Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer
Abstract
:1. Introduction
2. Methods
2.1. Pharmacogenomic and Multi-Gene Tests for Cancer
2.2. Guidelines Search and Data Extraction
2.3. Medicare Contractors and Private Payers
2.4. Policy Search and Data Extraction
3. Results
3.1. Biomarker-Related Coverage Policies
3.2. Multi-Gene Tests Related Guidelines
3.3. Multi-Gene Tests Related Coverage Policies
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- FDA. The Precision Medicine Paving the Way for Personalized Medicine: FDA’s Role in a New Era of Medical Product Development; FDA: Silver Spring, MD, USA, 2013. [Google Scholar]
- Towse, A.; Garrison, L.P., Jr. Economic incentives for evidence generation: Promoting an efficient path to personalized medicine. Value Health 2013, 16, S39–S43. [Google Scholar] [CrossRef] [PubMed]
- United Health Center for Health Reform & Modernization. Personalized Medicine: Trends and Prospects for the New Science of Genetic Testing and Molecular Diagnostics; United Health Center for Health Reform & Modernization: Minnetonka, MN, USA, 2012. [Google Scholar]
- Jorgensen, J.T. New era of personalized medicine: A 10-year anniversary. Oncologist 2009, 14, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, K. Can genomics bend the cost curve? JAMA 2012, 307, 1031–1032. [Google Scholar] [CrossRef] [PubMed]
- Dotson, W.D.; Douglas, M.P.; Kolor, K.; Stewart, A.C.; Bowen, M.S.; Gwinn, M.; Wulf, A.; Anders, H.M.; Chang, C.Q.; Clyne, M.; et al. Prioritizing genomic applications for action by level of evidence: A horizon-scanning method. Clin. Pharmacol. Ther. 2014, 95, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Centers for Medicare and Medicaid Services. Clinical Laboratory Fee Schedule; Centers for Medicare and Medicaid Services: Baltimore, MD, USA, 2017.
- Shavers, V.L.; Brown, M.L. Racial and ethnic disparities in the receipt of cancer treatment. J. Natl. Cancer Inst. 2002, 94, 334–357. [Google Scholar] [CrossRef] [PubMed]
- Meckley, L.M.; Neumann, P.J. Personalized medicine: Factors influencing reimbursement. Health Policy 2010, 94, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Hresko, A.; Haga, S.B. Insurance coverage policies for personalized medicine. J. Pers. Med. 2012, 2, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Wilson, A.; Manzolillo, K. Clinical and economic challenges facing pharmacogenomics. Pharmacogenom. J. 2013, 13, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Graf, M.D.; Needham, D.F.; Teed, N.; Brown, T. Genetic testing insurance coverage trends: A review of publicly available policies from the largest US payers. Pers. Med. 2013, 10, 235–243. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Public Health Genomics Knowledge Base; CDC: Atlanta, GA, USA, 2017.
- American Medical Association. American Medical Association Current Procedural Terminology CPT 2017; AMA Press: Chicago, IL, USA, 2017. [Google Scholar]
- Heilbrunn, E. Top health insurance companies. U.S. News & World Report, 5 November 2014. [Google Scholar]
- Wu, A.C.; Mazor, K.M.; Ceccarelli, R.; Loomer, S.; Lu, C.Y. Access to guideline-recommended pharmacogenomic tests for cancer treatments: Experience of providers and patients. J. Pers. Med. 2017, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A.; Deverka, P.A.; Trosman, J.R.; Douglas, M.P.; Chambers, J.D.; Weldon, C.B.; Dervan, A.P. Payer coverage policies for multigene tests. Nat. Biotechnol. 2017, 35, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 504–535. [Google Scholar] [CrossRef]
- Messner, D.A.; Conley, R.; Al Naber, J.; Simmons, J.; Johnson, M.; King, J. Initial Medical Policy and Model Coverage Guidelines for Clinical Next Generation Sequencing in Oncology; Center for Medical Technology Policy, Green Park Collaborative: Baltimore, MD, USA, 2015. [Google Scholar]
- Robson, M.E.; Bradbury, A.R.; Arun, B.; Domchek, S.M.; Ford, J.M.; Hampel, H.L.; Lipkin, S.M.; Syngal, S.; Wollins, D.S.; Lindor, N.M. American Society of Clinical Oncology policy statement update: Genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. 2015, 33, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E.; et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Wang, L.; Arcila, M.E.; Balasubramanian, S.; Greenbowe, J.R.; Ross, J.S.; Stephens, P.; Lipson, D.; Miller, V.A.; Kris, M.G.; et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin. Cancer Res. 2015, 21, 3631–3639. [Google Scholar] [CrossRef] [PubMed]
- Stadler, Z.K.; Schrader, K.A.; Vijai, J.; Robson, M.E.; Offit, K. Cancer genomics and inherited risk. J. Clin. Oncol. 2014, 32, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Varadhachary, G.R.; Raber, M.N. Cancer of unknown primary site. N. Engl. J. Med. 2014, 371, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Kurian, A.W.; Hare, E.E.; Mills, M.A.; Kingham, K.E.; McPherson, L.; Whittemore, A.S.; McGuire, V.; Ladabaum, U.; Kobayashi, Y.; Lincoln, S.E.; et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J. Clin. Oncol. 2014, 32, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Parsons, D.W.; Roy, A.; Plon, S.E.; Roychowdhury, S.; Chinnaiyan, A.M. Clinical tumor sequencing: An incidental casualty of the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings. J. Clin. Oncol. 2014, 32, 2203–2205. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Kamal, M.; Tredan, O.; Delord, J.P.; Campone, M.; Goncalves, A.; Isambert, N.; Conroy, T.; Gentien, D.; Vincent-Salomon, A.; et al. Designs and challenges for personalized medicine studies in oncology: Focus on the SHIVA trial. Target. Oncol. 2012, 7, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Westwood, M.; Joore, M.; Whiting, P.; van Asselt, T.; Ramaekers, B.; Armstrong, N.; Misso, K.; Severens, J.; Kleijnen, J. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis. Health Technol. Assess 2014, 18, 1–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, N.; Battelli, C.; Allen, B.; Kaldate, R.; Bhatnagar, S.; Bowles, K.; Timms, K.; Garber, J.E.; Herold, C.; Ellisen, L.; et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015, 121, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Plon, S.E.; Cooper, H.P.; Parks, B.; Dhar, S.U.; Kelly, P.A.; Weinberg, A.D.; Staggs, S.; Wang, T.; Hilsenbeck, S. Genetic testing and cancer risk management recommendations by physicians for at-risk relatives. Genet. Med. 2011, 13, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Cardarella, S.; Ortiz, T.M.; Joshi, V.A.; Butaney, M.; Jackman, D.M.; Kwiatkowski, D.J.; Yeap, B.Y.; Janne, P.A.; Lindeman, N.I.; Johnson, B.E. The introduction of systematic genomic testing for patients with non-small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Serpico, D.; Rodon, J.; Saura, C.; Macarulla, T.; Elez, E.; Alsina, M.; Capdevila, J.; Perez-Garcia, J.; Sanchez-Olle, G.; et al. Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials. Mol. Cancer Ther. 2012, 11, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Cragun, D.; Radford, C.; Dolinsky, J.S.; Caldwell, M.; Chao, E.; Pal, T. Panel-based testing for inherited colorectal cancer: A descriptive study of clinical testing performed by a US laboratory. Clin. Genet. 2014, 86, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Tsimberidou, A.M.; Iskander, N.G.; Hong, D.S.; Wheler, J.J.; Falchook, G.S.; Fu, S.; Piha-Paul, S.; Naing, A.; Janku, F.; Luthra, R.; et al. Personalized medicine in a phase I clinical trials program: The MD Anderson Cancer Center Initiative. Clin. Cancer Res. 2012, 18, 6373–6383. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Stephenson, J.J., Jr.; Rosen, P.; Loesch, D.M.; Borad, M.J.; Anthony, S.; Jameson, G.; Brown, S.; Cantafio, N.; Richards, D.A.; et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 2010, 28, 4877–4883. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine; Board on Health Care Services; Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical Practice Guidelines We Can Trust; National Academic Press: Washington, DC, USA, 2011. [Google Scholar]
- BlueCross BlueShield Association. Special report: Multiple molecular testing of cancers to identify targeted therapies. Technol. Eval. Center Assess. Program Exec. Summ. 2013, 28, 1–2. [Google Scholar]
- National Institute for Health and Care Excellence (NICE). EGFR-TK Mutation Testing in Adults with Locally Advanced or Metastatic Non-Small-Cell Lung Cancer; NICE: London, UK, 2013. [Google Scholar]
- Phillips, K.A. Closing the evidence gap in the use of emerging testing technologies in clinical practice. JAMA 2008, 300, 2542–2544. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Treadwell, S.; Mazor, K.M.; Wu, A.C. Payer decision making for pharmacogenetic tests: Preliminary results (PCN213). Value Health 2017, 20, A126. [Google Scholar] [CrossRef]
- Trosman, J.R.; Weldon, C.B.; Kelley, R.K.; Phillips, K.A. Challenges of coverage policy development for next-generation tumor sequencing panels: Experts and payers weigh in. J. Natl. Compr. Cancer Netw. 2015, 13, 311–318. [Google Scholar] [CrossRef]
- Dervan, A.P.; Deverka, P.A.; Trosman, J.R.; Weldon, C.B.; Douglas, M.P.; Phillips, K.A. Payer decision making for next-generation sequencing-based genetic tests: Insights from cell-free DNA prenatal screening. Genet. Med. 2017, 19, 559–567. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FoundationOne CDx—P170019. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019a.pdf (accessed on 7 May 2018).
- Center for Medicare and Medicaid Services. CMS Finalizes Coverage of Next Generation Sequencing Tests, Ensuring Enhanced Access for Cancer Patients. Available online: https://www.cms.gov/Newsroom/MediaReleaseDatabase/Press-releases/2018-Press-releases-items/2018-03-16.html (accessed on 7 May 2018).
Biomarker | Drug Name | Condition | FDA Drug Approval Date |
---|---|---|---|
KRAS | Cetuximab | Metastatic colorectal cancer | 2/12/2004 |
Panitumumab | Metastatic colorectal cancer | 9/27/2006 | |
HER2 | Trastuzumab | Gastroesophageal junction adenocarcinoma | 9/25/1998 |
Trastuzumab | Invasive breast cancer | 9/25/1998 | |
Pertuzumab | Invasive breast cancer | 6/8/2012 | |
Ado-trastuzumab emtansine | Metastatic breast cancer | 2/22/2013 | |
Lapatinib | Advanced or metastatic breast cancer | 3/13/2007 | |
BRAF | Trametinib | Unresectable or metastatic melanoma | 5/29/2013 |
Dabrafenib | Unresectable or metastatic melanoma | 5/29/2013 | |
Vemurafenib | Unresectable or metastatic melanoma | 8/17/2011 | |
EGFR | Afatinib | Metastatic Nonsmall cell lung cancer | 7/12/2013 |
Erlotinib | Metastatic Nonsmall cell lung cancer | 11/18/2004 | |
ALK | Crizotinib | Nonsmall cell lung cancer | 8/26/2011 |
BCR-ABL1 | Dasatinib | Chronic myeloid leukemia/Acute lymphoblastic leukemia | 6/28/2006 |
Imatinib | Chronic myeloid leukemia/Acute lymphoblastic leukemia | 5/10/2001 | |
Bosutinib | Chronic Myeloid Leukemia | 9/4/2012 | |
Nilotinib | Chronic Myeloid Leukemia | 10/29/2007 | |
c-Kit protein | Imatinib | Gastrointestinal stromal tumors | 5/10/2001 |
PDGFR | Imatinib | Myelodysplastic/Myeloproliferative diseases | 5/10/2001 |
CD20 | Tositumomab | Non-Hodgkin’s lymphoma | 6/27/2003 |
G6PD | Rasburicase | Leukemia, lymphoma | 7/12/2002 |
CD25 | Denileukin diftitox | Cutaneous T-cell lymphoma | 2/05/2009 |
PML/RARA | Arsenic trioxide | Acute promyelocytic leukemia | 9/25/2000 |
Cancer Related Multi-Gene Tests | CPT Code * | ||
Targeted genomic sequence analysis of 5–50 genes for solid tumors (e.g., ALK, BRAF, CDKN2A, EGFR, ERBB2, KIT, KRAS, NRAS, MET, PDGFRA, PDGFRB, PGR, PIK3CA, PTEN, and RET) | 81445 | ||
Targeted genomic sequence analysis of 5–50 genes for hematologic malignancies (e.g., BRAF, CEBPA, DNMT3A, EZH2, FLT3, IDH1, IDH2, JAK2, KRAS, KIT, MLL, NRAS, NPM1, and NOTCH1) | 81450 | ||
Targeted genomic sequence analysis of 51 or greater genes for solid tumors or hematologic malignancies (e.g., ALK, BRAF, CDKN2A, CEBPA, DNMT3A, EGFR, ERBB2, EZH2, FLT3, IDH1, IDH2, JAK2, KIT, KRAS, MLL, NPM1, NRAS, MET, NOTCH1, PDGFRA, PDGFRB, PGR, PIK3CA, PTEN, and RET) | 81455 |
Number of Policies that Mention & Cover the Test | Number of Insurers that Cover the Test | Covered Conditions | Key References Cited in Coverage Policies | CPT Codes Specified in Policies | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Medicare | Private | Medicare | Private | Medicare | Private | Medicare | Private | Medicare | Private | |
KRAS | 6 | 12 | 6 | 9 | mCRC 3 NSCLC CML ALL | mCRC 3 Adeno- carcinoma NSCLC | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | BCBSA TEC; EGAPP; ASCO; NCCN; ACG; CAP TEC | 81275-276 81311 81405-406 | 81275-276 2 81405 |
HER2 | 1 | 6 | 1 | 6 | Breast cancer 3 Gastric adenocarcinoma | Breast cancer 3 Gastric adenocarcinoma NSCLC | NCCN; ASCO; CDC; AHRQ; AMA; USPSTF | Hayes; NCCN; NICE; ECRI; ASCO; BCBSA TEC; USPSTF; ACMG; AHRQ | None | 83950 88360-361 1 |
BRAF | 4 | 11 | 4 | 8 | Melanoma 3 NSCLC Hairy cell leukemia CRC Brain cancer Thyroid cancer Ovarian/ uterine cancer | Melanoma 3 NSCLC GISTs mCRC Hairy cell leukemia Lynch syndrome | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | FDA; BCBSA TEC; NCCN; AHRQ; EGAPP | 81210 | 81210 2 88363 81406 |
EGFR | 4 | 12 | 4 | 9 | NSCLC 3 Brain cancer | NSCLC 3 CNS cancers | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | ASCO; CAP; NCCN; FDA; CAP/IASLC/AMP | 81235 | 81235 2 |
ALK | 2 | 10 | 2 | 9 | NSCLC 3 | NSCLC 3 Lymphoma IMT | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | NCCN; NIH; ASCO | None | 81401 1 81479 88271 88274 88291 88367-368 |
BCR-ABL1 | 3 | 8 | 3 | 8 | CML 3 ALL 3 CMML | CML 3 ALL 3 | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | WHO; FDA; NCCN; AHRQ; NCI; ACS; AMP; Hayes | 81206-208 81219 81270 81402-403 | 88170 88275 81206-208 2 81401 88271 |
c-Kit | 2 | 3 | 2 | 3 | GISTs 3 Melanoma AML ALL MDS | GISTs 3 Melanoma AML ALL MDS | EGAPP; FDA; NCCN; ASCO; AHRQ; AMA; USPSTF; CDC; Palmetto | NCCN | 81272-273 | 81272-273 1 88184 |
PDGFR | 1 | 1 | 1 | 1 | MDS/MPN 3 GISTs | MDS/MPN 3 GISTs | AHRQ; AMA; CDC; USPSTF | None | None | 81314 81404 |
CD20 | 0 | 2 | 0 | 2 | N/A | NHL 3 | AMA; Palmetto | None | None | 88184 |
G6PD | 2 | 0 | 2 | 0 | None specified | N/A | AHRQ; CDC; USPSTF | N/A | 81247-249 | N/A |
CD25 | 0 | 0 | 0 | 0 | N/A | N/A | N/A | N/A | N/A | N/A |
PML/RARA | 2 | 3 | 2 | 2 | Acute promyelocytic leukemia | Acute promyelocytic leukemia | AHRQ; CDC; USPSTF | NCCN; FDA | 81315-316 | 81315-316 |
Society, Published Year | Indications Mentioned | Criteria/Reasoning | References Cited | |
---|---|---|---|---|
Recommend Multi-gene Testing | ACMG, 2013 | None specified | Targeted multi-gene testing is recommended for genetically heterogeneous disorders and oncology applications. By limiting the content of the test to just the regions relevant to a given disease, the resulting data usually have higher analytical sensitivity and specificity for detecting mutations. | NIH, College of American Pathologists |
ASCO, 2015 | None specified | Testing option recommendations:
Management of individuals/families with mutations in moderately penetrant genes must include:
| NIH, Cigna, observational study (n = 194 and 586), cross-sectional study (n = 2158), online surveys (n = 225) | |
CMTP, 2015 | NSCLC, advanced stage solid tumors, hematologic malignancies | Testing of 5 or more genes is recommended with the following criteria:
| NCCN, Palmetto, review article | |
NCCN, 2017 | NSCLC | Broader molecular profiling with the goal of identifying rare driver mutations for which effective drugs may already be available, or to appropriately counsel patients regarding availability of clinical trials. Broad molecular profiling is a key component of the improvement of care of patients with NSCLC. | ASCO, cohort study (n = 31), retrospective observational study (n = 419) | |
Do Not Recommend Multi-gene Testing | BCBSA TEC, 2013 | None specified | Limited studies, poor study designs, plus a number of practical issues pertinent to application of molecular marker profiling have not been sufficiently resolved for clinical implementation. For example, the relative accuracy and precision of different DNA sequencing methods are under investigation and may exhibit variability secondary to training and experience of laboratories and personnel. Optimal informatics methods to handle large amounts of sequencing data and reconstruct them into clinically actionable information displays remain problematic. | Two clinical trials (n = 68 and 86), observational study (n = 460), methods study |
NICE, 2013 | NSCLC | For non-Sanger sequencing based tests and for tests such as Therascreen EGFR Pyro Kit and next generation sequencing, there is insufficient evidence and therefore, no recommendations can be made on their use. | NCCN, systematic review and cost-effective analysis |
Medicare | Private | |
---|---|---|
Policy mentions & covers at least one multi-gene test | 20 | 10 |
Policy mentions & does not cover any multi-gene tests or covers only medically necessary genes within the panel | 3 | 6 |
Payers require prior authorization for testing | N/A | 7 |
Payers that cover at least one multi-gene test for NSCLC | 6 | 6 |
Payers that cover at least one multi-gene test for conditions other than NSCLC | 6 | 5 |
Covered conditions | Acute myelogenous leukemia CRC MPD NSCLC | MPD Thryoid cancer NSCLC Others 1 |
Key references cited | FDA, NCCN, WHO, Palmetto | BCBSA TEC, ECRI, FoundationOne Foundation Medicine TA, Hayes Inc, NCCN, NICE, SGO, NCI, FDA, ACOG, USPSTF, ACS, ANZHSN, ASCO, ACMG |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.Y.; Loomer, S.; Ceccarelli, R.; Mazor, K.M.; Sabin, J.; Clayton, E.W.; Ginsburg, G.S.; Wu, A.C. Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer. J. Pers. Med. 2018, 8, 19. https://doi.org/10.3390/jpm8020019
Lu CY, Loomer S, Ceccarelli R, Mazor KM, Sabin J, Clayton EW, Ginsburg GS, Wu AC. Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer. Journal of Personalized Medicine. 2018; 8(2):19. https://doi.org/10.3390/jpm8020019
Chicago/Turabian StyleLu, Christine Y., Stephanie Loomer, Rachel Ceccarelli, Kathleen M. Mazor, James Sabin, Ellen Wright Clayton, Geoffrey S. Ginsburg, and Ann Chen Wu. 2018. "Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer" Journal of Personalized Medicine 8, no. 2: 19. https://doi.org/10.3390/jpm8020019