Tailored Therapies in Addiction Medicine: Redefining Opioid Use Disorder Treatment with Precision Medicine
Abstract
1. Introduction
2. Methodology
3. Classical Approach—How Is OUD Treated Right Now?
4. Novel Approach
4.1. Genetics and Biomarkers
4.2. Tailoring Therapies by Taking into Account Psychosocial Factors
4.3. New Technology—How Artificial Intelligence, Deep Learning, and Digital Tools May Assist with Incorporating These Factors (Genetic and Psychosocial) into Treatment as Well as Improve Treatment Accessibility/Outcomes
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OUD | Opioid Use Disorder |
WHO | World Health Organization |
EU | European Union |
MOUD | Medications for Opioid Use Disorder |
ML | Machine Learning |
AI | Artificial Intelligence |
CDC | Centers for Disease Control and Prevention |
EMCDDA | European Monitoring Centre for Drugs and Drug Addiction |
FDA | Food and Drug Administration |
CBT | Cognitive Behavioral Therapy |
References
- Wu, L.-T.; Zhu, H.; Ghitza, U.E. Multicomorbidity of Chronic Diseases and Substance Use Disorders and Their Association with Hospitalization: Results from Electronic Health Records Data. Drug Alcohol Depend. 2018, 192, 316–323. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health and Treatment of Substance Use Disorders; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Peacock, A.; Leung, J.; Larney, S.; Colledge, S.; Hickman, M.; Rehm, J.; Giovino, G.A.; West, R.; Hall, W.; Griffiths, P.; et al. Global Statistics on Alcohol, Tobacco and Illicit Drug Use: 2017 Status Report. Addiction 2018, 113, 1905–1926. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.A.; McGrath, S.A.; Dowling, D.; Bai, D. The Opioid Crisis: Prevalence and Markets of Opioids. Forensic Sci. Rev. 2022, 34, 43–70. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention (CDC). U.S. Overdose Deaths Decrease in 2023, First Time Since 2018. Centers for Disease Control and Prevention (CDC). Available online: https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2024/20240515.htm (accessed on 23 February 2025).
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report 2024: Trends and Developments; European Monitoring Centre for Drugs and Drug Addiction (EMCDDA): Lisbon, Portugal, 2024; Available online: https://www.euda.europa.eu/system/files/documents/2024-06/edr-2024-compiled-pdf-14.06.2024v2.pdf (accessed on 23 February 2025).
- Yakovenko, I.; Mukaneza, Y.; Germé, K.; Belliveau, J.; Fraleigh, R.; Bach, P.; Poulin, G.; Selby, P.; Goyer, M.-È.; Brothers, T.D.; et al. Management of Opioid Use Disorder: 2024 Update to the National Clinical Practice Guideline. Can. Med. Assoc. J. 2024, 196, E1280–E1290. [Google Scholar] [CrossRef] [PubMed]
- Connery, H.S. Medication-Assisted Treatment of Opioid Use Disorder. Harv. Rev. Psychiatry 2015, 23, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, C.A.; Kim, M.; Thomas, C.P.; Lyman, D.R.; Montejano, L.B.; Dougherty, R.H.; Daniels, A.S.; Ghose, S.S.; Delphin-Rittmon, M.E. Medication-Assisted Treatment With Methadone: Assessing the Evidence. Psychiatr. Serv. 2014, 65, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, N.; Mojtabai, R.; Stuart, E.A.; Fingerhood, M.; Agus, D.; Lyons, B.C.; Weiner, J.P.; Saloner, B. Opioid Agonist Treatment and Fatal Overdose Risk in a State-wide US Population Receiving Opioid Use Disorder Services. Addiction 2020, 115, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.Y.; Le, L.; Majmudar, I.; Mihalopoulos, C. Barriers to Accessing Opioid Substitution Treatment for Opioid Use Disorder: A Systematic Review from the Client Perspective. Drug Alcohol Depend. 2021, 221, 108651. [Google Scholar] [CrossRef] [PubMed]
- Crist, R.C.; Clarke, T.-K.; Berrettini, W.H. Pharmacogenetics of Opioid Use Disorder Treatment. CNS Drugs 2018, 32, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.M.Y.; Kazemi, A.; Kim, J.J.; Schmeckenbecher, J.; Kitchin, V.; Suen, J.; Moro, R.; Krausz, R.M. Utilizing Machine Learning for Early Intervention and Risk Management in the Opioid Overdose Crisis. WIREs Comput. Stat. 2025, 17, e70008. [Google Scholar] [CrossRef]
- Tassinari, D.L.; Pozzolo Pedro, M.O.; Pozzolo Pedro, M.; Negrão, A.B.; Abrantes do Amaral, R.; Malbergier, A.; Crispim, D.H.; Castaldelli-Maia, J.M. Artificial Intelligence-Driven and Technological Innovations in the Diagnosis and Management of Substance Use Disorders. Int. Rev. Psychiatry 2024, 37, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Burgess-Hull, A.J.; Brooks, C.; Epstein, D.H.; Gandhi, D.; Oviedo, E. Using Machine Learning to Predict Treatment Adherence in Patients on Medication for Opioid Use Disorder. J. Addict. Med. 2022, 17, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Gaeta Gazzola, M.; Carmichael, I.D.; Madden, L.M.; Dasgupta, N.; Beitel, M.; Zheng, X.; Eggert, K.F.; Farnum, S.O.; Barry, D.T. A Cohort Study Examining the Relationship among Housing Status, Patient Characteristics, and Retention among Individuals Enrolled in Low-Barrier-to-Treatment-Access Methadone Maintenance Treatment. J. Subst. Abus. Treat. 2022, 138, 108753. [Google Scholar] [CrossRef] [PubMed]
- Damian, A.J.; Mendelson, T.; Agus, D. Predictors of Buprenorphine Treatment Success of Opioid Dependence in Two Baltimore City Grassroots Recovery Programs. Addict. Behav. 2017, 73, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Strang, J. Medication Treatment of Opioid Use Disorder. Biol. Psychiatry 2020, 87, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Kampman, K.; Jarvis, M. American Society of Addiction Medicine (ASAM) National Practice Guideline for the Use of Medications in the Treatment of Addiction Involving Opioid Use. J. Addict. Med. 2015, 9, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, N.; Dromgoole, D.; Hussein, A.; Jermyn, R. Review of Medication-Assisted Treatment for Opioid Use Disorder. J. Osteopath. Med. 2022, 122, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Hadland, S.E.; Hadland, S.E.; Bagley, S.M.; Rodean, J.; Silverstein, M.; Levy, S.; Larochelle, M.R.; Larochelle, M.R.; Samet, J.H.; Samet, J.H.; et al. Receipt of Timely Addiction Treatment and Association of Early Medication Treatment With Retention in Care Among Youths With Opioid Use Disorder. JAMA Pediatr. 2018, 172, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Koehl, J.L.; Zimmerman, D.E.; Bridgeman, P.J. Medications for Management of Opioid Use Disorder. Am. J. Health Syst. Pharm. 2019, 76, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Proctor, S.; Herschman, P. The Continuing Care Model of Substance Use Treatment: What Works, and When Is “Enough,” “Enough? ” Psychiatry J. 2014, 2014, 692423. [Google Scholar] [CrossRef] [PubMed]
- Lugo, R.; Satterfield, K.; Kern, S. Pharmacokinetics of Methadone. J. Pain Palliat. Care Pharmacother. 2005, 19, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Krantz, M.J.; Martin, J.; Stimmel, B.; Mehta, D.; Haigney, M.C. QTc interval screening in methadone treatment. Ann. Intern. Med. 2009, 150, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.R.; Schackman, B.R.; Leff, J.A.; Linas, B.P.; Walley, A.Y. Injectable naltrexone, oral naltrexone, and buprenorphine utilization and discontinuation among individuals treated for opioid use disorder in a United States commercially insured population. J. Subst. Abuse Treat. 2018, 85, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Marteau, D.; McDonald, R.; Patel, K. The relative risk of fatal poisoning by methadone or buprenorphine within the wider population of England and Wales. BMJ Open 2015, 5, e007629. [Google Scholar] [CrossRef] [PubMed]
- Kunøe, N.; Lobmaier, P.; Vederhus, J.K.; Hjerkinn, B.; Hegstad, S.; Gossop, M. Naltrexone implants after in-patient treatment for opioid dependence: Randomised controlled trial. Br. J. Psychiatry. 2009, 194, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Vorspan, F.; Marie-Claire, C.; Bellivier, F.; Bloch, V. Biomarkers to predict staging and treatment response in opioid dependence: A narrative review. Drug Dev. Res. 2021, 82, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhang, Y.; Xun, Y.; Yu, J.; Lu, Y.; Zhang, R.; Dang, W.; Zhu, F.; Zhang, J. Association between methylation in the promoter region of the GAD2 gene and opioid use disorder. Brain Res. 2023, 1812, 148407. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Y.; Xun, Y.; Tang, H.; Fu, X.; Zhang, R.; Zhu, F.; Zhang, J. Methylation and expression quantitative trait loci rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene are associated with opioid use disorder. Neurosci. Lett. 2023, 814, 137468. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.L.; Sprague, J.E. The dopamine 3 receptor as a candidate biomarker and therapeutic for opioid use disorder. Addict. Biol. 2024, 29, e13369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bright, D.; Langerveld, A.; DeVuyst-Miller, S.; Saadeh, C.; Choker, A.; Lehigh, E.; Wheeler, S.; Zayzafoon, A.; Sohn, M. Identification of a sex-stratified genetic algorithm for opioid addiction risk. Pharmacogenom. J. 2021, 21, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Freiermuth, C.E.; Kisor, D.F.; Lambert, J.; Braun, R.; Frey, J.A.; Bachmann, D.J.; Bischof, J.J.; Lyons, M.S.; Pantalon, M.V.; Punches, B.E.; et al. Genetic variants associated with opioid use disorder. Clin. Pharmacol. Ther. 2023, 113, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, C.; Zheng, L.; Ren, L.; Jin, T.; Yu, Z.; Tang, Y. Significant Association of the Catechol-O-Methyltransferase Gene Polymorphism (rs4680) and Opioid Use Disorder in Asian Populations, but not Caucasian Populations: A Meta-analysis. Genet. Test Mol. Biomark. 2022, 26, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.M.; Eum, S.; Desta, Z.; Tyndale, R.F.; Gaedigk, A.; Crist, R.C.; Haidar, C.E.; Myers, A.L.; Samer, C.F.; Somogyi, A.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2B6 Genotype and Methadone Therapy. Clin. Pharmacol. Ther. 2024, 116, 932–938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjeddou, M.; Peiró, A.M. Pharmacogenomics and prescription opioid use. Pharmacogenomics 2021, 22, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Palma-Álvarez, R.F.; Ros-Cucurull, E.; Amaro-Hosey, K.; Rodriguez-Cintas, L.; Grau-López, L.; Corominas-Roso, M.; Sánchez-Mora, C.; Roncero, C. Peripheral levels of BDNF and opiate-use disorder: Literature review and update. Rev. Neurosci. 2017, 28, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.R.; Nunes, E.V.; Bisaga, A.; Pincus, H.A.; Johnson, K.A.; Campbell, A.N.; Remien, R.H.; Crystal, S.; Friedmann, P.D.; Levin, F.R.; et al. Developing an opioid use disorder treatment cascade: A review of quality measures. J. Subst. Abus. Treat. 2018, 91, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, D.; Ohlsson, H.; Edwards, A.C.; Sundquist, J.; Håkansson, A.; Sundquist, K. Socioeconomic correlates of incident and fatal opioid overdose among Swedish people with opioid use disorder. Subst. Abus. Treat. Prev. Policy 2021, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, M.B.; Anvari, M.S.; Seitz-Brown, C.J.; Bradley, V.D.; Tralka, H.; Felton, J.W.; Belcher, A.M.; Greenblatt, A.D.; Magidson, J.F. Psychosocial challenges affecting patient-defined medication for opioid use disorder treatment outcomes in a low-income, underserved population: Application of the social-ecological framework. J. Subst. Use Addict. Treat. 2023, 149, 209046. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.R. Risk factors for opioid-use disorder and overdose. Anesth. Analg. 2017, 125, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Leighton, C.; Chen, Y.; Jones, J.; Mistry, P. Predicting opioid use disorder and associated risk factors in a Medicaid managed care population. Am. J. Manag. Care 2021, 27, 148–154. [Google Scholar] [PubMed]
- Arsene, C.; Na, L.; Patel, P.; Vaidya, V.; Williamson, A.A.; Singh, S. The importance of social risk factors for patients diagnosed with opioid use disorder. J. Am. Pharm. Assoc. 2023, 63, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Lyden, J.; Binswanger, I.A. The united states opioid epidemic. Semin. Perinatol. 2019, 43, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Esguerra, A.; Weinandy, T.J. Factors predicting access to medications for opioid use disorder for housed and unhoused patients: A machine learning approach. PLoS ONE 2024, 19, e0308791. [Google Scholar] [CrossRef] [PubMed]
- Ezell, J.M.; Pho, M.T.; Ajayi, B.P.; Simek, E.; Shetty, N.; Goddard-Eckrich, D.A.; Bluthenthal, R.N. Opioid use, prescribing and fatal overdose patterns among racial/ethnic minorities in the United States: A scoping review and conceptual risk environment model. Drug Alcohol Rev. 2024, 43, 1143–1159. [Google Scholar] [CrossRef] [PubMed]
- Tiako, M.J.N. Addressing racial & socioeconomic disparities in access to medications for opioid use disorder amid COVID-19. J. Subst. Abus. Treat. 2020, 122, 108214. [Google Scholar]
- Stahler, G.J.; Mennis, J.; Baron, D.A. Racial/ethnic disparities in the use of medications for opioid use disorder (MOUD) and their effects on residential drug treatment outcomes in the US. Drug Alcohol Depend. 2021, 226, 108849. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, Z.M.; Kim, H.W.; Cheng, D.M.; Quinn, E.; Hui, D.; Labelle, C.T.; Drainoni, M.-L.; Bachman, S.S.; Samet, J.H. Long-term retention in office based opioid treatment with buprenorphine. J. Subst. Abus. Treat. 2017, 74, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Shah-Mohammadi, F.; Finkelstein, J. Identification of Subphenotypes of Opioid Use Disorder Using Unsupervised Machine Learning. In Caring Is Sharing–Exploiting the Value in Data for Health and Innovation; IOS Press: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Ali, M.M.; Cutler, E.; Mutter, R.; Henke, R.M.; O’Brien, P.L.; Pines, J.M.; Mazer-Amirshahi, M.; Diou-Cass, J. Opioid use disorder and prescribed opioid regimens: Evidence from commercial and Medicaid claims, 2005–2015. J. Med. Toxicol. 2019, 15, 156–168. [Google Scholar] [CrossRef] [PubMed]
- McCabe, S.E.; West, B.T.; Veliz, P.; McCabe, V.V.; Stoddard, S.A.; Boyd, C.J. Trends in medical and nonmedical use of prescription opioids among US adolescents: 1976–2015. Pediatrics 2017, 139, e20162387. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.A.; Powell, V.D.; Macleod, C.; Bohnert, A.S.; Lagisetty, P. Factors associated with clinician treatment recommendations for patients with a new diagnosis of opioid use disorder. J. Subst. Abus. Treat. 2022, 141, 108827. [Google Scholar] [CrossRef] [PubMed]
- Huhn, A.S.; Berry, M.S.; Dunn, K.E. Systematic review of sex-based differences in opioid-based effects. Int. Rev. Psychiatry 2018, 30, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Volkow, N.D. Management of opioid use disorder in the USA: Present status and future directions. Lancet 2019, 393, 1760–1772. [Google Scholar] [CrossRef] [PubMed]
- Stafford, C.; Marrero, W.J.; Naumann, R.B.; Lich, K.H.; Wakeman, S.; Jalali, M.S. Identifying key risk factors for premature discontinuation of opioid use disorder treatment in the United States: A predictive modeling study. Drug Alcohol Depend. 2022, 237, 109507. [Google Scholar] [CrossRef] [PubMed]
- Balawajder, E.F.; Ducharme, L.; Taylor, B.G.; Lamuda, P.A.; Kolak, M.; Friedmann, P.D.; Pollack, H.A.; Schneider, J.A. Factors associated with the availability of medications for opioid use disorder in US jails. JAMA Netw. Open 2024, 7, e2434704. [Google Scholar] [CrossRef] [PubMed]
- Mutter, R.; Spencer, D.; McPheeters, J. Factors associated with initial treatment choice, engagement, and discontinuation for patients with opioid use disorder. Psychiatr. Serv. 2022, 73, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Witte, T.H.; Jaiswal, J.; Mumba, M.N.; Mugoya, G.C. Stigma surrounding the use of medically assisted treatment for opioid use disorder. Subst. Use Misuse 2021, 56, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Lo-Ciganic, W.H.; Huang, J.L.; Zhang, H.H.; Weiss, J.C.; Wu, Y.; Kwoh, C.K.; Donohue, J.M.; Cochran, G.; Gordon, A.J.; Malone, D.C.; et al. Evaluation of machine-learning algorithms for predicting opioid overdose risk among medicare beneficiaries with opioid prescriptions. JAMA Netw. Open 2019, 2, e190968. [Google Scholar] [CrossRef] [PubMed]
- Wadekar, A.S. Understanding opioid use disorder (OUD) using tree-based classifiers. Drug Alcohol Depend. 2020, 208, 107839. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Hemmati, M.; Ramesh, R.; Razzaghi, T. Artificial Intelligence and Machine Learning in Precision Health: An Overview of Methods, Challenges, and Future Directions. In Dynamics of Disasters; Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Pickl, S.W., Vogiatzis, C., Eds.; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2024; Volume 217. [Google Scholar] [CrossRef]
- Ajayi, R. AI-powered innovations for managing complex mental health conditions and addiction treatments. Int. Res. J. Mod. Eng. Technol. Sci. 2025, 7. [Google Scholar] [CrossRef]
- Miranda, O.; Fan, P.; Qi, X.; Wang, H.; Brannock, M.D.; Kosten, T.R.; Ryan, N.D.; Kirisci, L.; Wang, L. DeepBiomarker2: Prediction of Alcohol and Substance Use Disorder Risk in Post-Traumatic Stress Disorder Patients Using Electronic Medical Records and Multiple Social Determinants of Health. J. Pers. Med. 2024, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Suva, M.; Bhatia, G. Artificial Intelligence in Addiction: Challenges and Opportunities. Indian. J. Psychol. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yang, K.; Lu, A.; Mackie, K.; Guo, F. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Cyborg. Bionic. Syst. 2024, 5, 0160. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.B.; Papassotiropoulos, A.; Brühl, A.B.; Lang, U.E.; Huber, C.G. Psychiatry in the Digital Age: A Blessing or a Curse? Int. J. Environ. Res. Public Health 2021, 18, 8302. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.N.; Jinwala, Z.; Hatoum, A.S.; Toikumo, S.; Agrawal, A.; Rentsch, C.T.; Edenberg, H.J.; Baurley, J.W.; Hartwell, E.E.; Crist, R.C.; et al. Utility of Candidate Genes From an Algorithm Designed to Predict Genetic Risk for Opioid Use Disorder. JAMA Netw. Open 2025, 8, e2453913. [Google Scholar] [CrossRef] [PubMed]
Medication | Mechanism of Action | Formulation | Key Benefits | Limitations |
---|---|---|---|---|
Methadone | Full μ-opioid agonist | Oral | Reduces cravings, effective in long-term retention | QT prolongation risk |
Buprenorphine | Partial μ-opioid agonist | Sublingual, tablet, long-acting injection | Lower overdose risk, office-based prescribing | Risk of diversion, concern for precipitated withdrawals. |
Buprenorphine + Naloxone | Partial μ-agonist + antagonist | Sublingual film/tablet | Lower misuse potential, take-home flexibility | Risk of precipitated withdrawal |
Naltrexone | Opioid antagonist (μ-receptor blocker) | Oral or extended-release injection | No abuse potential, suitable for detoxified patients | Requires being off opioids for 7–10 days, risk of non-adherence |
Biomarker | Implications of OUD |
---|---|
GAD2 (hypermethylation) | Associated with synaptic plasticity; hypermethylation reduces expression |
OPRM1 (in μ-opioid receptor gene) | Hypermethylation may inhibit gene expression; linked to OUD |
D3R (dopamine receptor 3) | Variants rs324029 and rs2654754 increase OUD risk |
COMT rs4680 (Asian populations) | Increased susceptibility in Asians, not in Caucasians |
ABCB1 SNP 1236 C>T (methadone dose adjustment) | Genotype affects methadone dose requirement |
CYP2B6 (methadone metabolism) | Lower dose requirement in Jewish vs. Caucasian populations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alag, P.; Szafoni, S.; Ji, M.X.; Macionga, A.A.; Nazir, S.; Więckiewicz, G. Tailored Therapies in Addiction Medicine: Redefining Opioid Use Disorder Treatment with Precision Medicine. J. Pers. Med. 2025, 15, 328. https://doi.org/10.3390/jpm15080328
Alag P, Szafoni S, Ji MX, Macionga AA, Nazir S, Więckiewicz G. Tailored Therapies in Addiction Medicine: Redefining Opioid Use Disorder Treatment with Precision Medicine. Journal of Personalized Medicine. 2025; 15(8):328. https://doi.org/10.3390/jpm15080328
Chicago/Turabian StyleAlag, Poorvanshi, Sandra Szafoni, Michael Xincheng Ji, Agata Aleksandra Macionga, Saad Nazir, and Gniewko Więckiewicz. 2025. "Tailored Therapies in Addiction Medicine: Redefining Opioid Use Disorder Treatment with Precision Medicine" Journal of Personalized Medicine 15, no. 8: 328. https://doi.org/10.3390/jpm15080328
APA StyleAlag, P., Szafoni, S., Ji, M. X., Macionga, A. A., Nazir, S., & Więckiewicz, G. (2025). Tailored Therapies in Addiction Medicine: Redefining Opioid Use Disorder Treatment with Precision Medicine. Journal of Personalized Medicine, 15(8), 328. https://doi.org/10.3390/jpm15080328