Morphologies of Wolf–Rayet Planetary Nebulae Based on IFU Observations
Abstract
:1. Introduction
2. M 2-42: H Velocity Channels
3. Hen 3-1333 and Hen 2-113: H Velocity Channels and PV Diagrams
4. Discussion: Morpho-Kinematics of [WR] PNe
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANU | Australian National University |
HST | Hubble Space Telescope |
HWHM | Half Width at Half Maximum |
IFU | Integral Field Unit |
ISM | Interstellar Medium |
LSR | Local Standard of Rest |
PA | Position Angle |
PN | Planetary Nebula |
PSF | Point Spread Function |
PPV | Position-Position-Velocity |
PV | Position-Velocity |
SHS | SuperCOSMOS H-alpha Sky Survey |
wels | weak emission-line star |
WiFeS | Wide Field Spectrograph |
WR | Wolf–Rayet |
1 | Archived in a Zenodo repository: https://doi.org/10.5281/zenodo.5393974 |
References
- Balick, B. The evolution of planetary nebulae. I - Structures, ionizations, and morphological sequences. Astron. J. 1987, 94, 671–678. [Google Scholar] [CrossRef]
- Schönberner, D.; Jacob, R.; Steffen, M. The evolution of planetary nebulae. III. Internal kinematics and expansion parallaxes. Astron. Astrophys. 2005, 441, 573–588. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S. Morphological Structures of Planetary Nebulae. Publ. Astron. Soc. Aust. 2010, 27, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.; Herwig, F. The Elemental Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars. Publ. Astron. Soc. Pac. 2006, 118, 183–204. [Google Scholar] [CrossRef]
- Karakas, A.; Lattanzio, J.C. Stellar Models and Yields of Asymptotic Giant Branch Stars. Publ. Astron. Soc. Aust. 2007, 24, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; van Raai, M.A.; Lugaro, M.; Sterling, N.C.; Dinerstein, H.L. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae. Astrophys. J. 2009, 690, 1130–1144. [Google Scholar] [CrossRef] [Green Version]
- Balick, B.; Frank, A. Shapes and Shaping of Planetary Nebulae. Annu. Rev. Astron. Astrophys. 2002, 40, 439–486. [Google Scholar] [CrossRef]
- Kwok, S.; Purton, C.R.; Fitzgerald, P.M. On the origin of planetary nebulae. Astrophys. J. 1978, 219, L125–L127. [Google Scholar] [CrossRef]
- Kahn, F.D.; West, K.A. Shapes of planetary nebulae. Mon. Not. R. Astron. Soc. 1985, 212, 837–850. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134. [Google Scholar] [CrossRef] [Green Version]
- Soker, N. Why Magnetic Fields Cannot Be the Main Agent Shaping Planetary Nebulae. Publ. Astron. Soc. Pac. 2006, 118, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, J.; Blackman, E.G. Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2006, 370, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, J.; Blackman, E.G.; Frank, A. Isolated versus common envelope dynamos in planetary nebula progenitors. Mon. Not. R. Astron. Soc. 2007, 376, 599–608. [Google Scholar] [CrossRef]
- García-Segura, G.; Langer, N.; Różyczka, M.; Franco, J. Shaping Bipolar and Elliptical Planetary Nebulae: Effects of Stellar Rotation, Photoionization Heating, and Magnetic Fields. Astrophys. J. 1999, 517, 767–781. [Google Scholar] [CrossRef]
- García-Segura, G.; López, J.A. Three-dimensional Magnetohydrodynamic Modeling of Planetary Nebulae. II. The Formation of Bipolar and Elliptical Nebulae with Point-symmetric Structures and Collimated Outflows. Astrophys. J. 2000, 544, 336–346. [Google Scholar] [CrossRef] [Green Version]
- García-Segura, G.; Villaver, E.; Langer, N.; Yoon, S.C.; Manchado, A. Single Rotating Stars and the Formation of Bipolar Planetary Nebula. Astrophys. J. 2014, 783, 74. [Google Scholar] [CrossRef]
- Miszalski, B.; Acker, A.; Moffat, A.F.J.; Parker, Q.A.; Udalski, A. Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 2009, 496, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Mitchell, D.L.; Lloyd, M.; Pollacco, D.; O’Brien, T.J.; Meaburn, J.; Vaytet, N.M.H. The morphology and kinematics of the Fine Ring Nebula, planetary nebula Sp 1, and the shaping influence of its binary central star. Mon. Not. R. Astron. Soc. 2012, 420, 2271–2279. [Google Scholar] [CrossRef] [Green Version]
- Tyndall, A.A.; Jones, D.; Lloyd, M.; O’Brien, T.J.; Pollacco, D. A study of the kinematics and binary-induced shaping of the planetary nebula HaTr 4. Mon. Not. R. Astron. Soc. 2012, 422, 1804–1811. [Google Scholar] [CrossRef] [Green Version]
- Huckvale, L.; Prouse, B.; Jones, D.; Lloyd, M.; Pollacco, D.; López, J.A.; O’Brien, T.J.; Sabin, L.; Vaytet, N.M.H. Spatio-kinematic modelling of Abell 65, a double-shelled planetary nebula with a binary central star. Mon. Not. R. Astron. Soc. 2013, 434, 1505–1512. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Nordhaus, J.; Frank, A.; Blackman, E.G.; Balick, B. Three-dimensional hydrodynamic simulations of L2 Puppis. Mon. Not. R. Astron. Soc. 2016, 460, 4182–4187. [Google Scholar] [CrossRef] [Green Version]
- García-Segura, G.; Ricker, P.M.; Taam, R.E. Common Envelope Shaping of Planetary Nebulae. Astrophys. J. 2018, 860, 19. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Frank, A.; Chen, Z.; Reichardt, T.; De Marco, O.; Blackman, E.G.; Nordhaus, J.; Balick, B.; Carroll-Nellenback, J.; Chamandy, L.; et al. Bipolar planetary nebulae from outflow collimation by common envelope evolution. Mon. Not. R. Astron. Soc. 2020, 497, 2855–2869. [Google Scholar] [CrossRef]
- Dopita, M.; Hart, J.; McGregor, P.; Oates, P.; Bloxham, G.; Jones, D. The Wide Field Spectrograph (WiFeS). Astrophys. Space Sci. 2007, 310, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Dopita, M.; Rhee, J.; Farage, C.; McGregor, P.; Bloxham, G.; Green, A.; Roberts, B.; Neilson, J.; Wilson, G.; Young, P.; et al. The Wide Field Spectrograph (WiFeS): Performance and data reduction. Astrophys. Space Sci. 2010, 327, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Danehkar, A. Discovery of Collimated Bipolar Outflows in the Planetary Nebula TH 2-A. Astrophys. J. 2015, 815, 35. [Google Scholar] [CrossRef] [Green Version]
- Danehkar, A.; Parker, Q.A. Spatially resolved kinematic observations of the planetary nebulae Hen 3-1333 and Hen 2-113. Mon. Not. R. Astron. Soc. 2015, 449, L56–L59. [Google Scholar] [CrossRef] [Green Version]
- Danehkar, A.; Parker, Q.A.; Steffen, W. Fast, Low-ionization Emission Regions of the Planetary Nebula M2-42. Astron. J. 2016, 151, 38. [Google Scholar] [CrossRef] [Green Version]
- Danehkar, A. Morpho-kinematic properties of Wolf-Rayet planetary nebulae. arXiv 2022, arXiv:2107.03994. [Google Scholar]
- Danehkar, A. 3D spatio-kinematic modelling of Abell 48, a planetary nebula around a Wolf-Rayet [WN] star. Mon. Not. R. Astron. Soc. 2022, 511, 1022–1028. [Google Scholar] [CrossRef]
- Ali, A.; Dopita, M.A.; Basurah, H.M.; Amer, M.A.; Alsulami, R.; Alruhaili, A. IFU spectroscopy of southern planetary nebulae—III. Mon. Not. R. Astron. Soc. 2016, 462, 1393–1404. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Dopita, M.A. IFU Spectroscopy of Southern Planetary Nebulae V: Low-Ionisation Structures. Publ. Astron. Soc. Aust. 2017, 34, e036. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.R.; Monreal-Ibero, A.; Barlow, M.J.; Ueta, T.; Wesson, R.; Zijlstra, A.A.; Kimeswenger, S.; Leal-Ferreira, M.L.; Otsuka, M. An imaging spectroscopic survey of the planetary nebula NGC 7009 with MUSE. Astron. Astrophys. 2018, 620, A169. [Google Scholar] [CrossRef] [Green Version]
- Akras, S.; Monteiro, H.; Aleman, I.; Farias, M.A.F.; May, D.; Pereira, C.B. Exploring the differences of integrated and spatially resolved analysis using integral field unit data: The case of Abell 14. Mon. Not. R. Astron. Soc. 2020, 493, 2238–2252. [Google Scholar] [CrossRef]
- Monreal-Ibero, A.; Walsh, J.R. The MUSE view of the planetary nebula NGC 3132. Astron. Astrophys. 2020, 634, A47. [Google Scholar] [CrossRef]
- García-Rojas, J.; Morisset, C.; Jones, D.; Wesson, R.; Boffin, H.M.J.; Monteiro, H.; Corradi, R.L.M.; Rodríguez-Gil, P. MUSE spectroscopy of planetary nebulae with high abundance discrepancies. Mon. Not. R. Astron. Soc. 2022, 510, 5444–5463. [Google Scholar] [CrossRef]
- Acker, A.; Neiner, C. Quantitative classification of WR nuclei of planetary nebulae. Astron. Astrophys. 2003, 403, 659–673. [Google Scholar] [CrossRef] [Green Version]
- Danehkar, A. Evolution of Planetary Nebulae with WR-Type Central Stars. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2014. [Google Scholar] [CrossRef]
- Danehkar, A. Physical and Chemical Properties of Wolf-Rayet Planetary Nebulae. Astrophys. J. Suppl. Ser. 2021, 257, 58. [Google Scholar] [CrossRef]
- Crowther, P.A.; De Marco, O.; Barlow, M.J. Quantitative classification of WC and WO stars. Mon. Not. R. Astron. Soc. 1998, 296, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Tylenda, R.; Acker, A.; Stenholm, B. Wolf-Rayet Nuclei of Planetary Nebulae—Observations and Classification. Astron. Astrophys. 1993, 102, 595. [Google Scholar]
- Depew, K.; Parker, Q.A.; Miszalski, B.; De Marco, O.; Frew, D.J.; Acker, A.; Kovacevic, A.V.; Sharp, R.G. Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae. Mon. Not. R. Astron. Soc. 2011, 414, 2812–2827. [Google Scholar] [CrossRef] [Green Version]
- Basurah, H.M.; Ali, A.; Dopita, M.A.; Alsulami, R.; Amer, M.A.; Alruhaili, A. Problems for the WELS classification of planetary nebula central stars: Self-consistent nebular modelling of four candidates. Mon. Not. R. Astron. Soc. 2016, 458, 2694–2709. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, X.W. Elemental abundances of Galactic bulge planetary nebulae from optical recombination lines. Mon. Not. R. Astron. Soc. 2007, 381, 669–701. [Google Scholar] [CrossRef] [Green Version]
- Stanghellini, L.; Shaw, R.A.; Villaver, E. The Magellanic Cloud Calibration of the Galactic Planetary Nebula Distance Scale. Astrophys. J. 2008, 689, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Frew, D.J.; Parker, Q.A.; Bojičić, I.S. The Hα surface brightness-radius relation: A robust statistical distance indicator for planetary nebulae. Mon. Not. R. Astron. Soc. 2016, 455, 1459–1488. [Google Scholar] [CrossRef] [Green Version]
- Akras, S.; López, J.A. Three-dimensional modelling of the collimated bipolar outflows of compact planetary nebulae with Wolf-Rayet-type central stars. Mon. Not. R. Astron. Soc. 2012, 425, 2197–2202. [Google Scholar] [CrossRef]
- Parker, Q.A.; Phillipps, S.; Pierce, M.J.; Hartley, M.; Hambly, N.C.; Read, M.A.; MacGillivray, H.T.; Tritton, S.B.; Cass, C.P.; Cannon, R.D.; et al. The AAO/UKST SuperCOSMOS Hα survey. Mon. Not. R. Astron. Soc. 2005, 362, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Derlopa, S.; Akras, S.; Boumis, P.; Steffen, W. High-velocity string of knots in the outburst of the planetary nebula Hb4. Mon. Not. R. Astron. Soc. 2019, 484, 3746–3754. [Google Scholar] [CrossRef]
- De Marco, O.; Crowther, P.A. The WC10 central stars CPD-56°8032 and He2-113 - II. Model analysis and comparison with nebular properties. Mon. Not. R. Astron. Soc. 1998, 296, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.; Barlow, M.J.; Sylvester, R.J.; Liu, X.W.; Cox, P.; Lim, T.; Schmitt, B.; Speck, A.K. Water Ice, Silicate, and Polycyclic Aromatic Hydrocarbon Emission Featuresin the Infrared Space Observatory Spectrum of the Carbon-rich Planetary Nebula CPD-56°8032. Astrophys. J. 1999, 513, L135–L138. [Google Scholar] [CrossRef]
- Cohen, M.; Barlow, M.J.; Liu, X.W.; Jones, A.F. The dual dust chemistries of planetary nebulae with [WCL] central stars. Mon. Not. R. Astron. Soc. 2002, 332, 879–890. [Google Scholar] [CrossRef] [Green Version]
- Chesneau, O.; Collioud, A.; De Marco, O.; Wolf, S.; Lagadec, E.; Zijlstra, A.A.; Rothkopf, A.; Acker, A.; Clayton, G.C.; Lopez, B. A close look into the carbon disk at the core of the planetary nebula CPD-56°8032. Astron. Astrophys. 2006, 455, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Lagadec, E.; Chesneau, O.; Matsuura, M.; De Marco, O.; de Freitas Pacheco, J.A.; Zijlstra, A.A.; Acker, A.; Clayton, G.C.; Lopez, B. New insights on the complex planetary nebula Hen 2-113. Astron. Astrophys. 2006, 448, 203–212. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O.; Barlow, M.J.; Storey, P.J. The WC10 central stars CPD-56°8032 and He 2-113. I—Distances and nebular parameters. Mon. Not. R. Astron. Soc. 1997, 292, 86. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Hyung, S. Broad Hα Wing Formation in the Planetary Nebula IC 4997. Astrophys. J. 2000, 530, L49–L52. [Google Scholar] [CrossRef]
- Steffen, W.; López, J.A. Morpho-Kinematic Modeling of Gaseous Nebulae with SHAPE. arXiv 2006. [Google Scholar]
- Steffen, W.; Koning, N.; Wenger, S.; Morisset, C.; Magnor, M. Shape: A 3D Modeling Tool for Astrophysics. IEEE Trans. Vis. Comput. Graph. 2011, 17, 454–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danehkar, A. Morphologies of Wolf–Rayet Planetary Nebulae Based on IFU Observations. Galaxies 2022, 10, 45. https://doi.org/10.3390/galaxies10020045
Danehkar A. Morphologies of Wolf–Rayet Planetary Nebulae Based on IFU Observations. Galaxies. 2022; 10(2):45. https://doi.org/10.3390/galaxies10020045
Chicago/Turabian StyleDanehkar, Ashkbiz. 2022. "Morphologies of Wolf–Rayet Planetary Nebulae Based on IFU Observations" Galaxies 10, no. 2: 45. https://doi.org/10.3390/galaxies10020045