Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges
Abstract
:1. Introduction
Barriers to clinical implementation (references in square brackets) |
1. Should testing be performed? |
|
2. Challenges to integration |
|
- Note: Barriers in bold are those particularly relevant to pharmacogenomic testing (rather than genomic testing more generally).
2. Barrier 1: Should a Pharmacogenomic Test Be Ordered?
3. Overcoming Barrier 1
4. Barrier 2: Challenges with Implementing Pharmacogenetic Testing
4.1. Challenges Common to Implementing Genomic Testing Generally
4.2. Challenges for Pharmacogenomics Implementation: CYP2D6
4.3. Challenges for Pharmacogenomics Implementation: Combining Results from Multiple Genes
4.4. Challenges for Pharmacogenomics Implementation: When Pharmacogenes Are Also Disease Risk Genes
5. Overcoming Barrier 2
- Rigorous sample tracking methodology,
- precise documentation of the NGS process used to generate results (e.g., assay platform, software version and settings, reference genome sequence ID—including version number, quality metrics—both methods used for, and results of, such quality evaluation),
- use of standardized, widely-accepted nomenclature (e.g., available from the Human Genome Variation Society (http://www.hgvs.org/mutnomen) and PharmVar (https://www.pharmvar.org/)) for variant identification, classification, and reporting,
- clear documentation of the limitations of the clinical NGS in the test report,
- storage of the variant (VCF) files at a minimum, and the alignment mapping (BAM/SAM) files if possible,
- validation of the NGS pipeline, and re-validation following any parameter changes (e.g., software updates; re-validation may be in whole or in part—depending on the anticipated types of errors associated with the change),
- ongoing quality assurance testing—such as proficiency testing,
- compliance with all relevant legal and policy frameworks (local, provincial, national), and
- involvement of highly qualified personnel with certification from relevant professional bodies.
6. Conclusions
7. Future Perspective
- the actionable evidence for pharmacogenomics will continue to accumulate,
- the technology will continue to advance and become more accessible, and
- costs will continue to drop.
8. Executive Summary
- Pharmacogenomics is relevant to every aspect of human health.
- Barriers to incorporating pharmacogenomic testing into clinical practice include: low genomic literacy amongst physicians; drug labelling information that is difficult to interpret and/or out-of-date; clinical guidelines for pharmacogenetic testing that are sometimes discrepant (between organizations), and occasionally may be biased; and technical as well as logistical challenges in pharmacogenetic analysis and interpretation of results.
- A growing number of guidelines (132 available on the PharmGKB website, as of June 2019) provide recommendations for the use of pharmacogenetic testing to guide clinical care.
- PharmGKB facilitates access to guidelines for clinicians.
- CPIC and DPWG are committed to resolving discrepancies between guidelines.
- Work is underway in multiples countries worldwide to address the logistical challenges of integrating pharmacogenetic testing into healthcare systems—with large-scale implementation studies underway in the USA and Europe, and best practice guidelines for clinical next generation sequencing published by numerous organizations.
- Working as part of a multidisciplinary team with pharmacists and genetic counsellors can help with managing the complex challenges of determining whether to order a pharmacogenomic test, and then interpreting and acting on the results. Find a genetic counsellor using directories available through the USA-based National Society of Genetic Counselors website (https://www.nsgc.org/page/find-a-genetic-counselor) or the Canadian-based Canadian Association of Genetic Counsellors website (https://www.cagc-accg.ca/?page=225).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stanek, E.J.; Sanders, C.L.; Taber, K.A.J.; Khalid, M.; Patel, A.; Verbrugge, R.R.; Agatep, B.C.; Aubert, R.E.; Epstein, R.S.; Frueh, F.W.; et al. Adoption of pharmacogenomic testing by US physicians: Results of a nationwide survey. Clin. Pharmacol. Ther. 2012, 91, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, S.G.; Dirksen, R.T.; Sangkuhl, K.; Pulk, R.; Alvarellos, M.; Vo, T.; Hikino, K.; Roden, D.; Klein, T.E.; Poler, S.M.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for the Use of Potent Volatile Anesthetic Agents and Succinylcholine in the Context of RYR 1 or CACNA 1S Genotypes. Clin. Pharmacol. Ther. 2019, 105, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Dutch Pharmacogenetics Working Group (DPWG) of the Royal Dutch Pharmacists Association (KNMP). Dutch Pharmacogenetics Working Group guidelines update November 2018. Retrieved 6 August 2019. Available online: https://www.knmp.nl/downloads/pharmacogenetic-recommendations-august-2019.pdf (accessed on 2 July 2019).
- Swen, J.J.; Nijenhuis, M.; De Boer, A.; Grandia, L.; Der Zee, A.H.M.-V.; Mulder, H.; Rongen, G.A.P.J.M.; Van Schaik, R.H.N.; Schalekamp, T.; Touw, D.J.; et al. Pharmacogenetics: From Bench to Byte—An Update of Guidelines. Clin. Pharmacol. Ther. 2011, 89, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agúndez, J.A.G.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC®) Guideline for CYP2C19 and Voriconazole Therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.P.; Johnson, S.G.; Yee, S.W.; McDonagh, E.M.; Caudle, K.E.; Klein, T.E.; Cannavo, M.; Giacomini, K.M. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Ivacaftor Therapy in the Context of CFTR Genotype. Clin. Pharmacol. Ther. 2014, 95, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Bell, G.C.; Caudle, K.E.; Whirl-Carrillo, M.; Gordon, R.J.; Hikino, K.; Prows, C.A.; Gaedigk, A.; Agundez, J.A.; Sadhasivam, S.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 Genotype and Use of Ondansetron and Tropisetron. Clin. Pharmacol. Ther. 2017, 102, 213–218. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.M.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef]
- Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.-S.; Mega, J.L.; Roden, D.M. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update. Clin. Pharmacol. Ther. 2013, 94, 317–323. [Google Scholar] [CrossRef]
- Shaw, K.; Amstutz, U.; Kim, R.B.; Lesko, L.J.; Turgeon, J.; Michaud, V.; Hwang, S.; Ito, S.; Ross, C.; Carleton, B.C. Clinical Practice Recommendations on Genetic Testing of CYP2C9 and VKORC1 Variants in Warfarin Therapy. Ther. Drug. Monit. 2015, 37, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.Á.; Hoffman, J.M.; Freimuth, R.R.; Klein, T.E.; Dong, B.J.; Pirmohamed, M.; Hicks, J.K.; Wilkinson, M.R.; Haas, D.W.; Kroetz, D.L. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing: 2014 Update. Clin. Pharmacol. Ther. 2014, 95, 499–500. [Google Scholar] [CrossRef]
- Gammal, R.S.; Court, M.H.; Haidar, C.E.; Iwuchukwu, O.F.; Gaur, A.H.; Alvarellos, M.; Guillemette, C.; Lennox, J.L.; Whirl-Carrillo, M.; Brummel, S.S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef]
- Muir, A.J.; Gong, L.; Johnson, S.G.; Lee, M.T.M.; Williams, M.S.; Klein, T.E.; Caudle, K.E.; Nelson, D.R. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin. Pharmacol. Ther. 2014, 95, 141–146. [Google Scholar] [CrossRef]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.-H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Hicks, J.K.; et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 2013, 93, 324–325. [Google Scholar] [CrossRef]
- Birdwell, K.; Decker, B.; Barbarino, J.; Peterson, J.; Stein, C.; Sadee, W.; Wang, D.; Vinks, A.; He, Y.; Swen, J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef]
- Saito, Y.; Stamp, L.K.; Caudle, K.E.; Hershfield, M.S.; McDonagh, E.M.; Callaghan, J.T.; Tassaneeyakul, W.; Mushiroda, T.; Kamatani, N.; Goldspiel, B.R.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin. Pharmacol. Ther. 2016, 99, 36–37. [Google Scholar] [CrossRef]
- Relling, M.V.; McDonagh, E.M.; Chang, T.; Caudle, K.E.; McLeod, H.L.; Haidar, C.E.; Klein, T.; Luzzatto, L. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 2014, 96, 169–174. [Google Scholar] [CrossRef]
- Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. (Hoboken) 2012, 64, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Rettie, A.E.; Whirl-Carrillo, M.; Smith, L.H.; Mintzer, S.; Lee, M.T.; Klein, T.E.; Callaghan, J.T. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing. Clin. Pharmacol. Ther. 2014, 96, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Phillips, E.J.; Sukasem, C.; Whirl-Carrillo, M.; Muller, D.J.; Dunnenberger, H.M.; Chantratita, W.; Goldspiel, B.; Chen, Y.-T.; Carleton, B.C.; George, A.L.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 574–581. [Google Scholar] [CrossRef]
- Amstutz, U.; Shear, N.H.; Rieder, M.J.; Hwang, S.; Fung, V.; Nakamura, H.; Connolly, M.B.; Ito, S.; Carleton, B.C. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia 2014, 55, 496–506. [Google Scholar] [CrossRef]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Klein, T.E.; Caudle, K.E.; Haidar, C.E.; Shen, D.D.; Callaghan, J.T.; Sadhasivam, S.; et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for Cytochrome P450 2D6 Genotype and Codeine Therapy: 2014 Update. Clin. Pharmacol. Ther. 2014, 95, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Madadi, P.; Amstutz, U.; Rieder, M.; Ito, S.; Fung, V.; Hwang, S.; Turgeon, J.; Michaud, V.; Koren, G.; Carleton, B.C. Clinical practice guideline: CYP2D6 genotyping for safe and efficacious codeine therapy. J. Popul. Ther. Clin. Pharmacol. 2013, 20, 369–396. [Google Scholar]
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef]
- Goetz, M.P.; Sangkuhl, K.; Guchelaar, H.-J.; Schwab, M.; Province, M.; Whirl-Carrillo, M.; Symmans, W.F.; McLeod, H.L.; Ratain, M.J.; Zembutsu, H.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther. 2018, 103, 770–777. [Google Scholar] [CrossRef]
- Lee, J.W.; Pussegoda, K.; Rassekh, S.R.; Monzon, J.G.; Liu, G.; Hwang, S.; Bhavsar, A.P.; Pritchard, S.; Ross, C.J.; Amstutz, U.; et al. Clinical Practice Recommendations for the Management and Prevention of Cisplatin-Induced Hearing Loss Using Pharmacogenetic Markers. Ther. Drug. Monit. 2016, 38, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef]
- Drögemöller, B.I.; Wright, G.E.B.; Shih, J.; Monzon, J.G.; Gelmon, K.A.; Ross, C.J.D.; Amstutz, U.; Carleton, B.C. CYP2D6 as a treatment decision aid for ER-positive non-metastatic breast cancer patients: A systematic review with accompanying clinical practice guidelines. Breast Cancer Res. Treat. 2019, 173, 521–532. [Google Scholar] [CrossRef]
- Boyer, J.-C.; Thomas, F.; Quaranta, S.; Picard, N.; Loriot, M.-A.; Narjoz, C.; Poncet, D.; Gagnieu, M.-C.; Ged, C.; Broly, F.; et al. UGT1A1 genotype and irinotecan therapy: General review and implementation in routine practice. Fundam. Clin. Pharmacol. 2015, 29, 219–237. [Google Scholar]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Muller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC®) for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants: 2016 Update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef]
- Brown, J.T.; Bishop, J.R.; Sangkuhl, K.; Nurmi, E.L.; Mueller, D.J.; Dinh, J.C.; Gaedigk, A.; Klein, T.E.; Caudle, K.E.; McCracken, J.T. Clinical Pharmacogenetics Implementation Consortium Guideline for Cytochrome P450 (CYP) 2D6 Genotype and Atomoxetine Therapy. Clin. Pharmacol. Ther. 2019, 106, 94–102. [Google Scholar] [CrossRef]
- Shuldiner, A.R.; Relling, M.V.; Peterson, J.F.; Hicks, J.; Freimuth, R.; Sadee, W.; Pereira, N.L.; Roden, D.M.; Johnson, A.; Klein, T.E.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Overcoming Challenges of Real-World Implementation. Clin. Pharmacol. Ther. 2013, 94, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.E.; Parvez, M.M.; Shin, J.-G. Clinical Implementation of Pharmacogenomics for Personalized Precision Medicine: Barriers and Solutions. J. Pharm. Sci. 2017, 106, 2368–2379. [Google Scholar] [CrossRef] [Green Version]
- Dunnenberger, H.M.; Crews, K.R.; Hoffman, J.M.; Caudle, K.E.; Broeckel, U.; Howard, S.C.; Hunkler, R.J.; Klein, T.E.; Evans, W.E.; Relling, M.V. Preemptive clinical pharmacogenetics implementation: Current programs in five US medical centers. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 89–106. [Google Scholar] [CrossRef]
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Gurwitz, D.; Zika, E.; Hopkins, M.; Gaisser, S.; Ibarreta, D. Pharmacogenetics in Europe: Barriers and Opportunities. Public Health Genom. 2009, 12, 134–141. [Google Scholar] [CrossRef]
- Eadon, M.T.; Kanuri, S.H.; Chapman, A.B. Pharmacogenomic studies of hypertension: Paving the way for personalized antihypertensive treatment. Expert Rev. Precis. Med. Drug. Dev. 2018, 3, 33–47. [Google Scholar] [CrossRef]
- Agúndez, J.A.G.; Abad-Santos, F.; Aldea, A.; Alonso-Navarro, H.; Bernal, M.L.; Borobia, A.M.; Borrás, E.; Carballo, M.; Carvajal, A.; García-Muñiz, J.D. Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain. Front. Genet. 2012, 3, 273. [Google Scholar]
- Hess, G.P.; Fonseca, E.; Scott, R.; Fagerness, J. Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: Current state and factors impacting acceptance by stakeholders. Genet. Res. (Camb.) 2015, 97, e13. [Google Scholar] [CrossRef]
- Unertl, K.M.; Jaffa, H.; Field, J.R.; Price, L.; Peterson, J.F. Clinician Perspectives on Using Pharmacogenomics in Clinical Practice. Per. Med. 2015, 12, 339–347. [Google Scholar] [CrossRef]
- Lemke, A.A.; Hutten Selkirk, C.G.; Glaser, N.S.; Sereika, A.W.; Wake, D.T.; Hulick, P.J.; Dunnenberger, H.M. Primary care physician experiences with integrated pharmacogenomic testing in a community health system. Per. Med. 2017, 14, 389–400. [Google Scholar] [CrossRef]
- Rosenman, M.B.; Decker, B.; Levy, K.D.; Holmes, A.M.; Pratt, V.M.; Eadon, M.T. Lessons Learned When Introducing Pharmacogenomic Panel Testing into Clinical Practice. Value Health 2017, 20, 54–59. [Google Scholar] [CrossRef]
- Van Rooij, T.; Wilson, D.M.; Marsh, S. Personalized medicine policy challenges: Measuring clinical utility at point of care. Expert Rev. Pharmacoecon. Outcomes Res. 2012, 12, 289–295. [Google Scholar] [CrossRef]
- Haga, S.B.; Burke, W.; Ginsburg, G.S.; Mills, R.; Agans, R. Primary Care Physicians’ Knowledge of and Experience with Pharmacogenetic Testing. Clin. Genet. 2012, 82, 388–394. [Google Scholar] [CrossRef]
- Luzum, J.A.; Cheung, J.C. Does cardiology hold pharmacogenetics to an inconsistent standard? A comparison of evidence among recommendations. Pharmacogenomics 2018, 19, 1203–1216. [Google Scholar] [CrossRef]
- Mukerjee, G.; Huston, A.; Kabakchiev, B.; Piquette-Miller, M.; van Schaik, R.; Dorfman, R. User considerations in assessing pharmacogenomic tests and their clinical support tools. Npj. Genom. Med. 2018, 3, 26. [Google Scholar] [CrossRef]
- Arwood, M.J.; Chumnumwat, S.; Cavallari, L.H.; Nutescu, E.A.; Duarte, J.D. Implementing Pharmacogenomics at Your Institution: Establishment and Overcoming Implementation Challenges. Clin. Transl. Sci. 2016, 9, 233–245. [Google Scholar] [CrossRef]
- Daud, A.N.A.; Bergsma, E.L.; Bergman, J.E.H.; De Walle, H.E.K.; Kerstjens-Frederikse, W.S.; Bijker, B.J.; Hak, E.; Wilffert, B. Knowledge and attitude regarding pharmacogenetics among formerly pregnant women in the Netherlands and their interest in pharmacogenetic research. BMC Pregnancy Childbirth 2017, 17, 120. [Google Scholar] [CrossRef]
- Lee, Y.M.; McKillip, R.P.; Borden, B.A.; Klammer, C.E.; Ratain, M.J.; O’Donnell, P.H. Assessment of Patient Perceptions of Genomic Testing to Inform Pharmacogenomic Implementation. Pharmacogenet. Genom. 2017, 27, 179–189. [Google Scholar] [CrossRef]
- Trinidad, S.B.; Coffin, T.B.; Fullerton, S.M.; Ralston, J.; Jarvik, G.P.; Larson, E.B. Getting off the Bus Closer to Your Destination: Patients’ Views about Pharmacogenetic Testing. Perm. J. 2015, 19, 21–27. [Google Scholar] [CrossRef]
- Luzum, J.A.; Pakyz, R.E.; Elsey, A.R.; Haidar, C.E.; Peterson, J.F.; Whirl-Carrillo, M.; Handelman, S.K.; Palmer, K.; Pulley, J.M.; Beller, M.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems. Clin. Pharmacol. Ther. 2017, 102, 502–510. [Google Scholar] [CrossRef]
- Weinshilboum, R.M.; Wang, L. Pharmacogenomics: Precision Medicine and Drug Response. Mayo. Clin. Proc. 2017, 92, 1711–1722. [Google Scholar] [CrossRef]
- Wong, W.B.; Carlson, J.J.; Thariani, R.; Veenstra, D.L.; Veenstra, D.D.L. Cost Effectiveness of Pharmacogenomics. Pharmacoeconomics 2010, 28, 1001–1013. [Google Scholar] [CrossRef]
- Plöthner, M.; Ribbentrop, D.; Hartman, J.-P.; Frank, M. Cost-Effectiveness of Pharmacogenomic and Pharmacogenetic Test-Guided Personalized Therapies: A Systematic Review of the Approved Active Substances for Personalized Medicine in Germany. Adv. Ther. 2016, 33, 1461–1480. [Google Scholar] [CrossRef] [Green Version]
- Verbelen, M.; Weale, M.E.; Lewis, C.M. Cost-effectiveness of pharmacogenetic-guided treatment: Are we there yet? Pharm. J. 2017, 17, 395–402. [Google Scholar] [CrossRef]
- Rosenblat, J.D.; Lee, Y.; McIntyre, R.S. Does Pharmacogenomic Testing Improve Clinical Outcomes for Major Depressive Disorder? J. Clin. Psychiatry 2017, 78, 720–729. [Google Scholar] [CrossRef]
- U.S. FDA. Science & Research (Drugs)—Table of Pharmacogenomic Biomarkers in Drug Labeling. Retrieved 6 August 2019. Available online: https://www.fda.gov/drugs/scienceresearch/ucm572698.htm (accessed on 2 July 2019).
- Mathias, P.C.; Hendrix, N.; Wang, W.-J.; Keyloun, K.; Khelifi, M.; Tarczy-Hornoch, P.; Devine, B. Characterizing Pharmacogenomic-Guided Medication Use with a Clinical Data Repository. Clin. Pharmacol. Ther. 2017, 102, 340–348. [Google Scholar] [CrossRef]
- Caudle, K.E.; Klein, T.E.; Hoffman, J.M.; Muller, D.J.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.M.; Sangkuhl, K.; Thorn, C.F.; Schwab, M. Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug. Metab. 2014, 15, 209–217. [Google Scholar] [CrossRef]
- Higgs, J.E.; Andrews, J.; Gurwitz, D.; Payne, K.; Newman, W. Pharmacogenetics education in British medical schools. Genom. Med. 2008, 2, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Gurwitz, D. Pharmacogenetics education: 10 years of experience at Tel Aviv University. Pharmacogenomics 2010, 11, 647–649. [Google Scholar] [CrossRef]
- Gurwitz, D.; Weizman, A.; Rehavi, M. Education: Teaching pharmacogenomics to prepare future physicians and researchers for personalized medicine. Trends Pharmacol. Sci. 2003, 24, 122–125. [Google Scholar] [CrossRef]
- Rao, U.S.; Mayhew, S.L.; Rao, P.S. Strategies for implementation of an effective pharmacogenomics program in pharmacy education. Pharmacogenomics 2015, 16, 905–911. [Google Scholar] [CrossRef]
- Lee, K.C.; Ma, J.D.; Hudmon, K.S.; Kuo, G.M. A Train-the-Trainer Approach to a Shared Pharmacogenomics Curriculum for US Colleges and Schools of Pharmacy. Am. J. Pharm. Educ. 2012, 76, 193. [Google Scholar] [CrossRef]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Boil. Med. 2018, 10, e1417. [Google Scholar] [CrossRef]
- Mills, R.; Haga, S.B. The Clinical Delivery of Pharmacogenetic Testing Services: A Proposed Partnership between Genetic Counselors and Pharmacists. Pharmacogenomics 2013, 14, 957–968. [Google Scholar] [CrossRef]
- Dunnenberger, H.M.; Biszewski, M.; Bell, G.C.; Sereika, A.; May, H.; Johnson, S.G.; Hulick, P.J.; Khandekar, J. Implementation of a multidisciplinary pharmacogenomics clinic in a community health system. Am. J. Health Pharm. 2016, 73, 1956–1966. [Google Scholar] [CrossRef]
- Zierhut, H.A.; Campbell, C.A.; Mitchell, A.G.; Lemke, A.A.; Mills, R.; Bishop, J.R. Collaborative Counseling Considerations for Pharmacogenomic Tests. Pharmacotherapy 2017, 37, 990–999. [Google Scholar] [CrossRef]
- Huddleston, K.L.; Klein, E.; Fuller, A.; Jo, G.; Lawrence, G.; Haga, S.B. Introducing personalized health for the family: The experience of a single hospital system. Pharmacogenomics 2017, 18, 1589–1594. [Google Scholar] [CrossRef]
- Swen, J.J.; Nijenhuis, M.; Van Rhenen, M.; De Boer-Veger, N.J.; Buunk, A.-M.; Houwink, E.J.; Mülder, H.; Rongen, G.A.; Van Schaik, R.H.; Van Der Weide, J.; et al. Pharmacogenetic Information in Clinical Guidelines: The European Perspective. Clin. Pharmacol. Ther. 2018, 103, 795–801. [Google Scholar] [CrossRef]
- Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef]
- Bank, P.C.D.; Caudle, K.E.; Swen, J.J.; Gammal, R.S.; Whirl-Carrillo, M.; Klein, T.E.; Relling, M.V.; Guchelaar, H.J. Comparison of the Guidelines of the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group. Clin. Pharmacol. Ther. 2018, 103, 599–618. [Google Scholar] [CrossRef]
- Tzvetkov, M.; Von Ahsen, N. Pharmacogenetic screening for drug therapy: From single gene markers to decision making in the next generation sequencing era. Pathology 2012, 44, 166–180. [Google Scholar] [CrossRef]
- Dorado, P.; Cáceres, M.C.; Pozo-Guisado, E.; Wong, M.-L.; Licinio, J.; Llerena, A. Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use. Biotechniques 2005, 39, S571–S574. [Google Scholar] [CrossRef] [Green Version]
- Jose de Leon, B.; Susce, M.T.; Johnson, M.; Hardin, M.; Maw, L.; Shao, A.; Allen, A.C.; Chiafari, F.A.; Hillman, G.; Nikoloff, D.M. DNA microarray technology in the clinical environment: The AmpliChip CYP450 test for CYP2D6 and CYP2C19 genotyping. CNS Spectr. 2009, 14, 19–35. [Google Scholar] [CrossRef]
- Black, J.L.; Walker, D.L.; O’Kane, D.J.; Harmandayan, M. Frequency of undetected CYP2D6 hybrid genes in clinical samples: Impact on phenotype prediction. Drug. Metab. Dispos. 2012, 40, 111–119. [Google Scholar] [CrossRef]
- Chua, E.W.; Cree, S.L.; Ton, K.N.T.; Lehnert, K.; Shepherd, P.; Helsby, N.; Kennedy, M.A. Cross-Comparison of Exome Analysis, Next-Generation Sequencing of Amplicons, and the iPLEX® ADME PGx Panel for Pharmacogenomic Profiling. Front. Pharmacol. 2016, 7, 1. [Google Scholar] [CrossRef]
- Cohn, I.; Paton, T.A.; Marshall, C.R.; Basran, R.; Stavropoulos, D.J.; Ray, P.N.; Monfared, N.; Hayeems, R.Z.; Meyn, M.S.; Bowdin, S.; et al. Genome sequencing as a platform for pharmacogenetic genotyping: A pediatric cohort study. npj Genom. Med. 2017, 2, 19. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Y.; Sebra, R.; Mendiratta, G.; Gaedigk, A.; Desnick, R.J.; Scott, S.A. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum. Mutat. 2016, 37, 315–323. [Google Scholar] [CrossRef]
- Ammar, R.; Paton, T.A.; Torti, D.; Shlien, A.; Bader, G.D. Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Research 2015, 4, 17. [Google Scholar] [CrossRef]
- Falzoi, M.; Pira, L.; Lazzari, P.; Pani, L. Analysis of CYP2D6 allele frequencies and identification of novel SNPs and sequence variations in Sardinians. Corp. ISRN Genet. 2013, 2013. [Google Scholar] [CrossRef]
- Kramer, W.E.; Walker, D.L.; O’Kane, D.J.; Mrazek, D.A.; Fisher, P.K.; Dukek, B.A.; Bruflat, J.K.; Black, J.L. CYP2D6: Novel genomic structures and alleles. Pharm. Genom. 2009, 19, 813–822. [Google Scholar] [CrossRef]
- Moorcraft, S.Y.; Gonzalez, D.; Walker, B.A. Understanding next generation sequencing in oncology: A guide for oncologists. Crit. Rev. Oncol. 2015, 96, 463–474. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- Zook, J.M.; Chapman, B.; Wang, J.; Mittelman, D.; Hofmann, O.; Hide, W.; Salit, M. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 2014, 32, 246–251. [Google Scholar] [CrossRef]
- Hardwick, S.A.; Deveson, I.W.; Mercer, T.R. Reference standards for next-generation sequencing. Nat. Rev. Genet. 2017, 18, 473–484. [Google Scholar] [CrossRef]
- Gargis, A.S.; Kalman, L.; Bick, D.P.; Da Silva, C.; Dimmock, D.P.; Funke, B.H.; Gowrisankar, S.; Hegde, M.R.; Kulkarni, S.; Mason, C.E.; et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat. Biotechnol. 2015, 33, 689–693. [Google Scholar] [CrossRef]
- Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E.; Leon, A.; Pullambhatla, M.; Temple-Smolkin, R.L.; Voelkerding, K.V.; et al. Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 2018, 20, 4–27. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E.; et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef] [Green Version]
- USA Food and Drug Administration. Federal Register: Considerations for Design, Development, and Analytical Validation of Next Generation Sequencing-Based In Vitro Diagnostics Intended to Aid in the Diagnosis of Suspected Germline Diseases; Guidance for Stakeholders and Food and Drug Adm. 2018; Retrieved 6 August 2019. Available online: https://www.federalregister.gov/documents/2018/04/13/2018-07687/considerations-for-design-development-and-analytical-validation-of-next-generation-sequencing-based (accessed on 2 July 2019).
- Deans, Z.; Watson, C.; Charlton, R.; Ellard, S.; Wallis, Y.; Mattocks, C.; Abbs, S.; Association for Clinical Genetic Science. ACGS Practice guidelines for Targeted Next Generation Sequencing Analysis and Interpretation. 2015. Retrieved 6 August 2019. Available online: https://www.acgs.uk.com/quality/best-practice-guidelines (accessed on 2 July 2019).
- Weiss, M.M.; Van der Zwaag, B.; Jongbloed, J.D.H.; Vogel, M.J.; Brüggenwirth, H.T.; Lekanne Deprez, R.H.; Mook, O.; Ruivenkamp, C.A.; van Slegtenhorst, M.A.; van den Wijngaard, A.; et al. Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: A national collaborative study of Dutch genome diagnostic laboratories. Hum. Mutat. 2013, 34, 1313–1321. [Google Scholar] [CrossRef]
- Kim, J.; Park, W.-Y.; Kim, N.K.D.; Jang, S.J.; Chun, S.-M.; Sung, C.-O.; Choi, J.; Ko, Y.H.; Choi, Y.L.; Shim, H.S.; et al. Good Laboratory Standards for Clinical Next-Generation Sequencing Cancer Panel Tests. J. Pathol. Transl. Med. 2017, 51, 191–204. [Google Scholar] [CrossRef]
- Baudhuin, L.M.; Lagerstedt, S.A.; Klee, E.W.; Fadra, N.; Oglesbee, D.; Ferber, M.J. Confirming Variants in Next-Generation Sequencing Panel Testing by Sanger Sequencing. J. Mol. Diagn. 2015, 17, 456–461. [Google Scholar] [CrossRef]
- Beck, T.F.; Mullikin, J.C.; NISC Comparative Sequencing Program; Biesecker, L.G. Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. Clin. Chem. 2016, 62, 647–654. [Google Scholar] [CrossRef]
- Rasmussen-Torvik, L.J.; Almoguera, B.; Doheny, K.F.; Freimuth, R.R.; Gordon, A.S.; Hakonarson, H.; Hawkins, J.B.; Husami, A.; Ivacic, L.C.; Kullo, I.J.; et al. Concordance between Research Sequencing and Clinical Pharmacogenetic Genotyping in the eMERGE-PGx Study. J. Mol. Diagn. 2017, 19, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Gargis, A.S.; Kalman, L.; Lubin, I.M. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories. J. Clin. Microbiol. 2016, 54, 2857–2865. [Google Scholar] [CrossRef] [Green Version]
- Strom, S.P. Current practices and guidelines for clinical next-generation sequencing oncology testing. Cancer Biol. Med. 2016, 13, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Oliver, G.R.; Hart, S.N.; Klee, E.W. Bioinformatics for Clinical Next Generation Sequencing. Clin. Chem. 2015, 61, 124–135. [Google Scholar] [CrossRef]
- Clarke, A.J. Managing the ethical challenges of next-generation sequencing in genomic medicine. Br. Med. Bull. 2014, 111, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Pinxten, W.; Howard, H.C. Ethical issues raised by whole genome sequencing. Best. Pract. Res. Clin. Gastroenterol. 2014, 28, 269–279. [Google Scholar] [CrossRef]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef] [Green Version]
- van El, C.G.; Cornel, M.C.; Borry, P.; Hastings, R.J.; Fellmann, F.; Hodgson, S.V.; Howard, H.C.; Cambon-Thomsen, A.; Knoppers, B.M.; Meijers-Heijboer, H.; et al. Whole-genome sequencing in health care. Eur. J. Hum. Genet. 2013, 21, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.; Parker, M. Health professionals’ and researchers’ perspectives on prenatal whole genome and exome sequencing: ’We can’t shut the door now, the genie’s out, we need to refine it’. PLoS ONE 2018, 13, e0204158. [Google Scholar] [CrossRef]
- Thorogood, A.; Cook-Deegan, R.; Knoppers, B.M. Public variant databases: Liability? Genet. Med. 2017, 19, 838–841. [Google Scholar] [CrossRef]
- Burke, W.; Antommaria, A.H.M.; Bennett, R.; Botkin, J.; Clayton, E.W.; Henderson, G.E.; Holm, I.A.; Jarvik, G.P.; Khoury, M.J.; Knoppers, B.M.; et al. Recommendations for returning genomic incidental findings? We need to talk! Genet. Med. 2013, 15, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Gaedigk, A. Complexities of CYP2D6 gene analysis and interpretation. Int. Rev. Psychiatry 2013, 25, 534–553. [Google Scholar] [CrossRef]
- Berliner, J.L.; Fay, A.M.; Cummings, S.A.; Burnett, B.; Tillmanns, T. NSGC Practice Guideline: Risk Assessment and Genetic Counseling for Hereditary Breast and Ovarian Cancer. J. Genet. Couns. 2013, 22, 155–163. [Google Scholar] [CrossRef]
- Kalow, W. Pharmacogenetics: Heredity and the Response to Drugs; W.B. Saunders Co.: Philadelphia, PA, USA, 1962; 231p. [Google Scholar]
- Bielinski, S.J.; Olson, J.E.; Pathak, J.; Weinshilboum, R.M.; Wang, L.; Lyke, K.J.; Ryu, E.; Targonski, P.V.; Van Norstrand, M.D.; Hathcock, M.A.; et al. Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time—Using Genomic Data to Individualize Treatment Protocol. Mayo Clin. Proc. 2014, 89, 25–33. [Google Scholar] [CrossRef]
- Peterson, J.F.; Field, J.R.; Shi, Y.; Schildcrout, J.S.; Denny, J.C.; McGregor, T.L.; Van Driest, S.L.; Pulley, J.M.; Lubin, I.M.; Laposata, M.; et al. Attitudes of clinicians following large-scale pharmacogenomics implementation. Pharmacogenom. J. 2016, 16, 393–398. [Google Scholar] [CrossRef]
- van der Wouden, C.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.; Dávila-Fajardo, C.; Deneer, V.; Dolžan, V.; Ingelman-Sundberg, M.; Jönsson, S.; Karlsson, M.O.; et al. Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clin. Pharmacol. Ther. 2017, 101, 341–358. [Google Scholar] [CrossRef]
- Mills, M.C.; Rahal, C. A scientometric review of genome-wide association studies. Commun. Boil. 2019, 2, 9. [Google Scholar] [CrossRef]
- Sherman, R.M.; Forman, J.; Antonescu, V.; Puiu, D.; Daya, M.; Rafaels, N.; Boorgula, M.P.; Chavan, S.; Vergara, C.; Ortega, V.E.; et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 2019, 51, 30–35. [Google Scholar] [CrossRef]
Clinical Specialty Area | Drug Class | Drug (s) | Relevant VIP (s) | Associated Guideline (s) |
---|---|---|---|---|
Anesthesiology | Anesthetic agents and muscle relaxants | Desflurane, enflurane, halothane, isoflurane, methoxyflurane, sevoflurane, succinylcholine | CACNA1S, | CPIC [2] |
RYR1 | ||||
Cardiology | Anti-arrhythmics | Flecainide, propafenone | CYP2D6 | DPWG [3,4] |
Beta blockers | Metoprolol | CYP2D6 | DPWG [3,4] | |
Statins (lipid management) | Simvastatin | SLCO1B1 | CPIC [5] | |
DPWG [3] | ||||
Dermatology | Anti-fungal (Aspergillosis, Candidiasis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Endocrinology | Hormonal contraceptives (estrogen-containing) | Combined injectable contraceptive, contraceptive patch, NuvaRing, oral contraceptive pill | F5 | DPWG [3,4] |
Protein “potentiator” (cystic fibrosis treatment) | Ivacaftor | CFTR | CPIC [7] | |
Gastroenterology | Anti-fungal (Candidiasis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Anti-emetic | Ondansetron, tropisetron | CYP2D6 | CPIC [8] | |
Protein “potentiator” (cystic fibrosis treatment) | Ivacaftor | CFTR | CPIC [7] | |
Proton pump inhibitors | Lansoprazole, omeprazole, pantoprazole | CYP2C19 | DPWG [3,4] | |
Gynecology | Anti-fungal (Candidiasis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Hematology | Anti-thrombotic (anticoagulant/antiplatelet) | Acenocoumarol, clopidogrel, phenprocoumon, warfarin | CYP2C19, CYP2C9, CYP4F2, VKORC1 | DPWG [3,4] |
CPIC [9,10] | ||||
CPNDS [11] | ||||
Immunology | Anti-retroviral (HIV treatment) | Abacavir, atazanavir | HLA-B, UGT1A1 | CPIC [12,13] |
DPWG [3,4] | ||||
Anti-viral (hepatitis C, RSV, viral hemorrhagic fever treatment) | Peginterferon alfa-2a, peginterferon alfa-2b, ribavirin | HLA-B, IFNL3 | CPIC [14] | |
DPWG [4] | ||||
Immunosuppressant (eczema, rheumatoid arthritis treatment, lowers risk of organ rejection following transplant) | Azathioprine, mercaptopurine, tacrolimus, thioguanine | CYP3A5, TPMT | CPIC [15,16] | |
DPWG [3,4] | ||||
Nephrology | Anti-gout agent (also kidney stones treatment) | Allopurinol, rasburicase | G6PD, HLA-B | CPIC [17,18] |
American College of Rheumatology [19] | ||||
Neurology | Anti-convulsant | Carbamazepine, phenytoin, oxcarbazepine | CYP2C9, HLA-A, HLA-B | CPIC [20,21] |
CPNDS [22] | ||||
DPWG [3,4] | ||||
Anti-fungal (CNS fungal infections treatment) | Voriconazole | CYP2C19 | CPIC [6] | |
DPWG [3,4] | ||||
Opioid analgesics | Codeine, tramadol | CYP2D6 | CPIC [23] | |
DPWG [3,4] | ||||
CPNDS [24] | ||||
Oncology | Anti-neoplastics | Capecitabine, cisplatin, daunorubicin, doxorubicin, fluorouracil, irinotecan, tamoxifen, tegafur | BRCA1, CYP2D6, DPYD, RARG,SLC28A3, TPMT, UGT1A6, UGT1A1 | CPIC [25,26] |
DPWG [3,4] | ||||
CPNDS [27,28,29] | ||||
French Group of Clinical Onco-pharmacology & National Pharmacogenetics Network [30] | ||||
Ophthalmology | Anti-fungal (Aspergillosis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Otolaryngology | Anti-fungal (Candidiasis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Psychiatry | Anti-convulsants | Carbamazepine, phenytoin, oxcarbazepine | CYP2C9, HLA-A, HLA-B | CPIC [20,21] |
CPNDS [22] | ||||
DPWG [3,4] | ||||
Anti-depressants | SNRI: venlafaxine; SSRI: citalopram, escitalopram, fluvoxamine, paroxetine, sertraline; TCA (tricyclic): amitriptyline, clomipramine, desipramine, doxepin, imipramine, nortriptyline, trimipramine | CYP2C19, CYP2D6 | CPIC [31,32] | |
DPWG [3,4] | ||||
Anti-psychotics | Atypical: aripiprazole, Typical: haloperidol, zuclopenthixol | CYP2D6 | DPWG [3,4] | |
Impulse control (ADHD treatment) | SNRI: atomoxetine | CYP2D6 | CPIC [33] | |
DPWG [3,4] | ||||
Respirology | Anti-fungal (Aspergillosis) | Voriconazole | CYP2C19 | CPIC [6] |
DPWG [3,4] | ||||
Protein ‘potentiator’ (cystic fibrosis treatment) | Ivacaftor | CFTR | CPIC [7] | |
Rheumatology | Anti-gout agent (also treats kidney stones, high uric acid levels secondary to cancer treatment) | Allopurinol, rasburicase | G6PD, HLA-B | CPIC [17,18] |
American College of Rheumatology [19] | ||||
Urology | Anti-gout agent (also kidney stones treatment) | Allopurinol, rasburicase | G6PD, HLA-B | CPIC [17,18] |
American College of Rheumatology [19] |
VIP | Clinical Genetic Testing 1,2 | Drug (Guideline/Drug Label Organizations 3) | Clinical Impact |
---|---|---|---|
BRCA1 | Genetic testing for BRCA1 mutations | Olaparib, rucaparib (FDA drug label) | Targeted treatment specific to genetic status |
BRCA2 | Genetic testing for BRCA2 mutations | Olaparib, rucaparib (FDA drug label) | Targeted treatment specific to genetic status |
CACNA1S | Genetic testing for CACNA1S mutations | Desflurane, enflurane, halothane, isoflurane, methoxyflurane, sevoflurane, succinylcholine (CPIC [2]) | Alternate choice of medication to prevent serious ADR (risk of death) |
CFTR | Genetic testing for presence of CFTR G551D, F508del variants (+32 other variants now approved—found on ivacaftor drug label) | Ivacaftor (CPIC [7]), lumacaftor (when in formulation with ivacaftor) (FDA drug label) | Targeted treatment specific to genetic status |
CYP2C19 | Genetic testing for presence of increased and decreased function alleles | Clopidogrel (DPWG [3,4], CPIC [10]) Amitriptyline, clomipramine, doxepin, imipramine, trimipramine (CPIC [32]—all tricyclic antidepressants listed, DPWG [3,4])—only imipramine) Citalopram, escitalopram, sertraline (CPIC [31], DPWG [3,4]) Voriconazole (CPIC [6], DPWG [3,4]) | Dosing adjustment/alternate choice of medication (risk of poor efficacy/ADRs) |
Lansoprazole, omeprazole, pantoprazole (DPWG [3,4]) | Increase attention/monitoring dose | ||
CYP2C9 | Genetic testing for presence of decreased function alleles | Phenytoin (CPIC [20], DPWG [3,4]) | Dosing adjustment to prevent serious ADR |
Genetic testing for presence of decreased function alleles | Warfarin (CPIC [9], CPNDS [11], DPWG [3]) | Dosing adjustment for optimal efficacy (avoiding excessive bleeding/clotting) | |
CYP2D6 | Genetic testing for presence of increased and decreased function alleles (recommendation may be based on genotype activity score) | Amitriptyline, also likely applicable to other TCAs: Clomipramine, desipramine, doxepin, imipramine, nortriptyline, trimipramine (CPIC [32]—as listed, DPWG [3,4]—only amitriptyline, clomipramine, doxepin, imipramine, nortriptyline) Aripiprazole, haloperidol, pimozide, zuclopenthixol (DPWG [3,4]), fluvoxamine (CPIC), paroxetine (CPIC [31]—both SSRIs listed, DPWG [3,4]—only paroxetine) Venlafaxine (DPWG [3,4]) Codeine (CPIC [23], DPWG [3,4], CPNDS [24]), tramadol (DPWG [3,4]) Flecainide, propafenone (DPWG [3,4]) Metoprolol (DPWG [3,4]) Tamoxifen (CPIC [26], DPWG [3,4], CPNDS [29]) Eliglustat (DPWG [3]) Tetrabenazine (FDA drug label) | Dosing adjustment/alternate choice of medication (risk of poor efficacy/ADRs) |
Ondansetron, tropisetron (CPIC [8]) | Alternate choice of medication to reduce risk of poor efficacy for UMs | ||
Atomoxetine (CPIC [33], DPWG [3,4]) | Increase attention/monitoring dose | ||
CYP3A5 | Genetic testing for presence of “normal” function and decreased function alleles | Tacrolimus (CPIC [16], DPWG [3,4]) | Dosing adjustment to reduce risk of poor efficacy |
CYP4F2 | Genetic testing for presence of CYP4F2*3 allele | Warfarin (CPIC [9]) | Dosing adjustment for optimal efficacy (avoiding excessive bleeding/clotting) |
DPYD | Genetic testing for presence of decreased function alleles (recommendation based on genotype activity score) | Capecitabine, fluorouracil, tegafur (CPIC [25]—only capecitabine and fluorouracil, DPWG [3,4]—all three anti-neoplastics listed) | Dosing adjustment/alternate choice of medication (risk of ADR—death) |
DMD | Genetic testing for presence of DMD mutation that is amenable to exon 51 skipping | Eteplirsen (FDA drug label) | Targeted treatment specific to genetic status |
F5 | Genetic testing for F5 alleles | Estrogen-containing hormonal contraceptives (DPWG [3,4]) | Alternate choice of contraceptive method to prevent serious ADR (venous thrombo-embolism) |
G6PD | Genetic testing for presence of decreased function (class I, II, or III) alleles [x-linked—males 1 allele, females—2 alleles; if ambiguous result or female heterozygote—enzymatic testing to confirm activity levels] | Rasburicase (CPIC [18]) Pegloticase (FDA drug label, European Medicines Agency drug label) Primaquine (FDA drug label) | Alternate choice of medication to prevent serious ADR (acute hemolytic anemia) |
HLA-A | Genetic testing for presence of HLA-A*31:01 variant | Carbamazepine (CPIC [21], CPNDS [22]) | Dosing adjustment to prevent serious ADR (SCAR) |
HLA-B | Genetic testing for presence of HLA-B*15:02 variant | Carbamazepine (CPIC [21], CPNDS [22]), phenytoin (CPIC [20]), oxcarbazepine (CPIC [21]) | Dosing adjustment to prevent serious ADR (SCAR) |
Genetic testing for presence of HLA-B*57:01 variant | Abacavir (CPIC [12], DPWG [3,4]) | Dosing adjustment/alternate choice of medication (risk of poor efficacy/ADR—SCAR) | |
Genetic testing for presence of HLA-B*58:01 variant | Allopurinol (CPIC [17], American College of Rheumatology [19]) | Dosing adjustment to prevent serious ADR (SCAR) | |
IFNL3 | Genetic testing for presence of IFNL3 (IL28B) variant (rs12979860) | Peginterferon alfa-2a, peginterferon alfa-2b, ribavirin (CPIC [14]) | Anticipated efficacy—consider in context of SDM and likely side effects |
POLG | Mitochondrial genetic testing for POLG mutations | Divalproex sodium (FDA drug label, Health Canada/Santé Canada drug label) | Alternate choice of medication to prevent serious ADR (acute liver failure and death) |
RARG | Genetic testing for presence of RARG rs2229774 variant | Daunorubicin, doxorubicin (CPNDS [28]) | Pediatric patients: Dosing adjustment to prevent serious ADR (cardiotoxicity) |
RYR1 | Genetic testing for RYR1 mutations | Desflurane, enflurane, halothane, isoflurane, methoxyflurane, sevoflurane, succinylcholine (CPIC [2]) | Alternate choice of medication to prevent serious ADR (risk of death) |
SLCO1B1 | Genetic testing for presence of C allele at SLCO1B1 rs4149056 | Simvastatin (CPIC [5], DPWG [3]) | Dosing adjustment/alternate choice of medication to prevent serious ADR (myopathy) |
TPMT | Genetic testing for presence of decreased function alleles | Azathioprine, mercaptopurine, thioguanine (CPIC [15], DPWG [3,4]) | Dosing adjustment/alternate choice of medication (risk of poor efficacy/ADRs) |
Genetic testing for presence of TPMT *2, *3A, *3B, *3C alleles | Cisplatin (CPNDS [27]) | Pediatric patients: Dosing adjustment to prevent serious ADR (ototoxicity) | |
UGT1A1 | Genetic testing for presence of two decreased function alleles | Atazanavir (CPIC [13]) | Dosing adjustment to prevent serious ADR (jaundice) |
Genetic testing for presence of UGT1A1*1,*28, *36, *37 variants | Irinotecan (DPWG [3,4], French Group of Clinical Onco-pharmacology (GPCO-Unicancer) & National Pharmacogenetics Network (RNPGx) [30]) | Dosing adjustment to prevent serious ADR (hematological/gastrointestinal toxicity) | |
UGT1A6 | Genetic testing for presence of UGT1A6*4 (rs17863783) variant | Daunorubicin, doxorubicin (CPNDS [28]) | Pediatric patients: Dosing adjustment to prevent serious ADR (cardiotoxicity) |
VKORC1 | Genetic testing for homozygous VKORC1 rs9934438 status | Acenocoumarol, phenprocoumon (DPWG [3,4]) | Increase attention/monitoring dose |
Genetic testing for presence of VKORC1 rs9923231 variant | Warfarin (CPIC [9], CPNDS [11], DPWG [3]) | Dosing adjustment for optimal efficacy (avoiding excessive bleeding/clotting) |
Approach | General Considerations | Additional Considerations for Complex Genes (e.g., CYP2D6) 1 | |
---|---|---|---|
Advantages | Disadvantages | ||
Real-time PCR (RT-PCR) with Taqman probes | Efficient: Amplification and interrogation occur in one step Identifies only variants of known significance Identifies only variants in target genes | Cannot discover novel variants Taqman assay primers and probes are proprietary and informational detail about them is thus not accessible—complicating result interpretation in rare cases | Include TaqMan assays for copy number variation (CNV) CYP2D6: TaqMan CYP2D6 gene copy number assay(s)—Applied Biosystems, Foster City, California, USA |
Restriction Fragment Length Polymorphism (RFLP) analysis | Low cost—good for population health/clinical applications | Lower sensitivity—will detect 90–95% of variants, versus 99% [76] Slow and cumbersome The technology for RFLP testing has remained largely unchanged for the past two decades | Long-range PCR (XL-PCR), a challenging technique, may be required for pre-processing samples |
Microarray (e.g., the well-established Amplichip CYP450 (Roche) test which is based on Affymetrix array technology | Relatively low cost Efficient—high throughput analysis Good for clinical laboratory settings Able to detect both SNPs and CNVs | Low discovery power—restricted by variants included in the assay Lower sensitivity—will detect 90–98% of variants, rather than 99% [77] | Higher sample quality/DNA integrity required for deletion/duplication analysis Microarray approaches will not detect hybrid genes unless specific primers are used to amplify hybrid gene(s) and if hybrid-gene-specific probes are included in the design of the microarray [78] |
PCR + Sanger sequencing | Sanger sequencing is gold standard for verification of variants Can be more cost effective for small number of samples | Slower and relatively more cumbersome More expensive—particularly for large sample sizes | XL-PCR, a challenging technique, may be required for pre-processing samples |
Multiplex PCR + Library preparation + Next Generation Sequencing | |||
For gene panel | Better discovery power versus RT-PCR Identifies only variants in target genes | Can miss discovery of novel variants, but better discovery power than RT-PCR | |
For exome sequencing (ES)/genome sequencing (GS) | High discovery power | Identifies variants of unknown significance (VUS) Identifies secondary/incidental findings in genes unrelated to pharmacogenetics Less cost-effective and more time-consuming relative to sequencing panel targeted to pharmacogenes Less robust for the purposes of interrogating particular pharmacogenes, unless NGS libraries have been enriched for this purpose ES would likely have difficulty with hybrid genes and cannot identify variants outside—or not adjacent to—the exome | Concordance of CYP2D6 results between ES and gene panel sequencing varies according to analysis parameters (e.g., >99% concordance with a truth-sensitivity threshold set at <99%, but <90% with a truth-sensitivity threshold set at <99.9%) [79] Concordance of CYP2D6 results between GS and gene panel sequencing is lower compared to other genes (e.g., 90% rather than >97% [80]) due to lower coverage depth or variant calling difficulties for GS data |
Technology: Amplicon sequencing | Requires smaller amounts of DNA Can be less cost effective for small number of samples | Limited discovery potential | Alignment of multiple short reads in the context of highly repetitive genes (such as CYP2D6) can result in higher error rate, with increased frequency of false negative/positive results |
Technology: Single-molecule real-time (SMRT) sequencing assay | Good performance on identifying splicing isoforms | Expensive and lower accuracy compared to short-read sequencing | Uses long reads of the whole gene (e.g., CYP2D6 [81]) and incorporates targeted sequencing of duplicated copies as necessary. This technique avoids a pitfall of many NGS platforms for complex genes—the misattribution of short reads to or from pseudogenes—however, it is more expensive and less accurate than other NGS approaches |
Technology: Nanopore sequencing | Low capital cost Easy to integrate into clinical setting—palm-size portable equipment Fast turnaround time for results Can be more cost effective for small number of samples | Less efficient (lower throughput capacity) While nanopore sequencing has improved in accuracy over the past several years, it is not clear if it is sufficient for SNPs | Long-read nanopore sequencing for complex genes available (e.g., CYP2D6 [82]) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hippman, C.; Nislow, C. Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges. J. Pers. Med. 2019, 9, 40. https://doi.org/10.3390/jpm9030040
Hippman C, Nislow C. Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges. Journal of Personalized Medicine. 2019; 9(3):40. https://doi.org/10.3390/jpm9030040
Chicago/Turabian StyleHippman, Catriona, and Corey Nislow. 2019. "Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges" Journal of Personalized Medicine 9, no. 3: 40. https://doi.org/10.3390/jpm9030040
APA StyleHippman, C., & Nislow, C. (2019). Pharmacogenomic Testing: Clinical Evidence and Implementation Challenges. Journal of Personalized Medicine, 9(3), 40. https://doi.org/10.3390/jpm9030040