Effect of High Altitude on Small Pulmonary Vein and Artery Volume in the COPDGene Cohort: Towards Better Understanding of Lung Physiology and Pulmonary Disease
Abstract
1. Background
2. Methods
2.1. Study Population
2.2. Spirometry and Clinical Data
2.3. CT Acquisition and Measurements
2.4. CT Pulmonary Vein and Artery Quantification
2.5. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Univariate and Multivariate Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
6MWD | 6-minute walking distance |
AVX | artery–vein phenotyping analysis |
BMI | body mass index |
BSA | body surface area |
COPD | chronic obstructive pulmonary disease |
CT | computed tomography |
FEV1% predicted | forced expiratory volume in 1 second as percent predicted |
FVC% predicted | forced vital capacity as percent predicted |
GOLD | global initiative for chronic obstructive lung disease |
%LAA-950 | percentage of low attenuation area below 950 Hounsfield Units |
mMRC scale | modified Medical Research Council dyspnea scale |
Pi10 | square root of wall area for a theoretical airway with a lumen of 10 mm |
PRISm | preserved ratio impaired spirometry |
QCT | quantitative computed tomography |
SpO2 | oxygen saturation in arterial blood estimated by pulse oximetry |
References
- Hurtado, A. Some Clinical Aspects of Life at High Altitudes. Ann. Intern. Med. 1960, 53, 247–258. [Google Scholar] [CrossRef]
- Penaloza, D.; Sime, F.; Banchero, N.; Gamboa, R.; Cruz, J.; Marticorena, E. Pulmonary Hypertension in Healthy Men Born and Living at High Altitudes. Am. J. Cardiol. 1963, 11, 150–157. [Google Scholar] [CrossRef]
- Penaloza, D.; Arias-Stella, J. The heart and pulmonary circulation at high altitudes: Healthy highlanders and chronic mountain sickness. Circulation 2007, 115, 1132–1146. [Google Scholar] [CrossRef] [PubMed]
- Arias-Stella, J.; Saldana, M. The Terminal Portion of the Pulmonary Arterial Tree in People Native to High Altitudes. Circulation 1963, 28, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Arias-Stella, J.; Saldaña, M. The Muscular Pulmonary Arteries in People Native to High Altitude. Respiration 1962, 19, 484–493. [Google Scholar] [CrossRef]
- Wagenvoort, C.A.; Wagenvoort, N. Pulmonary Venous Changes in Chronic Hypoxia. Virchows Arch. A Pathol. Anat. Histol. 1976, 372, 51–56. [Google Scholar] [CrossRef]
- Wagenvoort, C.A.; Wagenvoort, N. Pulmonary veins in high-altitude residents: A morphometric study. Thorax 1982, 37, 931–935. [Google Scholar] [CrossRef]
- Naeye, R.L. Pulmonary Vascular Changes with Chronic Unilateral Pulmonary Hypoxia. Circ. Res. 1965, 17, 160–167. [Google Scholar] [CrossRef]
- Dingemans, K.P.; Wagenvoort, C.A. Pulmonary Arteries and Veins in Experimental Hypoxia. An Ultrastructural Study. Am. J. Pathol. 1978, 93, 353–368. [Google Scholar]
- Kwee, A.K.A.L.; Andrinopoulou, E.R.; van der Veer, T.; Gallardo Estrella, L.; Charbonnier, J.P.; Humphries, S.M.; Lynch, D.A.; Tiddens, H.A.W.W.; de Jong, P.A.; Pompe, E. Higher small pulmonary artery and vein volume on computed tomography is associated with mortality in current and former smokers. eBioMedicine 2024, 108, 105366. [Google Scholar] [CrossRef]
- Regan, E.A.; Hokanson, J.E.; Murphy, J.R.; Make, B.; Lynch, D.A.; Beaty, T.H.; Curran-Everett, D.; Silverman, E.K.; Crapo, J.D. Genetic Epidemiology of COPD (COPDGene) Study Design. J. Chronic Obstr. Pulm. Dis. 2010, 7, 32–43. [Google Scholar] [CrossRef]
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric Reference Values from a Sample of the General U.S. Population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; de Oca, M.M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Wells, C.K. Evaluation of Clinical Methods for Rating Dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef]
- Kim, D.K.; Jacobson, F.L.; Washko, G.R.; Casaburi, R.; Make, B.J.; Crapo, J.D.; Silverman, E.K.; Hersh, C.P. Clinical and radiographic correlates of hypoxemia and oxygen therapy in the COPDGene study. Respir. Med. 2011, 105, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C.; Leipsic, J.; Abbara, S.; Achenbach, S.; Berman, D.; Bittencourt, M.; Budoff, M.; Chinnaiyan, K.; Choi, A.G.; Ghoshhajra, B.; et al. CAD-RADSTM 2.0–2022 Coronary Artery Disease-Reporting and Data System. JACC Cardiovasc. Imaging 2022, 15, 1974–2001. [Google Scholar] [CrossRef]
- Patel, B.D.; Coxson, H.O.; Pillai, S.G.; Agustí, A.G.N.; Calverley, P.M.A.; Donner, C.F.; Make, B.J.; Müller, N.L.; Rennard, S.I.; Vestbo, J.; et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 178, 500–505. [Google Scholar] [CrossRef]
- El Kaddouri, B.; Strand, M.J.; Baraghoshi, D.; Humphries, S.M.; Charbonnier, J.-P.; van Rikxoort, E.M.; Lynch, D.A. Fleischner Society Visual Emphysema CT Patterns Help Predict Progression of Emphysema in Current and Former Smokers: Results from the COPDGene Study. Radiology 2021, 298, 441–449. [Google Scholar] [CrossRef]
- DuBois, D.; DuBois, E. A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef]
- Brinchmann-Hansen, O.; Myhre, K.; Sandvik, L. Retinal Vessel Responses to Exercise and Hypoxia Before and After High Altitude Acclimatisation. Eye 1989, 3, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Shimoda, L.A.; Aaronson, P.I.; Ward, J.P.T. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 2012, 92, 367–520. [Google Scholar] [CrossRef] [PubMed]
- Weir, E.K.; Archer, S.L. The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels. FASEB J. 1995, 9, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Euler, U.S.V.; Liljestrand, G. Observations on the Pulmonary Arterial Blood Pressure in the Cat. Acta Physiol. Scand. 1946, 12, 301–320. [Google Scholar] [CrossRef]
- Petersson, J.; Glenny, R.W. Gas exchange and ventilation-perfusion relationships in the lung. Eur. Respir. J. 2014, 44, 1023–1041. [Google Scholar] [CrossRef]
- Lee, J.-S.; Skalak, T.C. Microvascular Mechanics-Hemodynamics of Systemic and Pulmonary Microcirculation; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Sakao, S.; Voelkel, N.F.; Tatsumi, K. The vascular bed in COPD: Pulmonary hypertension and pulmonary vascular alterations. Eur. Respir. Rev. 2014, 23, 350–355. [Google Scholar] [CrossRef]
- Piccari, L.; Del Pozo, R.; Blanco, I.; García-Lucio, J.; Torralba, Y.; Tura-Ceide, O.; Moisés, J.; Sitges, M.; Peinado, V.I.; Barberà, J.A. Association between systemic and pulmonary vascular dysfunction in copd. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 2037–2047. [Google Scholar] [CrossRef]
- Santos, S.; Peinado, V.; Ramírez, J.; Melgosa, T.; Roca, J.; Rodriguez-Roisin, R.; Barberà, J. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur. Respir. J. 2002, 19, 632–638. [Google Scholar] [CrossRef]
- Bogaard, H.J. Hypoxic pulmonary vasoconstriction in COPD-associated pulmonary hypertension: Been there, done that? Eur. Respir. J. 2017, 50, 1701191. [Google Scholar] [CrossRef]
- Guo, Y.; Xing, Z.; Shan, G.; Janssens, J.P.; Sun, T.; Chai, D.; Liu, W.; Wang, Y.; Ma, Y.; Tong, Y.; et al. Prevalence and Risk Factors for COPD at High Altitude: A Large Cross-Sectional Survey of Subjects Living Between 2,100–4,700 m Above Sea Level. Front. Med. 2020, 7, 581763. [Google Scholar] [CrossRef]
- Suri, R.; Markovic, D.; Woo, H.; Arjomandi, M.; Barr, R.G.; Bowler, R.P.; Criner, G.; Curtis, J.L.; Dransfield, M.T.; Drummond, M.B.; et al. The Effect of Chronic Altitude Exposure on COPD Outcomes in the SPIROMICS Cohort. Am. J. Respir. Crit. Care Med. 2024, 210, 1210–1218. [Google Scholar] [CrossRef]
- Sydykov, A.; Mamazhakypov, A.; Maripov, A.; Kosanovic, D.; Weissmann, N.; Ghofrani, H.A.; Sarybaev, A.S.; Schermuly, R.T. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders. Int. J. Environ. Res. Public Health 2021, 18, 1692. [Google Scholar] [CrossRef]
High Altitude Residents (N = 1262) | Lower Altitude Residents (N = 7669) | |
---|---|---|
Age (yr) | 62.0 ± 9.1 | 59.6 ± 9.0 |
Male gender (N, %) | 650 (51.5%) | 4060 (52.9%) |
BMI (kg/m2) | 27.9 ± 6.1 | 28.9 ± 6.3 |
Packyears (yr) | 46.8 ± 25.8 | 44.1 ± 24.9 |
Non-Hispanic White residents (N, %) | 1095 (86.8%) | 5063 (66.0%) |
Black or African-American residents (N, %) | 167 (13.2%) | 2606 (34.0%) |
Current smokers (n,%) | 447 (35.4%) | 4080 (53.2%) |
Spirometry | ||
FEV1 (% predicted) | 64.6 ± 32.4 | 76.8 ± 25.2 |
FVC (% predicted) | 86.7 ± 20.0 | 87.0 ± 17.9 |
6MWD (m) | 433 ± 135 | 409 ± 120 |
Resting SpO2 (%) | 94 (91–96) | 97 (96–98) |
mMRC dyspnea scale | 1 (0–3) | 1 (0–3) |
Supplemental oxygen users (N, %) | 463 (36.7%) | 577 (7.5%) |
CT quantified parameters | ||
Emphysema (%) | 3.2 (0.8–15.2) | 2.0 (0.5–6.7) |
Air trapping (%) | 16.1 (5.0–43.8) | 14.2 (6.39–29.9) |
Pi10 (mm) | 2.35 ± 0.63 | 2.35 ± 0.62 |
mAgatston score | 11 (0–164) | 14 (0–179) |
CT Vascular parameters | ||
Mean small vein volume (mL/m2) | 2.96 ± 0.53 | 2.67 ± 0.53 |
Mean small artery volume (mL/m2) | 4.09 ± 0.89 | 3.85 ± 0.90 |
Min-max (IQR) of small vein volume (mL/m2) | 0.28–5.29 (2.52, 3.33) | 0.73–6.07 (2.30, 2.99) |
Min-max (IQR) of small artery volume (mL/m2) | 2.01–7.68 (3.45, 4.61) | 1.58–8.18 (3.20, 4.40) |
Emphysema visual score (N, %) | ||
0—none | 296 (23.5%) | 2647 (34.5%) |
1—trace | 167 (13.2%) | 1426 (18.6%) |
2—mild | 239 (18.9%) | 1511 (19.7%) |
3—moderate | 248 (19.7%) | 1183 (15.4%) |
4—confluent | 233 (18.5%) | 672 (8.8%) |
5—advanced destructive | 79 (6.3%) | 230 (3.0%) |
COPD GOLDstage (N, %) | ||
PRISm | 94 (7.4%) | 980 (12.8%) |
0 | 420 (33.3%) | 3390 (44.2%) |
1 | 109 (8.6%) | 597 (7.8%) |
2 | 275 (21.8%) | 1485 (19.4%) |
3 | 230 (18.2%) | 824 (10.7%) |
4 | 134 (10.6%) | 393 (5.1%) |
Determinant | Unit Change | B | 95% CI | T Statistic | p Value |
---|---|---|---|---|---|
High altitude | Yes/no | 0.129 | [0.075, 0.182] | 4.69 | <0.001 |
Supplemental oxygen use | Yes/no | 0.054 | [−0.029, 0.138] | 1.28 | 0.20 |
Age | Per year | −0.001 | [−0.002, 0.011] | −0.71 | 0.50 |
BMI | Per kg/m2 | −0.018 | [−0.020, −0.017] | −19.0 | <0.001 |
Gender | For females | −0.056 | [−0.083, −0.029] | −4.11 | <0.001 |
Race | For African Americans | −0.276 | [−0.303, −0.249] | −19.8 | <0.001 |
Pack-years smoked | Per pack-year | 0.001 | [0.001, 0.002] | 4.08 | <0.001 |
Smoking status | For current smokers | 0.107 | [0.079, 0.134] | 7.63 | <0.001 |
FEV1 % predicted | Per % predicted | 0.002 | [0.002, 0.003] | 7.79 | <0.001 |
Emphysema | Per % predicted | 0.015 | [−0.007, 0.037] | 1.34 | 0.18 |
Pi10 | Per mm | −0.011 | [−0.036, 0.014] | −0.86 | 0.39 |
Coronary calcium | Per mAgatston unit | 0.017 | [0.005, 0.029] | 2.84 | 0.005 |
6MWD | Per 100 m | 0.005 | [−0.006, 0.017] | 0.89 | 0.37 |
Severe exacerbations | For severe exacerbations | 0.035 | [−0.014, 0.084] | 1.40 | 0.16 |
mMRC Dyspnea Score 1 | For score 1 | 0.005 | [−0.027, 0.036] | 0.27 | 0.78 |
mMRC Dyspnea Score 2 | For score 2 | −0.007 | [−0.045, 0.030] | −0.39 | 0.70 |
mMRC Dyspnea Score 3 | For score 3 | 0.035 | [−0.001, 0.071] | 1.90 | 0.06 |
mMRC Dyspnea Score 4 | For score 4 | 0.007 | [−0.047, 0.061] | 0.26 | 0.79 |
Determinant | Unit Change | B | 95% CI | T Statistic | p Value |
---|---|---|---|---|---|
High altitude | Yes/no | 0.031 | [−0.011, 0.072] | 1.47 | 0.14 |
Supplemental oxygen use | Yes/no | 0.125 | [0.091, 0.159] | 7.12 | <0.001 |
Age | Per year | −0.001 | [−0.003, 0.000] | −1.77 | 0.08 |
BMI | Per kg/m2 | −0.023 | [−0.025, −0.022] | −28.4 | <0.001 |
Gender | For females | −0.084 | [−0.106, −0.063] | −7.65 | <0.001 |
Race | For African Americans | −0.261 | [−0.283, −0.237] | −22.2 | <0.001 |
Pack-years smoked | Per pack-year | 0.002 | [0.001, 0.002] | 8.07 | <0.001 |
Smoking status | For current smokers | 0.098 | [0.076, 0.120] | 8.73 | <0.001 |
FEV1 % predicted | Per % predicted | <−0.001 | [−0.001, 0.001] | 1.29 | 0.20 |
Emphysema | Per % predicted | 0.109 | [0.093, 0.125] | 13.1 | <0.001 |
Pi10 | Per mm | 0.021 | [0.003, 0.039] | 2.26 | 0.02 |
Coronary calcium | Per mAgatston unit | 0.017 | [0.008, 0.026] | 3.59 | <0.001 |
6MWD | Per 100 m | −0.005 | [−0.014, 0.005] | −1.00 | 0.32 |
Severe exacerbations | For severe exacerbations | 0.004 | [−0.026, 0.033] | 0.23 | 0.81 |
mMRC Dyspnea Score 1 | For score 1 | 0.012 | [−0.015, 0.039] | 0.88 | 0.38 |
mMRC Dyspnea Score 2 | For score 2 | 0.015 | [−0.014, 0.045] | 1.01 | 0.31 |
mMRC Dyspnea Score 3 | For score 3 | 0.055 | [0.027, 0.083] | 3.83 | <0.001 |
mMRC Dyspnea Score 4 | For score 4 | 0.055 | [0.019, 0.092] | 2.96 | 0.003 |
Determinant | Unit Change | B | 95% CI | T Statistic | p Value |
---|---|---|---|---|---|
High altitude | Yes/no | 0.170 | [0.068, 0.272] | 3.26 | 0.001 |
Supplemental oxygen use | Yes/no | −0.016 | [−0.174, 0.143] | −0.19 | 0.85 |
Age | Per year | −0.005 | [−0.008, −0.002] | −3.10 | 0.002 |
BMI | Per kg/m2 | −0.013 | [−0.017, −0.009] | −7.10 | <0.001 |
Gender | For females | −0.113 | [−0.164, −0.062] | −4.34 | <0.001 |
Race | For African Americans | −0.672 | [−0.724, −0.620] | −25.5 | <0.001 |
Pack-years smoked | Per pack-year | 0.004 | [0.003, 0.005] | 7.21 | <0.001 |
Smoking status | For current smokers | 0.285 | [0.233, 0.337] | 10.7 | <0.001 |
FEV1 % predicted | Per % predicted | 0.003 | [0.002, 0.004] | 4.58 | <0.001 |
Emphysema | Per % predicted | 0.022 | [−0.020, 0.063] | 1.01 | 0.31 |
Pi10 | Per mm | −0.087 | [−0.134, −0.040] | −3.61 | <0.001 |
Coronary calcium | Per mAgatston unit | 0.037 | [0.015, 0.060] | 3.24 | 0.001 |
6MWD | Per 100 m | 0.027 | [0.005, 0.049] | 2.38 | 0.02 |
Severe exacerbations | For severe exacerbations | 0.068 | [−0.026, 0.161] | 1.42 | 0.16 |
mMRC Dyspnea Score 1 | For score 1 | −0.005 | [−0.066, 0.056] | −0.16 | 0.87 |
mMRC Dyspnea Score 2 | For score 2 | 0.001 | [−0.070, 0.072] | 0.02 | 0.98 |
mMRC Dyspnea Score 3 | For score 3 | 0.016 | [−0.052, 0.084] | 0.45 | 0.65 |
mMRC Dyspnea Score 4 | For score 4 | 0.008 | [−0.093, 0.110] | 0.16 | 0.88 |
Determinant | Unit Change | B | 95% CI | T Statistic | p Value |
---|---|---|---|---|---|
High altitude | Yes/no | 0.001 | [−0.071, 0.073] | 0.03 | 0.98 |
Supplemental oxygen use | Yes/no | 0.034 | [−0.026, 0.095] | 1.12 | 0.26 |
Age | Per year | −0.005 | [−0.007 −0.003] | −4.11 | <0.001 |
BMI | Per kg/m2 | −0.016 | [−0.019, −0.013] | −11.2 | <0.001 |
Gender | For females | −0.139 | [−0.177, −0.101] | −7.22 | <0.001 |
Race | For African Americans | −0.655 | [−0.695, −0.615] | −31.9 | <0.001 |
Pack-years smoked | Per pack-year | 0.003 | [0.002, 0.004] | 8.81 | <0.001 |
Smoking status | For current smokers | 0.350 | [0.311, 0.389] | 17.8 | <0.001 |
FEV1 % predicted | Per % predicted | 0.002 | [0.001, 0.003] | 4.17 | <0.001 |
Emphysema | Per % predicted | 0.096 | [0.068, 0.125] | 6.65 | <0.001 |
Pi10 | Per mm | −0.022 | [−0.055, 0.010] | −1.37 | 0.17 |
Coronary calcium | Per mAgatston unit | 0.035 | [0.019, 0.051] | 4.24 | <0.001 |
6MWD | Per 100 m | 0.015 | [−0.014, 0.032] | 1.79 | 0.07 |
Severe exacerbations | For severe exacerbations | 0.049 | [−0.003, 0.101] | 1.84 | 0.07 |
mMRC Dyspnea Score 1 | For score 1 | 0.005 | [−0.043, 0.052] | 0.20 | 0.84 |
mMRC Dyspnea Score 2 | For score 2 | −0.018 | [−0.069, 0.034] | −0.76 | 0.50 |
mMRC Dyspnea Score 3 | For score 3 | 0.012 | [−0.037, 0.062] | 0.49 | 0.63 |
mMRC Dyspnea Score 4 | For score 4 | 0.052 | [−0.013, 0.115] | 1.57 | 0.12 |
Veins | Arteries | ||
---|---|---|---|
Arias-Stella, 1963 Peruvian residents and sea-level residents | - | Distal arteries: more muscularization of medial layer Proximal arteries: hypertrophic medial layer | |
Wagenvoort, 1982 12 sea level adults, 12 high altitude adults (<3000 m) | Venous medial hypertrophy | Arterial medial hypertrophy, especially in small arteries. Muscularization of non-muscular arterioles. | |
Penaloza, 2007 (review) Healthy highlanders | - | Thickening of the walls of arterioles in postnatal period, which remained in some through adulthood. | |
Grover, 1963 Steers raised at high altitude (1000 m -> 1500 m -> 3800 m) | - | Rapidly increasing pulmonary arterial pressures at around 4000 m. | |
Naeye, 1965 Dogs and cattle in hypoxic environment, infants with diaphragmatic defects | Hyperplasia and hypertrophy of medial SMC in small pulmonary veins | Dogs: hyperplasia of medial smooth muscle fibers Infants: more arterial muscle mass due to more cytoplasm in medial smooth muscle fibers. | |
Jaenke, 1973 Cattle raised at high altitude | - | Arterial medial thickening | |
Hunter, 1974 Rats in hypoxic environment | Vessels: no change in number of vessels, thickened (two elastic laminae with muscular coat in between) | ||
Hislop, 1976 Rats in hypoxic environment | - | Decreased number of arteries with a diameter < 200 µm, increased arterial wall thickness | |
Dingemans, 1978 Rats in hypoxic environment | Veins and venules: medial hypertrophy (more layers of smooth muscle cells) | Medial hypertrophy of arteries and arterioles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwee, A.K.A.L.; Pompe, E.; Gallardo Estrella, L.; Charbonnier, J.-P.; Humphries, S.M.; Tiddens, H.A.W.M.; Crapo, J.D.; Casaburi, R.; de Jong, P.A.; Lynch, D.A.; et al. Effect of High Altitude on Small Pulmonary Vein and Artery Volume in the COPDGene Cohort: Towards Better Understanding of Lung Physiology and Pulmonary Disease. J. Pers. Med. 2025, 15, 377. https://doi.org/10.3390/jpm15080377
Kwee AKAL, Pompe E, Gallardo Estrella L, Charbonnier J-P, Humphries SM, Tiddens HAWM, Crapo JD, Casaburi R, de Jong PA, Lynch DA, et al. Effect of High Altitude on Small Pulmonary Vein and Artery Volume in the COPDGene Cohort: Towards Better Understanding of Lung Physiology and Pulmonary Disease. Journal of Personalized Medicine. 2025; 15(8):377. https://doi.org/10.3390/jpm15080377
Chicago/Turabian StyleKwee, Anastasia K. A. L., Esther Pompe, Leticia Gallardo Estrella, Jean-Paul Charbonnier, Stephen M. Humphries, Harm A. W. M. Tiddens, James D. Crapo, Richard Casaburi, Pim A. de Jong, David A. Lynch, and et al. 2025. "Effect of High Altitude on Small Pulmonary Vein and Artery Volume in the COPDGene Cohort: Towards Better Understanding of Lung Physiology and Pulmonary Disease" Journal of Personalized Medicine 15, no. 8: 377. https://doi.org/10.3390/jpm15080377
APA StyleKwee, A. K. A. L., Pompe, E., Gallardo Estrella, L., Charbonnier, J.-P., Humphries, S. M., Tiddens, H. A. W. M., Crapo, J. D., Casaburi, R., de Jong, P. A., Lynch, D. A., & Mohamed Hoesein, F. A. A. (2025). Effect of High Altitude on Small Pulmonary Vein and Artery Volume in the COPDGene Cohort: Towards Better Understanding of Lung Physiology and Pulmonary Disease. Journal of Personalized Medicine, 15(8), 377. https://doi.org/10.3390/jpm15080377