grazing Envelope Evolution. Astrophys. J. 2015, 800, 114. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Frank, A.; Markiel, J.A.; Thomas, J.H.; Van Horn, H.M. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature 2001, 409, 485–487. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 2014, 440, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.R.; Alcock, C.; Allsman, R.A.; Alves, D.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Drake, A.J.; Freeman, K.C.; et al. MACHO observations of LMC red giants: Mira and semi-regular pulsators, and contact and semi-detached binaries. In Symposium-International Astronomical Union; Cambridge University Press: Cambridge, UK, 1999; Volume 191, pp. 151–158. [Google Scholar]
- Soszyński, I.; Olechowska, A.; Ratajczak, M.; Iwanek, P.; Skowron, D.M.; Mróz, P.; Pietrukowicz, P.; Udalski, A.; Szymański, M.K.; Skowron, J.; et al. Binarity as the Origin of Long Secondary Periods in Red Giant Stars. Astrophys. J. 2021, 911, L22. [Google Scholar] [CrossRef]
- Sahai, R.; Findeisen, K.; de Paz, A.G.; Sánchez Contreras, C. Binarity in Cool Asymptotic Giant Branch Stars: A GALEX Search for Ultraviolet Excesses. Astrophys. J. 2008, 689, 1274–1278. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.; Guerrero, M.A. Ultraviolet emission from main-sequence companions of AGB stars. Mon. Not. R. Astron. Soc. 2016, 461, 3036–3046. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Sánchez Contreras, C.; Mangan, A.S.; Sanz-Forcada, J.; Muthumariappan, C.; Claussen, M.J. Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem. Astrophys. J. 2018, 860, 105. [Google Scholar] [CrossRef]
- Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M. A Pilot Deep Survey for X-ray Emission from fuvAGB Stars. Astrophys. J. 2015, 810, 77. [Google Scholar] [CrossRef] [Green Version]
- Kastner, J.H.; Soker, N. Constraining the X-ray Luminosities of Asymptotic Giant Branch Stars: TX Camelopardalis and T Cassiopeia. Astrophys. J. 2004, 608, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.; Guerrero, M.A. X-ray AGB Stars in the 4XMM-DR9 Catalog: Further Evidence for Companions. Astrophys. J. 2021, 912, 93. [Google Scholar] [CrossRef]
- Smith, R.K.; Brickhouse, N.S.; Liedahl, D.A.; Raymond, J.C. Collisional plasma models with APEC/APED: Emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 2001, 556, L91. [Google Scholar] [CrossRef] [Green Version]
- Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W.H.T. Searching for X-ray emission from AGB stars. Astron. Astrophys. 2012, 543, A147. [Google Scholar] [CrossRef] [Green Version]
- Montez, R.; Ramstedt, S.; Kastner, J.H.; Vlemmings, W.; Sanchez, E. A Catalog of GALEX Ultraviolet Emission from Asymptotic Giant Branch Stars. Astrophys. J. 2017, 841, 33. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, G.; Narang, M.; Manoj, P.; Mathew, B.; Kartha, S.S. A Statistical Search for Star-Planet Interaction in the Ultraviolet Using GALEX. Astron. J. 2020, 159, 194. [Google Scholar] [CrossRef]
- Ferl, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; Van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofis. 2017, 53, 385–438. [Google Scholar]
- Luttermoser, D.G.; Johnson, H.R.; Eaton, J. The Chromospheric Structure of the Cool Giant Star G Herculis. Astrophys. J. 1994, 422, 351. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahai, R.; Sanz-Forcada, J.; Guerrero, M.; Ortiz, R.; Contreras, C.S. Understanding High-Energy (UV and X-ray) Emission from AGB Stars—Episodic Accretion in Binary Systems. Galaxies 2022, 10, 62. https://doi.org/10.3390/galaxies10030062
Sahai R, Sanz-Forcada J, Guerrero M, Ortiz R, Contreras CS. Understanding High-Energy (UV and X-ray) Emission from AGB Stars—Episodic Accretion in Binary Systems. Galaxies. 2022; 10(3):62. https://doi.org/10.3390/galaxies10030062
Chicago/Turabian StyleSahai, Raghvendra, Jorge Sanz-Forcada, Martin Guerrero, Roberto Ortiz, and Carmen Sanchez Contreras. 2022. "Understanding High-Energy (UV and X-ray) Emission from AGB Stars—Episodic Accretion in Binary Systems" Galaxies 10, no. 3: 62. https://doi.org/10.3390/galaxies10030062
APA StyleSahai, R., Sanz-Forcada, J., Guerrero, M., Ortiz, R., & Contreras, C. S. (2022). Understanding High-Energy (UV and X-ray) Emission from AGB Stars—Episodic Accretion in Binary Systems. Galaxies, 10(3), 62. https://doi.org/10.3390/galaxies10030062