Radiolabeled Vitamins and Nanosystems as Potential Agents in Oncology Theranostics: Developed Approaches and Future Perspectives
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Information Sources
2.2. Eligibility and Exclusion Criteria
2.3. Study Selection and Data Extraction
- Identification: Records identified from databases (n = 422).
- Screening: Records screened after duplicates removed (n = 400).
- Eligibility: Full-text articles assessed for eligibility (n = 144).
- Included: Studies included in the qualitative synthesis (n = 144)
3. Gastric Cancer-Targeted Vitamin-Based Radionuclide Agents
4. Breast Cancer-Targeted Vitamin-Based Radionuclide Agents
5. Colorectal Cancer-Targeted Vitamin-Based Radionuclide Agents
6. Brain Cancer-Targeted Vitamin-Based Radionuclide Agents
7. Prostate Cancer-Targeted Vitamin-Based Radionuclide Agents
8. Ovarian Cancer-Targeted Vitamin-Based Radionuclide Agents
9. Meta-Analysis of Tumor Uptake Ratios
10. Comparison Between Vitamin-Based and Conventional Radiopharmaceuticals
11. Discussion
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Anti-TF mAb | anti-tissue factor monoclonal antibody |
| 211At | astatine-211 |
| ADCs | antibody–drug conjugates |
| B9 | Folate |
| BC | breast cancer |
| CIN | chromosomal instability |
| Cbl | Cobalamin |
| CDC | silica nanoparticle drug conjugate |
| CTLA-4 | cytotoxic T-lymphocyte antigen 4 |
| 57Co | cobalt-57 |
| 64Cu | copper-64 |
| DDS | drug delivery system |
| DOTA-Mal | maleimido-mono-amide-DOTA |
| DOX | Doxorubicin |
| EBV | Epstein–Barr virus |
| EGFR | epidermal growth factor receptor |
| FR | folate receptor |
| FRA | folate receptor alpha |
| FA-NPs | folate-decorated nanoparticles |
| 18F | fluorine-18 |
| FA | folic acid |
| FAP | fibroblast activation protein |
| 68Ga | gallium-68 |
| GC | gastric cancer |
| Gd | Gliadin |
| GRPR | gastrin-releasing peptide receptors |
| GBM | glioblastoma multiforme |
| GS | genomically stable |
| GEP | Gastroenteropancreatic |
| HYNIC | hydrazinonicotinic acid |
| HPLC | high-performance liquid chromatography |
| HGSC | high-grade serous carcinoma |
| 111In | indium-111 |
| 124I | iodine-124 |
| 125I | iodine-125 |
| 131I | iodine-131 |
| LET | linear Energy Transfer |
| 177Lu | lutetium-177 |
| mAb | monoclonal antibody |
| MT1-MMP | membrane type-1 matrix metalloproteinase |
| MRI | magnetic resonance imaging |
| MDR | multidrug resistance |
| MSI | microsatellite instability |
| mCRPC | metastatic castration-resistant prostate cancer |
| NLCs | nanostructure lipid carriers |
| NET | neuroendocrine neoplasms |
| OC | ovarian cancer |
| PET | positron emission tomography |
| PEG | polyethylene glycol |
| PSMA | prostate-specific membrane antigen |
| PAMAM | poly(amidoamine) |
| PTX | Paclitaxel |
| PRRT | peptide receptor radionuclide therapy |
| 188Re | rhenium-188 |
| SA | sodium ascorbate |
| 47Sc | scandium 47 |
| 153Sm | samarium-153 |
| SeNPs | selenium nanoparticles |
| SNPs | silica nanoparticles |
| SCKs | shell cross-linked nanoparticles |
| SMWs | micro-scale silica wires |
| SPECT | Single-photon emission computed tomography |
| SSTR | somatostatin receptor |
| TRT | targeted radionuclide therapy |
| 99mTc | technetium-99m |
| TPP | triphenylphosphonium |
| TLC | Thin-layer chromatography |
| TC | transcobalamin |
| TC-II | transcobalamin II |
| TBR | tumor-to-brain uptake ratio |
| UPN | uncoated nanoparticles |
| VEGFR | Vascular endothelial growth factor |
| WHO | world health organization |
| 90Y | yttrium-90 |
| 89Zr | zirconium-89 |
References
- Ayalew, B.D.; Abdullah; Khan, S.M.; Alemayehu, Z.G.; Teferi, M.G.; Aboye, B.T.; Woldeyohannes, E.M.; Sime, B.L.; Tewodros, Y.T.; Hundisa, M.I. Role of Emerging Theranostic Technologies in Precision Oncology: Revolutionizing Cancer Diagnosis and Treatment. Oncologie 2025, 27, 229–238. [Google Scholar] [CrossRef]
- Crișan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.-G.; Andrieș, G.; Căinap, C.; Chiș, V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef]
- Cuocolo, A.; Petretta, M. PET and SPECT Specialty Grand Challenge. When Knowledge Travels at the Speed of Light, Photons Take to the Field. Front. Nucl. Med. 2021, 1, 671914. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Corso, R.; Benfante, V.; Ali, M.; Laudicella, R.; Alongi, P.; D’Aviero, A.; Cusumano, D.; Boldrini, L.; Salvaggio, G.; et al. Artificial Intelligence and Statistical Models for the Prediction of Radiotherapy Toxicity in Prostate Cancer: A Systematic Review. Appl. Sci. 2024, 14, 10947. [Google Scholar] [CrossRef]
- Qaim, S.M.; Spahn, I. Development of Novel Radionuclides for Medical Applications. Label. Compd. Radiopharm. 2018, 61, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Rousseau, E.; Kwon, D.; Lin, K.-S.; Bénard, F.; Chen, X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers 2020, 12, 1312. [Google Scholar] [CrossRef]
- Pavone, A.M.; Benfante, V.; Giaccone, P.; Stefano, A.; Torrisi, F.; Russo, V.; Serafini, D.; Richiusa, S.; Pometti, M.; Scopelliti, F.; et al. Biodistribution Assessment of a Novel 68Ga-Labeled Radiopharmaceutical in a Cancer Overexpressing CCK2R Mouse Model: Conventional and Radiomics Methods for Analysis. Life 2024, 14, 409. [Google Scholar] [CrossRef]
- Holik, H.A.; Ibrahim, F.M.; Elaine, A.A.; Putra, B.D.; Achmad, A.; Kartamihardja, A.H.S. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27, 3062. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef]
- Lepareur, N.; Ramée, B.; Mougin-Degraef, M.; Bourgeois, M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023, 15, 1733. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022, 27, 5429. [Google Scholar] [CrossRef] [PubMed]
- Sahin, M.C.; Sanli, S. Vitamin-Based Radiopharmaceuticals for Tumor Imaging. Med. Oncol. 2023, 40, 165. [Google Scholar] [CrossRef] [PubMed]
- Lledó, I.; Ibáñez, B.; Melero, A.; Montoro, A.; Merino-Torres, J.F.; San Onofre, N.; Soriano, J.M. Vitamins and Radioprotective Effect: A Review. Antioxidants 2023, 12, 611. [Google Scholar] [CrossRef]
- Giaccone, P.; Benfante, V.; Stefano, A.; Cammarata, F.P.; Russo, G.; Comelli, A. PET Images Atlas-Based Segmentation Performed in Native and in Template Space: A Radiomics Repeatability Study in Mouse Models. In Image Analysis and Processing—ICIAP 2022 Workshops; Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13373, pp. 351–361. ISBN 978-3-031-13320-6. [Google Scholar]
- Moudgalya, S.S.; Cahill, N.D.; Borkholder, D.A. Deep Volumetric Segmentation of Murine Cochlear Compartments from Micro-Computed Tomography Images. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1970–1975. [Google Scholar]
- Shahrokhi, P.; Farahani, A.M.; Tamaddondar, M. Radiolabeled Vitamins as the Potential Diagnostic Probes for Targeted Tumor Imaging. Bioorganic Chem. 2022, 122, 105717. [Google Scholar] [CrossRef]
- Sallam, M.; Nguyen, N.-T.; Sainsbury, F.; Kimizuka, N.; Muyldermans, S.; Benešová-Schäfer, M. PSMA-Targeted Radiotheranostics in Modern Nuclear Medicine: Then, Now, and What of the Future? Theranostics 2024, 14, 3043–3079. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Benfante, V.; Di Raimondo, D.; Salvaggio, G.; Tuttolomondo, A.; Comelli, A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals 2024, 17, 126. [Google Scholar] [CrossRef]
- Eslami, M.; Memarsadeghi, O.; Davarpanah, A.; Arti, A.; Nayernia, K.; Behnam, B. Overcoming Chemotherapy Resistance in Metastatic Cancer: A Comprehensive Review. Biomedicines 2024, 12, 183. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef]
- Fortune, A.; Aime, A.; Raymond, D.; Kumar, S. Nanotechnology in Medicine: A Double-Edged Sword for Health Outcomes. Health Nanotechnol. 2025, 1, 9. [Google Scholar] [CrossRef]
- Sudimack, J.; Lee, R.J. Targeted Drug Delivery via the Folate Receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Binnemars-Postma, K.; Storm, G.; Prakash, J. Nanomedicine Strategies to Target Tumor-Associated Macrophages. Int. J. Mol. Sci. 2017, 18, 979. [Google Scholar] [CrossRef]
- Kalli, K.R.; Oberg, A.L.; Keeney, G.L.; Christianson, T.J.H.; Low, P.S.; Knutson, K.L.; Hartmann, L.C. Folate Receptor Alpha as a Tumor Target in Epithelial Ovarian Cancer. Gynecol. Oncol. 2008, 108, 619–626. [Google Scholar] [CrossRef]
- Fadul, A.; Abdalla, E.; Mohamed, A.; Ali, B.; Elamin, N.; Alsayed, A.; Al-Mashdali, A.; Singh, K.; Mohamed, S. Elevated Vitamin B12 Levels in Myeloproliferative Neoplasm (MPN) Patients: A Potential Diagnostic and Prognostic Marker. JBM 2024, 15, 549–556. [Google Scholar] [CrossRef]
- Husseiny, M.M.A.E.; Nilsson, R. The Role of B12 Deficiency and Methionine Synthase in Methionine-Dependent Cancer Cells. Cancer Metab. 2025, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Leake, P.-A.; Cardoso, R.; Seevaratnam, R.; Lourenco, L.; Helyer, L.; Mahar, A.; Law, C.; Coburn, N.G. A Systematic Review of the Accuracy and Indications for Diagnostic Laparoscopy Prior to Curative-Intent Resection of Gastric Cancer. Gastric Cancer 2012, 15, 38–47. [Google Scholar] [CrossRef]
- Yang, L. Incidence and Mortality of Gastric Cancer in China. WJG 2006, 12, 17. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. the WHO Classification of Tumours Editorial Board. The 2019 WHO Classification of Tumours of the Digestive System. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.C.; Graham, D.Y. Screening for Gastric Cancer: Focus on the Ants Instead of the Ant Hill. Clin. Gastroenterol. Hepatol. 2021, 19, 1990–1991. [Google Scholar] [CrossRef]
- Wu, K.; Nie, Y.; Guo, C.; Chen, Y.; Ding, J.; Fan, D. Molecular Basis of Therapeutic Approaches to Gastric Cancer. J. Gastro. Hepatol. 2009, 24, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Hu, Z.; Tan, D.; Ajani, J.A.; Wei, Q. Molecular Epidemiology of Genetic Susceptibility to Gastric Cancer: Focus on Single Nucleotide Polymorphisms in Gastric Carcinogenesis. Am. J. Transl. Res. 2009, 1, 44–54. [Google Scholar] [PubMed]
- Lochhead, P.; El-Omar, E.M. Gastric Cancer. Br. Med. Bull. 2008, 85, 87–100. [Google Scholar] [CrossRef]
- Sohn, B.H.; Hwang, J.-E.; Jang, H.-J.; Lee, H.-S.; Oh, S.C.; Shim, J.-J.; Lee, K.-W.; Kim, E.H.; Yim, S.Y.; Lee, S.H.; et al. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin. Cancer Res. 2017, 23, 4441–4449. [Google Scholar] [CrossRef]
- Murphy, G.; Pfeiffer, R.; Camargo, M.C.; Rabkin, C.S. Meta-Analysis Shows That Prevalence of Epstein–Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology 2009, 137, 824–833. [Google Scholar] [CrossRef]
- Basirinia, G.; Ali, M.; Comelli, A.; Sperandeo, A.; Piana, S.; Alongi, P.; Longo, C.; Di Raimondo, D.; Tuttolomondo, A.; Benfante, V. Theranostic Approaches for Gastric Cancer: An Overview of In Vitro and In Vivo Investigations. Cancers 2024, 16, 3323. [Google Scholar] [CrossRef]
- Takashima, H.; Koga, Y.; Manabe, S.; Ohnuki, K.; Tsumura, R.; Anzai, T.; Iwata, N.; Wang, Y.; Yokokita, T.; Komori, Y.; et al. Radioimmunotherapy with an 211At-labeled Anti–Tissue Factor Antibody Protected by Sodium Ascorbate. Cancer Sci. 2021, 112, 1975–1986. [Google Scholar] [CrossRef]
- Müller, C.; Struthers, H.; Winiger, C.; Zhernosekov, K.; Schibli, R. DOTA Conjugate with an Albumin-Binding Entity Enables the First Folic Acid–Targeted 177Lu-Radionuclide Tumor Therapy in Mice. J. Nucl. Med. 2013, 54, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Cheng, Y.; Xu, Z.; Shi, D.; Shi, H.; Cheng, D. Exploration of 68Ga-DOTA-MAL as a Versatile Vehicle for Facile Labeling of a Variety of Thiol-Containing Bioactive Molecules. ACS Omega 2023, 8, 4747–4755. [Google Scholar] [CrossRef]
- Fani, M.; Wang, X.; Nicolas, G.; Medina, C.; Raynal, I.; Port, M.; Maecke, H.R. Development of New Folate-Based PET Radiotracers: Preclinical Evaluation of 68Ga-DOTA-Folate Conjugates. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Fani, M.; Tamma, M.-L.; Nicolas, G.P.; Lasri, E.; Medina, C.; Raynal, I.; Port, M.; Weber, W.A.; Maecke, H.R. In Vivo Imaging of Folate Receptor Positive Tumor Xenografts Using Novel 68Ga-NODAGA-Folate Conjugates. Mol. Pharm. 2012, 9, 1136–1145. [Google Scholar] [CrossRef]
- Brand, C.; Longo, V.A.; Groaning, M.; Weber, W.A.; Reiner, T. Development of a New Folate-Derived Ga-68-Based PET Imaging Agent. Mol. Imaging Biol. 2017, 19, 754–761. [Google Scholar] [CrossRef]
- Jain, A.; Mathur, A.; Pandey, U.; Bhatt, J.; Mukherjee, A.; Ram, R.; Sarma, H.D.; Dash, A. Synthesis and Evaluation of a 68Ga Labeled Folic Acid Derivative for Targeting Folate Receptors. Appl. Radiat. Isot. 2016, 116, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Pang, Y.; Xie, F.; Guo, H.; Li, Y.; Yang, Z.; Wang, X. Synthesis and in Vitro/in Vivo Evaluation of 99mTc-Labeled Folate Conjugates for Folate Receptor Imaging. Nucl. Med. Biol. 2011, 38, 557–565. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, C.; Yu, Q.; Pang, Y.; Chen, Y.; Yang, W.; Xue, J.; Liu, Y.; Lu, J. Novel 99mTc Radiolabeled Folate Complexes with PEG Linkers for FR-Positive Tumor Imaging: Synthesis and Biological Evaluation. RSC Adv. 2014, 4, 32197–32206. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, W.H.; Kim, C.G.; Kim, D.-W. Synthesis and Evaluation of 99mTc-Labeled Folate-Tripeptide Conjugate as a Folate Receptor-Targeted Imaging Agent in a Tumor-Bearing Mouse Model. Nucl. Med. Mol. Imaging 2015, 49, 200–207. [Google Scholar] [CrossRef]
- Boss, S.D.; Betzel, T.; Müller, C.; Fischer, C.R.; Haller, S.; Reber, J.; Groehn, V.; Schibli, R.; Ametamey, S.M. Comparative Studies of Three Pairs of α- and γ-Conjugated Folic Acid Derivatives Labeled with Fluorine-18. Bioconjugate Chem. 2016, 27, 74–86. [Google Scholar] [CrossRef]
- Betzel, T.; Müller, C.; Groehn, V.; Müller, A.; Reber, J.; Fischer, C.R.; Krämer, S.D.; Schibli, R.; Ametamey, S.M. Radiosynthesis and Preclinical Evaluation of 3′-Aza-2′-[18F]Fluorofolic Acid: A Novel PET Radiotracer for Folate Receptor Targeting. Bioconjugate Chem. 2013, 24, 205–214. [Google Scholar] [CrossRef]
- Ross, T.L.; Honer, M.; Müller, C.; Groehn, V.; Schibli, R.; Ametamey, S.M. A New 18F-Labeled Folic Acid Derivative with Improved Properties for the PET Imaging of Folate Receptor–Positive Tumors. J. Nucl. Med. 2010, 51, 1756–1762. [Google Scholar] [CrossRef]
- Spartivento, G.; Benfante, V.; Ali, M.; Yezzi, A.; Di Raimondo, D.; Tuttolomondo, A.; Lo Casto, A.; Comelli, A. Revolutionizing Periodontal Care: The Role of Artificial Intelligence in Diagnosis, Treatment, and Prognosis. Appl. Sci. 2025, 15, 3295. [Google Scholar] [CrossRef]
- Fischer, C.R.; Müller, C.; Reber, J.; Müller, A.; Krämer, S.D.; Ametamey, S.M.; Schibli, R. [18F]Fluoro-Deoxy-Glucose Folate: A Novel PET Radiotracer with Improved in Vivo Properties for Folate Receptor Targeting. Bioconjugate Chem. 2012, 23, 805–813. [Google Scholar] [CrossRef]
- Hong, R.; Xu, B. Breast Cancer: An Up-to-date Review and Future Perspectives. Cancer Commun. 2022, 42, 913–936. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Z.; Yuan, L.; Fan, K.; Zhang, Y.; Cai, W.; Lan, X. Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers 2021, 13, 5459. [Google Scholar] [CrossRef]
- Guzik, P.; Siwowska, K.; Fang, H.-Y.; Cohrs, S.; Bernhardt, P.; Schibli, R.; Müller, C. Promising Potential of [177Lu]Lu-DOTA-Folate to Enhance Tumor Response to Immunotherapy—A Preclinical Study Using a Syngeneic Breast Cancer Model. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Lara, L.; Ferro-Flores, G.; Azorín-Vega, E.; Ramírez, F.D.M.; Jiménez-Mancilla, N.; Ocampo-García, B.; Santos-Cuevas, C.; Isaac-Olivé, K. Synthesis and Evaluation of Lys1 (α,γ-Folate)Lys3 (177Lu-DOTA)-Bombesin(1–14) as a Potential Theranostic Radiopharmaceutical for Breast Cancer. Appl. Radiat. Isot. 2016, 107, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Lara, L.; Ferro-Flores, G.; Ramírez, F.D.M.; Ocampo-García, B.; Santos-Cuevas, C.; Díaz-Nieto, L.; Isaac-Olivé, K. Improved Radiopharmaceutical Based on 99mTc-Bombesin–Folate for Breast Tumour Imaging. Nucl. Med. Commun. 2016, 37, 377–386. [Google Scholar] [CrossRef]
- Mendoza-Nava, H.; Ferro-Flores, G.; Ramírez, F.D.M.; Ocampo-García, B.; Santos-Cuevas, C.; Aranda-Lara, L.; Azorín-Vega, E.; Morales-Avila, E.; Isaac-Olivé, K. 177Lu-Dendrimer Conjugated to Folate and Bombesin with Gold Nanoparticles in the Dendritic Cavity: A Potential Theranostic Radiopharmaceutical. J. Nanomater. 2016, 2016, 1039258. [Google Scholar] [CrossRef]
- Gupta, A.; Shin, J.H.; Lee, M.S.; Park, J.Y.; Kim, K.; Kim, J.H.; Suh, M.; Park, C.R.; Kim, Y.J.; Song, M.G.; et al. Voxel-Based Dosimetry of Iron Oxide Nanoparticle-Conjugated 177Lu-Labeled Folic Acid Using SPECT/CT Imaging of Mice. Mol. Pharm. 2019, 16, 1498–1506. [Google Scholar] [CrossRef]
- Kuda-Wedagedara, A.N.W.; Workinger, J.L.; Nexo, E.; Doyle, R.P.; Viola-Villegas, N. 89Zr-Cobalamin PET Tracer: Synthesis, Cellular Uptake, and Use for Tumor Imaging. ACS Omega 2017, 2, 6314–6320. [Google Scholar] [CrossRef] [PubMed]
- Ucar, E.; Teksoz, S.; Ichedef, C.; Kilcar, A.Y.; Medine, E.I.; Ari, K.; Parlak, Y.; Sayit Bilgin, B.E.; Unak, P. Synthesis, Characterization and Radiolabeling of Folic Acid Modified Nanostructured Lipid Carriers as a Contrast Agent and Drug Delivery System. Appl. Radiat. Isot. 2017, 119, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Temma, T.; Sano, K.; Kuge, Y.; Kamihashi, J.; Takai, N.; Ogawa, Y.; Saji, H. Development of a Radiolabeled Probe for Detecting Membrane Type-1 Matrix Metalloproteinase on Malignant Tumors. Biol. Pharm. Bull. 2009, 32, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Silindir-Gunay, M.; Karpuz, M.; Ozturk, N.; Yekta Ozer, A.; Erdogan, S.; Tuncel, M. Radiolabeled, Folate-Conjugated Liposomes as Tumor Imaging Agents: Formulation and in Vitro Evaluation. J. Drug Deliv. Sci. Technol. 2019, 50, 321–328. [Google Scholar] [CrossRef]
- Mollarazi, E.; Jalilian, A.R.; Johari-daha, F.; Atyabi, F. Development of 153Sm-Folate-Polyethyleneimine-Conjugated Chitosan Nanoparticles for Targeted Therapy: 153Sm-Folate-PEI-Conjugated Chitosan Nanoparticles. J. Label. Compd. Radiopharm. 2015, 58, 327–335. [Google Scholar] [CrossRef]
- Guo, Z.; You, L.; Shi, C.; Song, M.; Gao, M.; Xu, D.; Peng, C.; Zhuang, R.; Liu, T.; Su, X.; et al. Development of a New FR-Targeting Agent 99mTc-HYNFA with Improved Imaging Contrast and Comparison of Multimerization and/or PEGylation Strategies for Radio-Folate Modification. Mol. Pharm. 2017, 14, 3780–3788. [Google Scholar] [CrossRef]
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. CDT 2021, 22, 998–1009. [Google Scholar] [CrossRef]
- Dariya, B.; Aliya, S.; Merchant, N.; Alam, A.; Nagaraju, G.P. Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Crit. Rev. Oncog. 2020, 25, 71–94. [Google Scholar] [CrossRef]
- Gudkov, S.; Shilyagina, N.; Vodeneev, V.; Zvyagin, A. Targeted Radionuclide Therapy of Human Tumors. Int. J. Mol. Sci. 2015, 17, 33. [Google Scholar] [CrossRef]
- Ikotun, O.F.; Marquez, B.V.; Fazen, C.H.; Kahkoska, A.R.; Doyle, R.P.; Lapi, S.E. Investigation of a Vitamin B12 Conjugate as a PET Imaging Probe. ChemMedChem 2014, 9, 1244–1251. [Google Scholar] [CrossRef]
- Rossin, R.; Pan, D.; Qi, K.; Turner, J.L.; Sun, X.; Wooley, K.L.; Welch, M.J. 64Cu-Labeled Folate-Conjugated Shell Cross-Linked Nanoparticles for Tumor Imaging and Radiotherapy: Synthesis, Radiolabeling, and Biologic Evaluation. J. Nucl. Med. 2005, 46, 1210–1218. [Google Scholar]
- Cheal, S.M.; Patel, M.; Yang, G.; Veach, D.; Xu, H.; Guo, H.; Zanzonico, P.B.; Axworthy, D.B.; Cheung, N.-K.V.; Ouerfelli, O.; et al. An N -Acetylgalactosamino Dendron-Clearing Agent for High-Therapeutic-Index DOTA-Hapten Pretargeted Radioimmunotherapy. Bioconjugate Chem. 2020, 31, 501–506. [Google Scholar] [CrossRef]
- Smith-Jones, P.M.; Pandit-Taskar, N.; Cao, W.; O’Donoghue, J.; Philips, M.D.; Carrasquillo, J.; Konner, J.A.; Old, L.J.; Larson, S.M. Preclinical Radioimmunotargeting of Folate Receptor Alpha Using the Monoclonal Antibody Conjugate DOTA–MORAb-003. Nucl. Med. Biol. 2008, 35, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.G.; Lee, J.Y.; Choi, P.S.; Kim, S.W.; Park, J.H. Tumor Targeting Effect of Triphenylphosphonium Cations and Folic Acid Coated with Zr-89-Labeled Silica Nanoparticles. Molecules 2020, 25, 2922. [Google Scholar] [CrossRef]
- Kim, G.G.; Jang, H.M.; Park, S.B.; So, J.-S.; Kim, S.W. Synthesis of Zr-89-Labeled Folic Acid-Conjugated Silica (SiO2) Microwire as a Tumor Diagnostics Carrier for Positron Emission Tomography. Materials 2021, 14, 3226. [Google Scholar] [CrossRef]
- Choi, P.S.; Lee, J.Y.; Park, J.H.; Kim, S.W. Synthesis and Evaluation of 68GA-HBED-CC-EDBE-folate for positron-emission tomography Imaging of Overexpressed Folate Receptors on CT26 Tumor Cells. Label. Comp Radiopharm. 2018, 61, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Khatik, R.; Dwivedi, P.; Junnuthula, V.R.; Sharma, K.; Chuttani, K.; Mishra, A.K.; Dwivedi, A.K. Potential in Vitro and in Vivo Colon Specific Anticancer Activity in a HCT-116 Xenograft Nude Mice Model: Targeted Delivery Using Enteric Coated Folate Modified Nanoparticles. RSC Adv. 2015, 5, 16507–16520. [Google Scholar] [CrossRef]
- Sah, B.-R.; Schibli, R.; Waibel, R.; Von Boehmer, L.; Bläuenstein, P.; Nexo, E.; Johayem, A.; Fischer, E.; Müller, E.; Soyka, J.D.; et al. Tumor Imaging in Patients with Advanced Tumors Using a New 99mTc-Radiolabeled Vitamin B12 Derivative. J. Nucl. Med. 2014, 55, 43–49. [Google Scholar] [CrossRef]
- Benfante, V.; Vetrano, I.G.; Ali, M.; Purpura, P.; Gagliardo, C.; Feraco, P.; Longo, C.; Bartolotta, T.V.; Toia, P.; Calisto, O.; et al. An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas. Life 2025, 15, 617. [Google Scholar] [CrossRef]
- Agus, D.B.; Gambhir, S.S.; Pardridge, W.M.; Spielholz, C.; Baselga, J.; Vera, J.C.; Golde, D.W. Vitamin C Crosses the Blood-Brain Barrier in the Oxidized Form through the Glucose Transporters. J. Clin. Investig. 1997, 100, 2842–2848. [Google Scholar] [CrossRef] [PubMed]
- Est, C.B.; Murphy, R.M. An in Vitro Model for Vitamin A Transport across the Human Blood–Brain Barrier. eLife 2023, 12, RP87863. [Google Scholar] [CrossRef]
- Ale, Y.; Nainwal, N. Progress and Challenges in the Diagnosis and Treatment of Brain Cancer Using Nanotechnology. Mol. Pharm. 2023, 20, 4893–4921. [Google Scholar] [CrossRef]
- Bailly, C.; Vidal, A.; Bonnemaire, C.; Kraeber-Bodéré, F.; Chérel, M.; Pallardy, A.; Rousseau, C.; Garcion, E.; Lacoeuille, F.; Hindré, F.; et al. Potential for Nuclear Medicine Therapy for Glioblastoma Treatment. Front. Pharmacol. 2019, 10, 772. [Google Scholar] [CrossRef]
- Miner, M.W.G.; Liljenbäck, H.; Virta, J.; Kärnä, S.; Viitanen, R.; Elo, P.; Gardberg, M.; Teuho, J.; Saipa, P.; Rajander, J.; et al. High Folate Receptor Expression in Gliomas Can Be Detected in Vivo Using Folate-Based Positron Emission Tomography with High Tumor-to-Brain Uptake Ratio Divulging Potential Future Targeting Possibilities. Front. Immunol. 2023, 14, 1145473. [Google Scholar] [CrossRef]
- Liang, H.; Chen, Z.; Mo, C.; Tang, G. Synthesis and Preclinical Evaluation of [18F]AlF-NOTA-Asp2-PEG2-Folate as a Novel Folate-Receptor-Targeted Tracer for PET Imaging. Label. Comp. Radiopharm. 2024, 67, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xu, P.; Cao, C.; Cheng, Z.; Tian, J.; Hu, Z. PET/NIR-II Fluorescence Imaging and Image-Guided Surgery of Glioblastoma Using a Folate Receptor α-Targeted Dual-Modal Nanoprobe. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4325–4337. [Google Scholar] [CrossRef]
- Korany, M.; Mahmoud, B.; Ayoub, S.M.; Sakr, T.M.; Ahmed, S.A. Synthesis and Radiolabeling of Vitamin C-Stabilized Selenium Nanoparticles as a Promising Approach in Diagnosis of Solid Tumors. J. Radioanal. Nucl. Chem. 2020, 325, 237–244. [Google Scholar] [CrossRef]
- Upadhaya, P.; Hazari, P.P.; Mishra, A.K.; Dutta, B.; Hassan, P.; Patravale, V. Radiolabelled Folate Micellar Carriers as Proposed Diagnostic Aid for CNS Tumors by Nasal Route. Drug Deliv. Transl. Res. 2023, 13, 2604–2613. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, S.; Molavipordanjani, S.; Emami, S.; Abedi, S.M.; Talebpour Amiri, F.; Hosseinimehr, S.J. 99mTc-Radiolabeled Imidazo [2,1-b]Benzothiazole Derivatives as Potential Radiotracers for Glioblastoma. J. Radioanal. Nucl. Chem. 2020, 323, 205–211. [Google Scholar] [CrossRef]
- Mathias, C.J.; Lewis, M.R.; Reichert, D.E.; Laforest, R.; Sharp, T.L.; Lewis, J.S.; Yang, Z.-F.; Waters, D.J.; Snyder, P.W.; Low, P.S.; et al. Preparation of 66Ga- and 68Ga-Labeled Ga(III)-Deferoxamine-Folate as Potential Folate-Receptor-Targeted PET Radiopharmaceuticals. Nucl. Med. Biol. 2003, 30, 725–731. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Q.; He, Y.; Zhang, C.; Zhu, H.; Yang, Z.; Lu, J. Synthesis and Biological Evaluation of 68Ga-labeled Pteroyl-Lys Conjugates for Folate Receptor-targeted Tumor Imaging. Label. Compd. Radiopharm. 2016, 59, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Ak, G.; Yurt Lambrecht, F.; Sanlier, S.H. Radiolabeling of Folate Targeted Multifunctional Conjugate with Technetium-99m and Biodistribution Studies in Rats. J. Drug Target. 2012, 20, 509–514. [Google Scholar] [CrossRef]
- Dhas, N.L.; Ige, P.P.; Kudarha, R.R. Design, Optimization and in-Vitro Study of Folic Acid Conjugated-Chitosan Functionalized PLGA Nanoparticle for Delivery of Bicalutamide in Prostate Cancer. Powder Technol. 2015, 283, 234–245. [Google Scholar] [CrossRef]
- Leamon, C.P.; Parker, M.A.; Vlahov, I.R.; Xu, L.-C.; Reddy, J.A.; Vetzel, M.; Douglas, N. Synthesis and Biological Evaluation of EC20: A New Folate-Derived,99m Tc-Based Radiopharmaceutical. Bioconjugate Chem. 2002, 13, 1200–1210. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, M.; Song, M.; Shi, C.; Zhang, P.; Xu, D.; You, L.; Zhuang, R.; Su, X.; Liu, T.; et al. Synthesis and Evaluation of 99mTc-Labeled Dimeric Folic Acid for FR-Targeting. Molecules 2016, 21, 817. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, X.; Ruan, Q.; Jiang, Y.; Zhang, J. Preparation and Evaluation of Novel Folate Isonitrile 99mTc Complexes as Potential Tumor Imaging Agents to Target Folate Receptors. Molecules 2021, 26, 4552. [Google Scholar] [CrossRef] [PubMed]
- Ross, T.L.; Honer, M.; Lam, P.Y.H.; Mindt, T.L.; Groehn, V.; Schibli, R.; Schubiger, P.A.; Ametamey, S.M. Fluorine-18 Click Radiosynthesis and Preclinical Evaluation of a New 18F-Labeled Folic Acid Derivative. Bioconjugate Chem. 2008, 19, 2462–2470. [Google Scholar] [CrossRef]
- Yigit, U.S.; Lambrecht, F.Y.; Unak, P.; Biber, F.Z.; Medine, E.I.; Cetinkaya, B. Preparation of 99mTc Labeled Vitamin C (Ascorbic Acid) and Biodistribution in Rats. Chem. Pharm. Bull. 2006, 54, 1–3. [Google Scholar] [CrossRef]
- Schibli, R.; Waibel, R.; Schaefer, N.; Burger, I.; Blaeuenstein, P.; Johayem, A.; Fischer, E.; Nexø, E. Pharmacokinetic of a New Tc-99m Labeled Vitamin B12 Derivative with Abolished Binding to TC: A Story of Mice and Man. J. Nucl. Med. 2010, 51, 485. [Google Scholar]
- Waibel, R.; Treichler, H.; Schaefer, N.G.; Van Staveren, D.R.; Mundwiler, S.; Kunze, S.; Küenzi, M.; Alberto, R.; Nüesch, J.; Knuth, A.; et al. New Derivatives of Vitamin B12 Show Preferential Targeting of Tumors. Cancer Res. 2008, 68, 2904–2911. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian Cancer. Nat. Rev. Dis. Primers 2016, 2, 16061. [Google Scholar] [CrossRef]
- Abedi, S.M.; Mardanshahi, A.; Shahhosseini, R.; Hosseinimehr, S.J. Nuclear Medicine for Imaging of Epithelial Ovarian Cancer. Future Oncol. 2016, 12, 1165–1177. [Google Scholar] [CrossRef]
- Benfante, V.; Salvaggio, G.; Ali, M.; Cutaia, G.; Salvaggio, L.; Salerno, S.; Busè, G.; Tulone, G.; Pavan, N.; Di Raimondo, D.; et al. Grading and Staging of Bladder Tumors Using Radiomics Analysis in Magnetic Resonance Imaging. In Image Analysis and Processing—ICIAP 2023 Workshops; Foresti, G.L., Fusiello, A., Hancock, E., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 14366, pp. 93–103. ISBN 978-3-031-51025-0. [Google Scholar]
- Boca, B.; Caraiani, C.; Telecan, T.; Pintican, R.; Lebovici, A.; Andras, I.; Crisan, N.; Pavel, A.; Diosan, L.; Balint, Z.; et al. MRI-Based Radiomics in Bladder Cancer: A Systematic Review and Radiomics Quality Score Assessment. Diagnostics 2023, 13, 2300. [Google Scholar] [CrossRef]
- Reber, J.; Struthers, H.; Betzel, T.; Hohn, A.; Schibli, R.; Müller, C. Radioiodinated Folic Acid Conjugates: Evaluation of a Valuable Concept To Improve Tumor-to-Background Contrast. Mol. Pharm. 2012, 9, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- AlJammaz, I.; Al-Otaibi, B.; Al-Rumayan, F.; Al-Yanbawi, S.; Amer, S.; Okarvi, S.M. Development and Preclinical Evaluation of New 124I-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors. Nucl. Med. Biol. 2014, 41, 457–463. [Google Scholar] [CrossRef]
- Jammaz, I.A.; Al-Otaibi, B.; Amer, S.; Okarvi, S.M. Rapid Synthesis and in Vitro and in Vivo Evaluation of Folic Acid Derivatives Labeled with Fluorine-18 for PET Imaging of Folate Receptor-Positive Tumors. Nucl. Med. Biol. 2011, 38, 1019–1028. [Google Scholar] [CrossRef]
- Al Jammaz, I.; Al-Otaibi, B.; Amer, S.; Al-Hokbany, N.; Okarvi, S. Novel Synthesis and Preclinical Evaluation of Folic Acid Derivatives Labeled with 18F-[FDG] for PET Imaging of Folate Receptor-Positive Tumors. Nucl. Med. Biol. 2012, 39, 864–870. [Google Scholar] [CrossRef]
- Siwowska, K.; Guzik, P.; Domnanich, K.A.; Monné Rodríguez, J.M.; Bernhardt, P.; Ponsard, B.; Hasler, R.; Borgna, F.; Schibli, R.; Köster, U.; et al. Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics 2019, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Du, Y.; Zhao, J.; Sha, S.; Wang, J. 177Lu-FA-DOTA-PEG-PLGA Nanoparticles Show Antitumor Efficiency in Targeting Ovarian Cancer. Clin. Exp. Obstet. Gynecol. 2024, 51, 118. [Google Scholar] [CrossRef]
- Wu, F.; Chen, P.-M.; Gardinier, T.C.; Turker, M.Z.; Venkatesan, A.M.; Patel, V.; Khor, T.; Bradbury, M.S.; Wiesner, U.B.; Adams, G.P.; et al. Ultrasmall Folate Receptor Alpha Targeted Enzymatically Cleavable Silica Nanoparticle Drug Conjugates Augment Penetration and Therapeutic Efficacy in Models of Cancer. ACS Nano 2022, 16, 20021–20033. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, D. Study of the Therapeutic Effect of 188Re Labeled Folate Targeting Albumin Nanoparticle Coupled with Cis-Diamminedichloroplatinum Cisplatin on Human Ovarian Cancer. Bio-Med. Mater. Eng. 2014, 24, 711–722. [Google Scholar] [CrossRef]
- Oumzil, K.; Khiati, S.; Camplo, M.; Koquely, M.; Chuttani, K.; Chaturvedi, S.; Mishra, A.K.; Barthélémy, P. Nucleolipids as Building Blocks for the Synthesis of 99mTc-Labeled Nanoparticles Functionalized with Folic Acid. New J. Chem. 2014, 38, 5240–5246. [Google Scholar] [CrossRef]
- Fallah, J.; Agrawal, S.; Gittleman, H.; Fiero, M.H.; Subramaniam, S.; John, C.; Chen, W.; Ricks, T.K.; Niu, G.; Fotenos, A.; et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29, 1651–1657. [Google Scholar] [CrossRef]
- Urso, L.; Nieri, A.; Uccelli, L.; Castello, A.; Artioli, P.; Cittanti, C.; Marzola, M.C.; Florimonte, L.; Castellani, M.; Bissoli, S.; et al. Lutathera® Orphans: State of the Art and Future Application of Radioligand Therapy with 177Lu-DOTATATE. Pharmaceutics 2023, 15, 1110. [Google Scholar] [CrossRef]
- Kluge, K.; Lotz, V.; Einspieler, H.; Haberl, D.; Spielvogel, C.; Amereller, D.; Kramer, G.; Grubmüller, B.; Shariat, S.; Haug, A.; et al. Imaging and Outcome Correlates of ctDNA Methylation Markers in Prostate Cancer: A Comparative, Cross-Sectional [68Ga]Ga-PSMA-11 PET/CT Study. Clin. Epigenetics 2025, 17, 36. [Google Scholar] [CrossRef]
- Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; et al. [177Lu]-PSMA-617 Radionuclide Treatment in Patients with Metastatic Castration-Resistant Prostate Cancer (LuPSMA Trial): A Single-Centre, Single-Arm, Phase 2 Study. Lancet Oncol. 2018, 19, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Cremonesi, M.; Grana, C.M.; Fazio, N.; Iodice, S.; Baio, S.M.; Bartolomei, M.; Lombardo, D.; Ferrari, M.E.; Sansovini, M.; et al. Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE: The IEO Phase I-II Study. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2125–2135. [Google Scholar] [CrossRef]
- Bleeker, G.; Schoot, R.A.; Caron, H.N.; De Kraker, J.; Hoefnagel, C.A.; Van Eck, B.L.; Tytgat, G.A. Toxicity of Upfront 131I-Metaiodobenzylguanidine (131I-MIBG) Therapy in Newly Diagnosed Neuroblastoma Patients: A Retrospective Analysis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1711–1717. [Google Scholar] [CrossRef]
- Liu, M.; Svirskis, D.; Proft, T.; Loh, J.; Yin, N.; Li, H.; Li, D.; Zhou, Y.; Chen, S.; Song, L.; et al. Progress in Peptide and Protein Therapeutics: Challenges and Strategies. Acta Pharm. Sin. B 2025, 15, 6342–6381. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakatani, H.; Yanaihara, H.; Omote, M. Phase I Clinical Trial of 99mTc-Etarfolatide, an Imaging Agent for Folate Receptor in Healthy Japanese Adults. Ann. Nucl. Med. 2015, 29, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.H.; Yamaguchi, A.; Manning, H.C. Radiotheranostic Landscape: A Review of Clinical and Preclinical Development. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 2685–2709. [Google Scholar] [CrossRef] [PubMed]
- Ninatti, G.; Lee, S.T.; Scott, A.M. Radioligand Therapy in Cancer Management: A Global Perspective. Cancers 2025, 17, 3412. [Google Scholar] [CrossRef]
- Xu, M.; Yang, L.; Lin, Y.; Lu, Y.; Bi, X.; Jiang, T.; Deng, W.; Zhang, L.; Yi, W.; Xie, Y.; et al. Emerging Nanobiotechnology for Precise Theranostics of Hepatocellular Carcinoma. J. Nanobiotechnol. 2022, 20, 427. [Google Scholar] [CrossRef]
- Watabe, T.; Hirata, K.; Iima, M.; Yanagawa, M.; Saida, T.; Sakata, A.; Ide, S.; Honda, M.; Kurokawa, R.; Nishioka, K.; et al. Recent Advances in Theranostics and Oncology PET: Emerging Radionuclides and Targets. Ann. Nucl. Med. 2025, 39, 909–921. [Google Scholar] [CrossRef]
- Bodei, L.; Herrmann, K.; Schöder, H.; Scott, A.M.; Lewis, J.S. Radiotheranostics in Oncology: Current Challenges and Emerging Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 534–550. [Google Scholar] [CrossRef]
- Elmeliegy, M.; Udata, C.; Liao, K.; Yin, D. Considerations on the Calculation of the Human Equivalent Dose from Toxicology Studies for Biologic Anticancer Agents. Clin. Pharmacokinet. 2021, 60, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, O.L.; Smoliga, J.M. Translating Dosages from Animal Models to Human Clinical Trials—Revisiting Body Surface Area Scaling. FASEB J. 2015, 29, 1629–1634. [Google Scholar] [CrossRef]
- Govindan, S.V.; Cardillo, T.M.; Rossi, E.A.; Trisal, P.; McBride, W.J.; Sharkey, R.M.; Goldenberg, D.M. Improving the Therapeutic Index in Cancer Therapy by Using Antibody–Drug Conjugates Designed with a Moderately Cytotoxic Drug. Mol. Pharm. 2015, 12, 1836–1847. [Google Scholar] [CrossRef]
- Tosca, E.M.; Borella, E.; Piana, C.; Bouchene, S.; Merlino, G.; Fiascarelli, A.; Mazzei, P.; Magni, P. Model-based Prediction of Effective Target Exposure for MEN1611 in Combination with Trastuzumab in HER2 -positive Advanced or Metastatic Breast Cancer Patients. CPT Pharmacom. Syst. Pharma. 2023, 12, 1626–1639. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, K.K.; Rabha, B.; Pati, S.; Sarkar, T.; Choudhury, B.K.; Barman, A.; Bhattacharjya, D.; Srivastava, A.; Baishya, D.; Edinur, H.A.; et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021, 26, 6389. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Stefano, A.; Yezzi, A.; Di Raimondo, D.; Tuttolomondo, A.; Comelli, A. Anti-Arthritic and Anti-Cancer Activities of Polyphenols: A Review of the Most Recent In Vitro Assays. Life 2023, 13, 361. [Google Scholar] [CrossRef] [PubMed]
- Azadinejad, H.; Farhadi Rad, M.; Shariftabrizi, A.; Rahmim, A.; Abdollahi, H. Optimizing Cancer Treatment: Exploring the Role of AI in Radioimmunotherapy. Diagnostics 2025, 15, 397. [Google Scholar] [CrossRef]
- Ali, M.; Benfante, V.; Cutaia, G.; Salvaggio, L.; Rubino, S.; Portoghese, M.; Ferraro, M.; Corso, R.; Piraino, G.; Ingrassia, T.; et al. Prostate Cancer Detection: Performance of Radiomics Analysis in Multiparametric MRI. In Image Analysis and Processing—ICIAP 2023 Workshops; Foresti, G.L., Fusiello, A., Hancock, E., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 14366, pp. 83–92. ISBN 978-3-031-51025-0. [Google Scholar]
- Ali, M.; Benfante, V.; Basirinia, G.; Alongi, P.; Sperandeo, A.; Quattrocchi, A.; Giannone, A.G.; Cabibi, D.; Yezzi, A.; Di Raimondo, D.; et al. Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues. J. Imaging 2025, 11, 59. [Google Scholar] [CrossRef]
- Lo Casto, A.; Spartivento, G.; Benfante, V.; Di Raimondo, R.; Ali, M.; Di Raimondo, D.; Tuttolomondo, A.; Stefano, A.; Yezzi, A.; Comelli, A. Artificial Intelligence for Classifying the Relationship between Impacted Third Molar and Mandibular Canal on Panoramic Radiographs. Life 2023, 13, 1441. [Google Scholar] [CrossRef]
- Cairone, L.; Benfante, V.; Bignardi, S.; Marinozzi, F.; Yezzi, A.; Tuttolomondo, A.; Salvaggio, G.; Bini, F.; Comelli, A. Robustness of Radiomics Features to Varying Segmentation Algorithms in Magnetic Resonance Images. In Image Analysis and Processing—ICIAP 2022 Workshops; Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13373, pp. 462–472. ISBN 978-3-031-13320-6. [Google Scholar]
- Li, H.; Lee, C.H.; Chia, D.; Lin, Z.; Huang, W.; Tan, C.H. Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities. Diagnostics 2022, 12, 289. [Google Scholar] [CrossRef]
- Norman, H.A.; Butrum, R.R.; Feldman, E.; Heber, D.; Nixon, D.; Picciano, M.F.; Rivlin, R.; Simopoulos, A.; Wargovich, M.J.; Weisburger, E.K.; et al. The Role of Dietary Supplements during Cancer Therapy. J. Nutr. 2003, 133, 3794S–3799S. [Google Scholar] [CrossRef] [PubMed]





| Aspect | Vitamin-Based Radiopharmaceuticals | Conventional Radiopharmaceuticals |
|---|---|---|
| Targeting Mechanism | Exploits overexpression of vitamin receptors (e.g., Folate Receptor α, Transcobalamin receptor) or vitamin transport systems on tumor cells [65]. | Targets specific biomarkers like PSMA, Somatostatin Receptors (SSTR), or antigens (e.g., CD20, CEA) [119,120]. |
| Representative Agents | [68Ga]Ga-DOTA-Folate, [177Lu]Lu-DOTA-Folate, [99mTc]Tc-PAMA-Cobalamin [82] | [68Ga]Ga-PSMA-11, [177Lu]Lu-PSMA-617, [177Lu]Lu-DOTATATE, [131I]I-MIBG [121,122,123,124] |
| Key Advantages | High Biocompatibility & Low Immunogenicity: Vitamins are endogenous, naturally processed molecules. Low Cost & Accessibility: Vitamins are inexpensive and readily available. Proven Safety Profile: Generally non-toxic at physiological doses. Potential for Multimodality: Can be integrated with nanosystems for combined imaging/therapy. Broad Applicability: Targets can be overexpressed in multiple cancer types (e.g., FRα in ovarian, breast, lung). | High Target Affinity & Specificity: Often engineered for very high binding affinity to their target. Well-Established Clinical Use: Extensive clinical data and regulatory approval for several agents. Standardized Protocols: Established dosing, administration, and safety monitoring guidelines. Predictable Biodistribution: Well-characterized pharmacokinetics and clearance pathways [123] |
| Key Limitations & Challenges | Receptor Heterogeneity: Expression can vary between and within tumors, leading to potential false negatives. Competition with Endogenous Vitamins: High plasma levels of natural vitamins can block binding sites. Off-Target Uptake: Specific organs (e.g., kidneys for folates, liver/kidneys for B12) can show significant accumulation, posing a toxicity risk. Limited Clinical Translation: Most agents are still in preclinical or early clinical stages. Optimization of Pharmacokinetics: Requires careful engineering (e.g., linkers, albumin binders) to improve tumor-to-background ratios. | Immunogenic Potential: Peptide and antibody-based agents can provoke immune responses. Higher Production Costs: Peptide synthesis and monoclonal antibody production are expensive. Toxicities Related to Targets: Off-target binding to healthy tissues expressing the target (e.g., salivary glands for PSMA, kidneys for SSTR). Tumor Resistance Mechanisms: Tumors can downregulate target expression under therapeutic pressure [125]. |
| Clinical Status | Primarily preclinical and early-phase clinical trials. A few agents (e.g., EC20/99mTc-etarfolatide) have reached clinical studies but are not yet standard of care [126]. | Clinically established and approved. Multiple agents are standard care (e.g., Lutathera®, Pluvicto®) for specific indications [127,128]. |
| Ideal Use Case | Precision theranostics for tumors with confirmed overexpression of specific vitamin receptors, especially where conventional targets are absent or as part of combination nano therapy [129]. | First-line theranostic approach for cancers with well-defined, highly expressed molecular targets like PSMA (prostate) or SSTR (neuroendocrine) [130]. |
| Potential for Synergy | High potential for integration with nanoparticle drug delivery systems and as radiosensitizing/radioprotective adjuvants due to their biological roles. | Often used in combination with other systemic therapies (e.g., hormone therapy, chemotherapy) and increasingly with immunotherapy. |
| Cancer Types | Radionuclide | Targeted Agent | Results | Statistical Significance | Vitamin | Reference |
|---|---|---|---|---|---|---|
| Gastric cancer | 211At | Anti-TF mAb | Dose-dependent antitumor effects with SA protection | Significant protective effect of SA (p < 0.05) | Sodium Ascorbate (SA) | [43] |
| Gastric cancer | 68Ga | DOTA-RGD | High affinity and stability with tumor uptake | Tumor targeting significant (p < 0.001) | Folate | [45] |
| Gastric cancer | 99mTc | HYNIC-NHHN-FA (folate conjugate) | Low tumor uptake, primarily absorbed in stomach and intestines | Tumor targeting significant (p < 0.05) | Folate | [50] |
| Gastric cancer | 99mTc | HYNIC-PEG2-FA | Moderate tumor uptake; reduced uptake with excess folate | Receptor-specific targeting confirmed (p < 0.05) | Folate | [51] |
| Gastric cancer | 99mTc | ECG-EDA-folate | Radiolabeling efficiency: >96%; decreased uptake with excess folate | specific targeting and significant reduction in tumor uptake with excess folate (p < 0.05) | Folic Acid | [52] |
| Gastric cancer | 68Ga | 68Ga-NOTA-folic acid conjugate | Radiolabeling efficiency: >95%; specific uptake by KB cells; biodistribution correlated with kidney retention. | demonstrated strong correlation between tracer and kidney retention. (p < 0.05) | Folic Acid | [49] |
| Gastric cancer | 177Lu | cm09 (albumin-binding folate conjugate) | Radiochemical efficiency, >98% Stability, >99% and Serum Protein Biding ~91% | extended blood circulation time enhanced tumor uptake. (p < 0.05) | Folic Acid | [44] |
| Gastric cancer | 18F | α- and γ-conjugated fluorinated folate derivatives | Radiochemical purity: >95%; reduced kidney uptake by 50% with γ-regioisomers. | Binding affinity IC50: 1.4–2.2 nM; biodistribution impacted by regioisomers (p ≤ 0.01) | Folic Acid | [53] |
| Gastric cancer | 18F | 3-aza-2-[18F]-fluorofolic acid | High contrast imaging with minimal off-target accumulation. | demonstrated favorable properties for imaging FR-positive tumors. | Folic Acid | [54] |
| Gastric cancer | 18F | [18F]-folic acid derivative | Surpassed previous 18F-labeled radiofolates; highest affinity for FR-positive tumors. radiochemical purity, >95% | Considered the most promising 18F-radioligand for FR-positive tumors. | Folic Acid | [55] |
| Gastric cancer | 18F | [18F]F-fluorodeoxyglucose-folate | Enhanced hydrophilicity; demonstrated high specificity and affinity for folate receptors in cancers and inflammation. | demonstrated potential for clinical translation. | Folic Acid | [57] |
| Breast cancer | 177Lu | DOTA-folate | Tumor inhibition beyond 70 days (NF9006 cells) | Significant tumor growth reduction (p < 0.01) | Folate | [60] |
| Breast cancer | 89Zr | 89Zirconium-labeled cobalamin (89Zr-Cbl) | 6–10-fold higher uptake compared to excess CN-Cbl—High accumulation in kidneys and liver after 48 h. | demonstrated feasibility of tracer for tumor visualization. (p ≤ 0.01) | Vitamin B12, (Cobalamin) | [65] |
| Breast cancer | 99mTc | 99mTc(CO)3-PTX-FR-NLC, | higher uptake in folate receptor-positive organs, radiolabeling efficiency more than 90% | Tumor accumulation significant (p < 0.05) | Folate | [66] |
| Breast cancer | 177Lu | 177Lu-DOTA-Folate-Bombesin | High tumor uptake in breast cancer models | Significant tumor inhibition (p < 0.05) | Folate | [61] |
| Breast cancer | 99mTc | 99mTc-Bombesin-Folate | Improved breast tumor imaging and high radiochemical purity (96 ± 2.1%) | Higher tumor-to-muscle ratio (p < 0.05) | Folate | [62] |
| Breast cancer | 177Lu | 177Lu-Dendrimer-Folate-Bombesin-Gold Nanoparticles | Effective theranostic radiopharmaceutical and radiochemical purity (>95%) | Enhanced imaging and therapy (p < 0.05) | Folate | [63] |
| Breast cancer | 177Lu | 177Lu-Folate Conjugate with Iron Oxide Nanoparticles | Tumor uptake visualized via SPECT/CT | Enhanced contrast and targeting | Folate | [64] |
| Breast cancer | 99mTc | Radiolabeled Folate-Conjugated Liposomes | Increased tumor-specific imaging | High affinity for folate receptors (p < 0.05) | Folate | [68] |
| Breast cancer | 153Sm | 153Sm-Folate-PEI-Chitosan Nanoparticles | High radiochemical purity, (>90%) | Significant tumor localization | Folate | [69] |
| Breast cancer | 99mTc | 99mTc-HYNFA | Improved imaging contrast and labeling yield: 97–98%; radiochemical purity: 96–98% | Statistically significant uptake (p < 0.05) | Folate | [70] |
| Colorectal cancer | 64Cu | B12-en-Bn-NOTA | Tumor uptake: 2.20–4.84% ID/g at 6 h | Tumor uptake significantly reduced with excess B12 (p < 0.05) | Vitamin B12 | [74] |
| Colorectal cancer | 111In | MORAb-003 | Significant tumor uptake (32 ± 5% ID/g at 4 days) | Validated in small group of patients | Folate | [77] |
| Colorectal cancer | 89Zr | 89Zr-Labeled Folic Acid-Conjugated Silica | High receptor-specific binding | Strong PET signals | Folic acid | [79] |
| Colorectal cancer | 64Cu | 64Cu-Folate-Shell Cross-Linked Nanoparticles | Targeted tumor uptake | Effective biodistribution (p = 0.0001) | Folate | [75] |
| Colorectal cancer | 68Ga | 68Ga-HBED-CC-EDBE-Folate | High radiochemical purity (98%) | Selective tumor accumulation | Folate | [80] |
| Colorectal cancer | 99mTc | 99mTc-PAMA-Cobalamin | High tumor specificity in clinical study | Improved tumor imaging | Vitamin B12 | [82] |
| Brain cancer | 18F | [18F]FOL | Superior tumor-to-brain uptake ratio (TBR) compared to FDG And radiochemical purity was 97.5% ± 1.6 | TBR statistically higher for [18F]FOL (p < 0.05) | Folate | [88] |
| Brain cancer | 18F | [18F]AlF-NOTA-Folate | Good tumor uptake with reduced kidney accumulation | High specificity and rapid clearance | Folate | [89] |
| Brain cancer | 99mTc | Vitamin C-coated selenium nanoparticles (SeNPs) | Radiolabeling yield: 96 ± 2%—Stability maintained for over 6 h | demonstrated suitable target-to-non-target ratios in solid tumors. | Vitamin C | [91] |
| Brain cancer | 99mTc | Radiolabeled Folate Micellar Carriers | High efficiency for brain tumors | Enhanced SPECT imaging (p < 0.001) | Folate | [92] |
| Brain cancer | 66Ga, 68Ga | 66Ga/68Ga-Folate Conjugates | Tumor uptake validated via PET | High specificity | Folate | [94] |
| Brain cancer | 64Cu | PET/NIR-II Fluorescence Folate Probe | Dual-modality imaging | Enhanced tumor detection (p < 0.0001) | Folate | [90] |
| Brain cancer | 99mTc | 99mTc-Radiolabeled Benzothiazole-Folate | Very high Radiochemicla purity, >99% | Significant uptake observed | Folate | [93] |
| Brain cancer | 68Ga | 68Ga-Pteroyl-Lys Conjugates | Selective folate receptor binding and favorable radiolabeling yield (>90%), higher tumor-to-non target ratio | Improved PET contrast, (p < 0.05) | Folate | [95] |
| Prostate cancer | 57Co, 111In | Radiolabeled vitamin B12 derivatives | Reduced systemic distribution with improved tumor-to-blood ratio. | emphasized improvements in targeted accumulation. (p < 0.001) | Vitamin B12 | [105] |
| Prostate cancer | 99mTc | 99mTc-Folate-PEG-Doxorubicin | Antitumor efficiency, radiolabeling yield greater than 90% | Enhanced tumor accumulation (p < 0.05) | Folate | [97] |
| Prostate cancer | 18F | 18F-Click Radiolabeled Folate | High tumor targeting And radiochemical purity, >95%. | PET-imaging validated | Folate | [102] |
| Prostate cancer | 99mTc | 99mTc-EC20 | High radiochemical yield (>95%) | Superior tumor-to-background contrast | Folate | [99] |
| Prostate cancer | 99mTc | 99mTc-Labeled Vitamin C | Maximum Radiolabeling yield, 93 ± 5.0% | Favorable pharmacokinetics (p < 0.05) | Vitamin C | [103] |
| Prostate cancer | 99mTc | 99mTc-Dimeric Folic Acid | Strong FR-targeting, (IC50 = 19.06 nM) | High tumor specificity (p < 0.05) | Folate | [100] |
| Prostate cancer | 99mTc | 99mTc-Folate-Isonitrile Complexes | High radiochemical purity, >95% | Improved receptor binding And significant biodistribution (p < 0.05, p < 0.01) | Folate | [101] |
| Prostate cancer | 99mTc | 99mTc-Vitamin B12 Derivative | Abolished TC binding for selective uptake and radiochemical purity of PAMA-4-B12 was >95%, | Significant tumor targeting | Vitamin B12 | [104] |
| Ovarian cancer | 125I, 131I | [125I]-2 and [125/131I]-4 folate conjugates | High stability, FR-specific binding, strong tumor accumulation | Pre-injection with pemetrexed improved imaging (p < 0.05) | Folate | [110] |
| Ovarian cancer | 18F | [18F]-2-folate | High radiochemical yield (>80%), purity (>97%), significant tumor uptake | Micro-PET imaging confirmed results (p < 0.05) | Folate | [112] |
| Ovarian cancer | 18F | [18F]-FDG-folate and [18F]-8 | High yield (>80%), purity (>98%), receptor specificity confirmed | Blocking experiments validated specificity (p < 0.05) | Folate | [113] |
| Ovarian cancer | 124I | [124I]-SIB- and [124I]-SIP-folate | High radiochemical yield (>90% and >60%), purity (>98%), strong tumor targeting | Effective tumor uptake in vivo (p < 0.05) | Folate | [111] |
| Ovarian cancer | 47Sc, 177Lu, 90Y | 47Sc-DOTA-folate, 177Lu-folate, 90Y-folate | Tumor growth inhibition (39–43 days vs. 26 days in controls), no severe side effects | 90Y-folate showed the highest potency (p < 0.05) | Folate | [114] |
| Ovarian cancer | 177Lu | 177Lu-FA-DOTA-PEG-PLGA nanoparticles | High labeling efficiency (97–98%), minimal kidney accumulation, tumor localization confirmed | Significant tumor inhibition, no major toxicity (p < 0.05) | Folic acid | [115] |
| Ovarian cancer | 188Re | 188Re-folate-CDDP/HAS MNP | Apoptosis rates reached 57.16% and significant inhibition tumor growth | Triple combination therapy showed strongest tumor suppression (p < 0.05) | Folate | [117] |
| Ovarian cancer | 99mTc | 99mTc-NP-PEGFA (Folate-functionalized cisplatin nanoparticles) | High cellular uptake | Enhanced blood circulation and tumor accumulation (p < 0.05) | Folate | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Basirinia, G.; Comelli, A.; Alongi, P.; Ali, M.; Salvaggio, G.; Longo, C.; Di Raimondo, D.; Tuttolomondo, A.; Benfante, V. Radiolabeled Vitamins and Nanosystems as Potential Agents in Oncology Theranostics: Developed Approaches and Future Perspectives. J. Pers. Med. 2026, 16, 36. https://doi.org/10.3390/jpm16010036
Basirinia G, Comelli A, Alongi P, Ali M, Salvaggio G, Longo C, Di Raimondo D, Tuttolomondo A, Benfante V. Radiolabeled Vitamins and Nanosystems as Potential Agents in Oncology Theranostics: Developed Approaches and Future Perspectives. Journal of Personalized Medicine. 2026; 16(1):36. https://doi.org/10.3390/jpm16010036
Chicago/Turabian StyleBasirinia, Ghazal, Albert Comelli, Pierpaolo Alongi, Muhammad Ali, Giuseppe Salvaggio, Costanza Longo, Domenico Di Raimondo, Antonino Tuttolomondo, and Viviana Benfante. 2026. "Radiolabeled Vitamins and Nanosystems as Potential Agents in Oncology Theranostics: Developed Approaches and Future Perspectives" Journal of Personalized Medicine 16, no. 1: 36. https://doi.org/10.3390/jpm16010036
APA StyleBasirinia, G., Comelli, A., Alongi, P., Ali, M., Salvaggio, G., Longo, C., Di Raimondo, D., Tuttolomondo, A., & Benfante, V. (2026). Radiolabeled Vitamins and Nanosystems as Potential Agents in Oncology Theranostics: Developed Approaches and Future Perspectives. Journal of Personalized Medicine, 16(1), 36. https://doi.org/10.3390/jpm16010036

