Shoulder and Scapular Function Before and After a Scapular Therapeutic Exercise Program for Chronic Shoulder Pain and Scapular Dyskinesis: A Pre–Post Single-Group Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Measures
2.4. Data Collection Protocol
2.5. Intervention
2.6. Data Processing
2.7. Statistical Analysis
3. Results
3.1. Self-Reported Outcomes: Shoulder Pain and Function, Psychosocial Parameters, and Self-Impression of Change
3.2. Performance-Based Outcomes: Scapular Kinematics, Electromyographic, and Muscle Stiffness Outcomes
4. Discussion
4.1. Self-Reported Outcomes
4.2. Scapular Kinematics, Electromyographic, and Muscle Stiffness Outcomes
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
Ab/Ad | Abduction/adduction |
CI | Confidence interval |
El/Dep | Elevation/depression |
EMG | Electromyography |
ICC | Intraclass correlation coefficient |
IQR | Interquartile range |
LT | Lower trapezius |
LS | Levator scapulae |
M0 | Baseline assessment moment |
M1 | Assessment moment one week after the conclusion of the intervention |
MCID | Minimal clinically important difference |
MDC | Minimal detectable change |
MDC95% | Minimal detectable change with a 95% confidence interval |
MT | Middle trapezius |
SA | Serratus anterior |
SAlow | Serratus anterior lower portion |
SAup/mid | Serratus anterior upper/middle portion |
SD | Standard deviation |
SEM | Standard error of measurement |
STh motion | Scapulothoracic motion |
S-value | Statistical value |
Trunk Ax. Rotation | Trunk axial rotation |
Trunk Fw. Flexion | Trunk forward flexion |
Trunk Lat. Flexion | Trunk lateral flexion |
UT | Upper trapezius |
Ur/Dr | Upward rotation/downward rotation |
Appendix A
Scapular Test | Tests’ Steps | Results | Intra-Rater Reliability | |
---|---|---|---|---|
Pectoralis minor length measurement |
| Short: values < 7.44 [90] | Intra-rater ICC from 0.82 to 0.95 [91,92] | |
LS length measurement |
| Short: values ≤ 6.9 [93] | Intra-rater ICC from 0.94 to 0.98 [32,94] | |
Upper trapezius length |
| Short: further motion after elevating the same-side shoulder [33] | Intra-rater test–retest agreement of κ = 0.72 [33] (data only available for asymptomatic subjects) | |
Scapular dyskinesis classification test |
| Intra-rater reliability of κ = 0.49–0.59 [95] | ||
Scapular symptom modification tests | Scapular assistance test |
| Positive: symptoms diminished/relieved [96] | Intra-rater ICC from 0.98 to 0.99 [97] |
Scapular reposition test |
| Positive: pain reduction or increased shoulder elevation strength [34] | Intra-rater reliability of κ = 0.43 [98] |
Exercise | |||||
---|---|---|---|---|---|
Type | Name | Position | Description | ||
Preparatory exercise | Diaphragmatic breathing | Initial position:
Movement:
| |||
Core activation | → | Initial position:
Movement:
| |||
Warm-up exercise | Shoulder circumduction | → | Initial position:
Movement:
|
Interv. Phase | Exercise | |||||
---|---|---|---|---|---|---|
Name | Initial Position Without Resistance | Final Position Without Resistance | Initial Position with Resistance | Final Position with Resistance | Muscles Worked * | |
1st | Lawnmower |
|
|
| Movement:
|
|
Robbery |
|
|
|
| ||
1st | Shoulder external rotation with squeeze |
|
|
|
| MT, LT, and SA [60] |
Shoulder external rotation at 0° with scapular squeeze and trunk ipsilateral rotation |
|
|
|
| LT and SA [61] | |
1st | Sliding a box task | - | - |
|
| - |
2nd | Diagonal flex-abd-ext.rot (D2F) |
|
|
|
| LT, SA, and UT [62] |
2nd | Bilateral elevation with shoulder external rotation |
|
|
|
| MT, LS, and LT [63] |
Shoulder external at 90° with scapular squeeze and trunk ipsilateral rotation without support |
|
|
|
| MT, LT, and SA [61] | |
2nd | Prone scapular plane abduction |
|
|
|
| LT and SA [64] |
Overhead height task | - | - |
|
| - |
Exercise | |||
---|---|---|---|
Name | Position | Description | |
Anterior View | Posterior View | ||
Pectoralis minor stretching | Initial position [99]:
Movement [99]:
| ||
Upper trapezius and levator scapulae stretching | Initial position [67,68]:
Movement [67,68]:
| ||
Posterior shoulder stretching | Initial position [69]:
Movement [69]:
|
References
- Gordon, C.M.; Andrasik, F.; Schleip, R.; Birbaumer, N.; Rea, M. Myofascial triggerpoint release (MTR) for treating chronic shoulder pain: A novel approach. J. Bodyw. Mov. Ther. 2016, 20, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Luime, J.J.; Koes, B.W.; Hendriksen, I.J.; Burdorf, A.; Verhagen, A.P.; Miedema, H.S.; Verhaar, J.A. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand. J. Rheumatol. 2004, 33, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, A.; Kibler, W.B. Current Views of Scapular Dyskinesis and its Possible Clinical Relevance. Int. J. Sports Phys. Ther. 2022, 17, 117–130. [Google Scholar] [CrossRef]
- Kapandji, I.A. The Physiology of the Joints: The Upper Limb; Churchill Livingstone: London, UK, 2007. [Google Scholar]
- Lomond, K.V.; Cote, J.N. Movement timing and reach to reach variability during a repetitive reaching task in persons with chronic neck/shoulder pain and healthy subjects. Exp. Brain Res. 2010, 206, 271–282. [Google Scholar] [CrossRef]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Cools, A. Superficial and Deep Scapulothoracic Muscle Electromyographic Activity During Elevation Exercises in the Scapular Plane. J. Orthop. Sports Phys. Ther. 2016, 46, 184–193. [Google Scholar] [CrossRef]
- Lefèvre-Colau, M.M.; Nguyen, C.; Palazzo, C.; Srour, F.; Paris, G.; Vuillemin, V.; Poiraudeau, S.; Roby-Brami, A.; Roren, A. Kinematic patterns in normal and degenerative shoulders. Part II: Review of 3-D scapular kinematic patterns in patients with shoulder pain, and clinical implications. Ann. Phys. Rehabil. Med. 2018, 61, 46–53. [Google Scholar] [CrossRef]
- Cole, A.K.; McGrath, M.L.; Harrington, S.E.; Padua, D.A.; Rucinski, T.J.; Prentice, W.E. Scapular bracing and alteration of posture and muscle activity in overhead athletes with poor posture. J. Athl. Train. 2013, 48, 12–24. [Google Scholar] [CrossRef]
- Burn, M.B.; McCulloch, P.C.; Lintner, D.M.; Liberman, S.R.; Harris, J.D. Prevalence of scapular dyskinesis in overhead and nonoverhead athletes: A systematic review. Orthop. J. Sports Med. 2016, 4, 2325967115627608. [Google Scholar] [CrossRef]
- Kara, D.; Harput, G.; Duzgun, I. Trapezius muscle activation levels and ratios during scapular retraction exercises: A comparative study between patients with subacromial impingement syndrome and healthy controls. Clin. Biomech. 2019, 67, 119–126. [Google Scholar] [CrossRef]
- Kinsella, R.; Pizzari, T. Electromyographic activity of the shoulder muscles during rehabilitation exercises in subjects with and without subacromial pain syndrome: A systematic review. Shoulder Elb. 2017, 9, 112–126. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Reynolds, J.F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 2009, 39, 90–104. [Google Scholar] [CrossRef] [PubMed]
- McQuade, K.J.; Borstad, J.; de Oliveira, A.S. Critical and Theoretical Perspective on Scapular Stabilization: What Does It Really Mean, and Are We on the Right Track? Phys. Ther. 2016, 96, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Chen, K.; Ma, Y.; Huang, L.; Liang, J.; Ma, Y. Scapular stabilization exercise based on the type of scapular dyskinesis versus traditional rehabilitation training in the treatment of periarthritis of the shoulder: Study protocol for a randomized controlled trial. Trials 2021, 22, 713. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Carnevale, A.; Massaroni, C.; Lo Presti, D.; Berton, A.; Candela, V.; Schena, E.; Denaro, V. Personalized, predictive, participatory, precision, and preventive (P5) medicine in rotator cuff tears. J. Pers. Med. 2021, 11, 255. [Google Scholar] [CrossRef]
- Powell, J.K.; Lewis, J.S. Rotator Cuff-Related Shoulder Pain: Is It Time to Reframe the Advice, “You Need to Strengthen Your Shoulder”? J. Orthop. Sports Phys. Ther. 2021, 51, 156–158. [Google Scholar] [CrossRef]
- Pieters, L.; Lewis, J.; Kuppens, K.; Jochems, J.; Bruijstens, T.; Joossens, L.; Struyf, F. An Update of Systematic Reviews Examining the Effectiveness of Conservative Physical Therapy Interventions for Subacromial Shoulder Pain. J. Orthop. Sports Phys. Ther. 2020, 50, 131–141. [Google Scholar] [CrossRef]
- Fuentes, C.J.; Armijo-Olivo, S.; Magee, D.J.; Gross, D.P. Effects of exercise therapy on endogenous pain-relieving peptides in musculoskeletal pain: A systematic review. Clin. J. Pain 2011, 27, 365–374. [Google Scholar] [CrossRef]
- Deodato, M.; Martini, M.; Buoite Stella, A.; Citroni, G.; Ajčević, M.; Accardo, A.; Murena, L. Inertial Sensors and Pressure Pain Threshold to Evaluate People with Primary Adhesive Capsulitis: Comparison with Healthy Controls and Effects of a Physiotherapy Protocol. J. Funct. Morphol. Kinesiol. 2023, 8, 142. [Google Scholar] [CrossRef]
- Struyf, F.; Lluch, E.; Falla, D.; Meeus, M.; Noten, S.; Nijs, J. Influence of shoulder pain on muscle function: Implications for the assessment and therapy of shoulder disorders. Eur. J. Appl. Physiol. 2015, 115, 225–234. [Google Scholar] [CrossRef]
- Başkurt, Z.; Başkurt, F.; Gelecek, N.; Özkan, M.H. The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. J. Back Musculoskelet. Rehabil. 2011, 24, 173–179. [Google Scholar] [CrossRef]
- Castelein, B.; Cagnie, B.; Cools, A. Scapular muscle dysfunction associated with subacromial pain syndrome. J. Hand Ther. 2017, 30, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Moraes, G.F.; Faria, C.D.; Teixeira-Salmela, L.F. Scapular muscle recruitment patterns and isokinetic strength ratios of the shoulder rotator muscles in individuals with and without impingement syndrome. J. Shoulder Elb. Surg. 2008, 17, 48s–53s. [Google Scholar] [CrossRef] [PubMed]
- Phadke, V.; Camargo, P.; Ludewig, P. Scapular and rotator cuff muscle activity during arm elevation: A review of normal function and alterations with shoulder impingement. Braz. J. Phys. Ther. 2009, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Calderon, J.; Struyf, F.; Meeus, M.; Morales-Ascencio, J.M.; Luque-Suarez, A. Influence of psychological factors on the prognosis of chronic shoulder pain: Protocol for a prospective cohort study. BMJ Open 2017, 7, e012822. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef]
- Melo, A.S.; Guedes, D.C.; Matias, R.; Cruz, E.B.; Vilas-Boas, J.P.; Sousa, A.S.P. Scapular Motor Control and Upper Limb Movement Quality in Subjects with and without Chronic Shoulder Pain: A Cross-Sectional Study. Appl. Sci. 2024, 14, 3291. [Google Scholar] [CrossRef]
- Melo, A.S.; Montóia, B.; Cruz, E.B.; Vilas-Boas, J.P.; Sousa, A.S. Scapular muscle dynamic stiffness of asymptomatic subjects and subjects with chronic shoulder pain, at rest and isometric contraction conditions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2024, 238, 288–300. [Google Scholar] [CrossRef]
- Muir, S.W.; Corea, C.L.; Beaupre, L. Evaluating change in clinical status: Reliability and measures of agreement for the assessment of glenohumeral range of motion. N. Am. J. Sports Phys. Ther. 2010, 5, 98–110. [Google Scholar]
- Norkin, C.C.; White, D.J. Measurement of Joint Motion: A Guide to Goniometry; FA Davis: Philadelphia, PA, USA, 2016. [Google Scholar]
- Struyf, F.; Nijs, J.; Mottram, S.; Roussel, N.A.; Cools, A.M.; Meeusen, R. Clinical assessment of the scapula: A review of the literature. Br. J. Sports Med. 2014, 48, 883–890. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Fernandez-Sanchez, M.; Struyf, F.; Martinez-Calderon, J.; Miguel Morales-Asencio, J.; Luque-Suarez, A. Differences in scapular upward rotation, pectoralis minor and levator scapulae muscle length between the symptomatic, the contralateral asymptomatic shoulder and control subjects: A cross-sectional study in a Spanish primary care setting. BMJ Open 2019, 9, e023020. [Google Scholar] [CrossRef]
- Yeşilyaprak, S.S.; Yüksel, E.; Kalkan, S. Influence of pectoralis minor and upper trapezius lengths on observable scapular dyskinesis. Phys. Ther. Sport 2016, 19, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pluim, B.M. Scapular dyskinesis: Practical applications. Br. J. Sports Med. 2013, 47, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Kamonseki, D.; Haik, M.; Ribeiro, L.; Almeida, R.; Almeida, L.; Fonseca, C.; Camargo, P. Measurement properties of the Brazilian versions of Fear-Avoidance Beliefs Questionnaire and Tampa Scale of Kinesiophobia in individuals with shoulder pain. PLoS ONE 2021, 16, e0260452. [Google Scholar] [CrossRef]
- Michener, L.A.; Snyder, A.R.; Leggin, B.G. Responsiveness of the numeric pain rating scale in patients with shoulder pain and the effect of surgical status. J. Sport Rehabil. 2011, 20, 115–128. [Google Scholar] [CrossRef]
- Duarte, A. Validação Intercultural do Shoulder Pain and Disability Index—SPADI; Monography; Escola Superior de Tecnologia da Saúde de Coimbra: Coimbra, Portugal, 2002. [Google Scholar]
- Leal, S. Constant Score e Shoulder Pain and Disability Index (SPADI)—Adaptação Cultural e Linguística; Monography; Escola Superior de Tecnologia da Saúde de Coimbra: Coimbra, Portugal, 2001. [Google Scholar]
- Schmitt, J.S.; Di Fabio, R.P. Reliable change and minimum important difference (MID) proportions facilitated group responsiveness comparisons using individual threshold criteria. J. Clin. Epidemiol. 2004, 57, 1008–1018. [Google Scholar] [CrossRef]
- Kocur, P.; Tomczak, M.; Wiernicka, M.; Goliwąs, M.; Lewandowski, J.; Łochyński, D. Relationship between age, BMI, head posture and superficial neck muscle stiffness and elasticity in adult women. Sci. Rep. 2019, 9, 8515. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Ekstrom, R.A.; Soderberg, G.L.; Donatelli, R.A. Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J. Electromyogr. Kinesiol. 2005, 15, 418–428. [Google Scholar] [CrossRef]
- Kisilewicz, A.; Janusiak, M.; Szafraniec, R.; Smoter, M.; Ciszek, B.; Madeleine, P.; Fernández-de-Las-Peñas, C.; Kawczyński, A. Changes in Muscle Stiffness of the Trapezius Muscle After Application of Ischemic Compression into Myofascial Trigger Points in Professional Basketball Players. J. Hum. Kinet. 2018, 64, 35–45. [Google Scholar] [CrossRef]
- Ekstrom, R.A.; Bifulco, K.M.; Lopau, C.J.; Andersen, C.F.; Gough, J.R. Comparing the function of the upper and lower parts of the serratus anterior muscle using surface electromyography. J. Orthop. Sports Phys. Ther. 2004, 34, 235–243. [Google Scholar] [CrossRef]
- Alizadeh, M.; Knapik, G.G.; Marras, W.S. Application of MR-derived cross-sectional guideline of cervical spine muscles to validate neck surface electromyography placement. J. Electromyogr. Kinesiol. 2018, 43, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Danneels, L.; Cools, A. Optimal Normalization Tests for Muscle Activation of the Levator Scapulae, Pectoralis Minor, and Rhomboid Major: An Electromyography Study Using Maximum Voluntary Isometric Contractions. Arch. Phys. Med. Rehabil. 2015, 96, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.A.; Murphy, S.; Persson, H.C.; Bergström, U.-B.; Sunnerhagen, K. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People With and Without Upper-extremity Impairments. J. Vis. Exp. 2018, 133, 57228. [Google Scholar] [CrossRef]
- Mesquita, I.A.; da Fonseca, P.F.P.; Borgonovo-Santos, M.; Ribeiro, E.; Pinheiro, A.R.V.; Correia, M.V.; Silva, C. Comparison of upper limb kinematics in two activities of daily living with different handling requirements. Hum. Mov. Sci. 2020, 72, 102632. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Seth, A.; Matias, R.; Veloso, A.P.; Delp, S.L. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements. PLoS ONE 2016, 11, e0141028. [Google Scholar] [CrossRef]
- Lim, J.; Lu, L.; Goonewardena, K.; Liu, J.Z.; Tan, Y. Assessment of Self-report, Palpation, and Surface Electromyography Dataset During Isometric Muscle Contraction. Sci. Data 2024, 11, 208. [Google Scholar] [CrossRef]
- Cordeiro, N.; Pezarat-Correia, P.; Gil, J.; Cabri, J. Portuguese Language Version of the Tampa Scale for Kinesiophobia [13 Items]. J. Musculoskelet. Pain 2013, 21, 58–63. [Google Scholar] [CrossRef]
- Dupuis, F.; Cherif, A.; Batcho, C.; Massé-Alarie, H.; Roy, J.S. The Tampa Scale of Kinesiophobia: A Systematic Review of Its Psychometric Properties in People With Musculoskeletal Pain. Clin. J. Pain 2023, 39, 236–247. [Google Scholar] [CrossRef]
- Agualusa, L.; Lopes, J.; Patto, T.; Serra, S. Questionários sobre Dor Crónica. Rev. DOR 2007, 15, 27–33. [Google Scholar]
- Louw, A.; Puentedura, E.J.; Reese, D.; Parker, P.; Miller, T.; Mintken, P.E. Immediate Effects of Mirror Therapy in Patients With Shoulder Pain and Decreased Range of Motion. Arch. Phys. Med. Rehabil. 2017, 98, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- Domingues, L.; Cruz, E. Adaptação Cultural e Contributo para a Validação da Escala Patient Global Impression of Change. Ifisionline 2011, 2, 31–37. [Google Scholar]
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Yamashiro, K.; Paulos, L.; Andrews, J.R. Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med. 2009, 39, 663–685. [Google Scholar] [CrossRef]
- Kibler, W.B.; Sciascia, A.D.; Uhl, T.L.; Tambay, N.; Cunningham, T. Electromyographic analysis of specific exercises for scapular control in early phases of shoulder rehabilitation. Am. J. Sports Med. 2008, 36, 1789–1798. [Google Scholar] [CrossRef]
- Moeller, C.R.; Bliven, K.C.; Valier, A.R. Scapular muscle-activation ratios in patients with shoulder injuries during functional shoulder exercises. J. Athl. Train. 2014, 49, 345–355. [Google Scholar] [CrossRef]
- Melo, A.S.; Vilas-Boas, J.P.; Cruz, E.B.; Macedo, R.M.; SB, E.F.; Sousa, A.S. The influence of shoulder position during multi-joint exercises in the relative scapular muscles activity in symptomatic and asymptomatic conditions. J. Back Musculoskelet. Rehabil. 2023, 36, 883–893. [Google Scholar] [CrossRef]
- Park, S.Y.; Park, D.J. Comparison of muscular activities between subjects with and without scapular downward rotation impairment during diagonal pattern of exercises. J. Bodyw. Mov. Ther. 2019, 23, 59–64. [Google Scholar] [CrossRef]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Cools, A. Scapulothoracic muscle activity during elevation exercises measured with surface and fine wire EMG: A comparative study between patients with subacromial impingement syndrome and healthy controls. Man. Ther. 2016, 23, 33–39. [Google Scholar] [CrossRef]
- Staker, J.L.; Evans, A.J.; Jacobs, L.E.; Ebert, T.P.; Fessler, N.A.; Saini, G.; Ludewig, P.M. The effect of tactile and verbal guidance during scapulothoracic exercises: An EMG and kinematic investigation. J. Electromyogr. Kinesiol. 2022, 62, 102334. [Google Scholar] [CrossRef]
- Lin, J.-j.; Hanten, W.P.; Olson, S.L.; Roddey, T.S.; Soto-quijano, D.A.; Lim, H.K.; Sherwood, A.M. Functional activity characteristics of individuals with shoulder dysfunctions. J. Electromyogr. Kinesiol. 2005, 15, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.P.; Borstad, J.D.; Pogetti, L.S.; Camargo, P.R. Effects of a stretching protocol for the pectoralis minor on muscle length, function, and scapular kinematics in individuals with and without shoulder pain. J. Hand Ther. 2017, 30, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Gillani, S.N.; Ain, Q.; Rehman, S.U.; Masood, T. Effects of eccentric muscle energy technique versus static stretching exercises in the management of cervical dysfunction in upper cross syndrome: A randomized control trial. J. Pak. Med. Assoc. 2020, 70, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Camargo, P.R.; Haik, M.N.; Ludewig, P.M.; Filho, R.B.; Mattiello-Rosa, S.M.; Salvini, T.F. Effects of strengthening and stretching exercises applied during working hours on pain and physical impairment in workers with subacromial impingement syndrome. Physiother. Theory Pract. 2009, 25, 463–475. [Google Scholar] [CrossRef]
- Turgut, E.; Duzgun, I.; Baltaci, G. Effects of Scapular Stabilization Exercise Training on Scapular Kinematics, Disability, and Pain in Subacromial Impingement: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 1915–1923. [Google Scholar] [CrossRef]
- Thies, S.B.; Tresadern, P.A.; Kenney, L.P.; Smith, J.; Howard, D.; Goulermas, J.Y.; Smith, C.; Rigby, J. Movement variability in stroke patients and controls performing two upper limb functional tasks: A new assessment methodology. J. Neuroeng. Rehabil. 2009, 6, 2. [Google Scholar] [CrossRef]
- Chang, J.J.; Tung, W.L.; Wu, W.L.; Huang, M.H.; Su, F.C. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1332–1338. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Melendez-Calderon, A.; Roby-Brami, A.; Burdet, E. On the analysis of movement smoothness. J. Neuroeng. Rehabil. 2015, 12, 112. [Google Scholar] [CrossRef]
- GitHub. Smoothness.py Code. Available online: https://github.com/siva82kb/SPARC/blob/master/scripts/smoothness.py (accessed on 25 January 2023).
- Sousa, A.S.P.; Silva, C.I.C.; Mesquita, I.A.; Silva, A.; Macedo, R.; Imatz-Ojanguren, E.; Hernandez, E.; Keller, T.; Moreira, J.; da Fonseca, P.F.P.; et al. Optimal multi-field functional electrical stimulation parameters for the “drinking task—Reaching phase” and related upper limb kinematics repeatability in post stroke subjects. J. Hand Ther. 2021, 35, 645–654. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A. CONSORT 2025 statement: Updated guideline for reporting randomised trials. Lancet 2025, 405, 1633–1640. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Stewart, R.E.; Köke, A.J.A.; Oosterwijk, R.F.A.; Swaan, J.L.; Schreurs, K.M.G.; Schiphorst Preuper, H.R. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing. Front. Psychol. 2016, 7, 1466. [Google Scholar] [CrossRef] [PubMed]
- Tran, G.; Dube, B.; Kingsbury, S.; Tennant, A.; Conaghan, P.; Hensor, E. Investigating the Patient Acceptable Symptom State cut-offs: Longitudinal data from a community cohort using the Shoulder Pain and Disability Index. Rheumatol. Int. 2019, 40, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Akgüller, T.; Akbaba, Y.A.; Taşkıran, H. The Effect of Scapular Proprioceptive Neuromuscular Facilitation Techniques on Pain and Functionality in Patients with Subacromial Impingement Syndrome: A Randomized Controlled Trial. Phys. Med. Rehabil. Kurortmed. 2022, 33, 149–161. [Google Scholar] [CrossRef]
- Hotta, G.H.; Gomes de Assis Couto, A.; Cools, A.M.; McQuade, K.J.; Siriani de Oliveira, A. Effects of adding scapular stabilization exercises to a periscapular strengthening exercise program in patients with subacromial pain syndrome: A randomized controlled trial. Musculoskelet. Sci. Pract. 2020, 49, 102171. [Google Scholar] [CrossRef]
- Tangrood, J.Z.; Gisselman, A.S.; Sole, G.; Ribeiro, D.C. Clinical course of pain and function in subacromial shoulder pain: A systematic review with meta-analysis. Phys. Ther. Rev. 2023, 28, 223–242. [Google Scholar] [CrossRef]
- Kamonseki, D.; Haik, M.; Ribeiro, L.; Almeida, R.; Camargo, P. Scapular movement training is not superior to standardized exercises in the treatment of individuals with chronic shoulder pain and scapular dyskinesis: Randomized controlled trial. Disabil. Rehabil. 2022, 45, 2925–2935. [Google Scholar] [CrossRef]
- Mulligan, E.P.; Huang, M.; Dickson, T.; Khazzam, M. The effect of axioscapular and rotator cuff exercise training sequence in patients with subacromial impingement syndrome: A randomized crossover trial. Int. J. Sports Phys. Ther. 2016, 11, 94–107. [Google Scholar]
- Sullivan, M.J.; Bishop, S.R.; Pivik, J. The pain catastrophizing scale: Development and validation. Psychol. Assess. 1995, 7, 524–532. [Google Scholar] [CrossRef]
- Chimenti, R.L.; Post, A.A.; Silbernagel, K.G.; Hadlandsmyth, K.; Sluka, K.A.; Moseley, G.L.; Rio, E. Kinesiophobia Severity Categories and Clinically Meaningful Symptom Change in Persons With Achilles Tendinopathy in a Cross-Sectional Study: Implications for Assessment and Willingness to Exercise. Front. Pain Res. 2021, 2, 739051. [Google Scholar] [CrossRef]
- George, S.Z.; Valencia, C.; Beneciuk, J.M. A psychometric investigation of fear-avoidance model measures in patients with chronic low back pain. J. Orthop. Sports Phys. Ther. 2010, 40, 197–205. [Google Scholar] [CrossRef]
- Hodgetts, C.; Walker, B. Epidemiology, common diagnoses, treatments and prognosis of shoulder pain: A narrative review. Int. J. Osteopath. Med. 2021, 42, 11–19. [Google Scholar] [CrossRef]
- Arzi, H.; Krasovsky, T.; Pritsch, M.; Liebermann, D.G. Movement control in patients with shoulder instability: A comparison between patients after open surgery and nonoperated patients. J. Shoulder Elb. Surg. 2014, 23, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Reijneveld, E.A.; Noten, S.; Michener, L.A.; Cools, A.; Struyf, F. Clinical outcomes of a scapular-focused treatment in patients with subacromial pain syndrome: A systematic review. Br. J. Sports Med. 2017, 51, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Harrold, M.E.; Cavalheri, V.; McKenna, L. Scapular focused interventions to improve shoulder pain and function in adults with subacromial pain: A systematic review and meta-analysis. Physiother. Theory Pract. 2018, 34, 653–670. [Google Scholar] [CrossRef]
- Borstad, J.D. Measurement of pectoralis minor muscle length: Validation and clinical application. J. Orthop. Sports Phys. Ther. 2008, 38, 169–174. [Google Scholar] [CrossRef]
- Rosa, D.P.; Borstad, J.D.; Pires, E.D.; Camargo, P.R. Reliability of measuring pectoralis minor muscle resting length in subjects with and without signs of shoulder impingement. Braz. J. Phys. Ther. 2016, 20, 176–183. [Google Scholar] [CrossRef]
- Struyf, F.; Meeus, M.; Fransen, E.; Roussel, N.; Jansen, N.; Truijen, S.; Nijs, J. Interrater and intrarater reliability of the pectoralis minor muscle length measurement in subjects with and without shoulder impingement symptoms. Man. Ther. 2014, 19, 294–298. [Google Scholar] [CrossRef]
- Jeong, H.-J.; Cynn, H.-S.; Yi, C.-H.; Yoon, J.-W.; Lee, J.-H.; Yoon, T.-L.; Kim, B.-B. Stretching position can affect levator scapular muscle activity, length, and cervical range of motion in people with a shortened levator scapulae. Phys. Ther. Sport 2017, 26, 13–19. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cynn, H.-S.; Choi, W.-J.; Jeong, H.-J.; Yoon, T.-L. Reliability of levator scapulae index in subjects with and without scapular downward rotation syndrome. Phys. Ther. Sport 2016, 19, 1–6. [Google Scholar] [CrossRef]
- Kibler, W.B.; Uhl, T.L.; Maddux, J.W.; Brooks, P.V.; Zeller, B.; McMullen, J. Qualitative clinical evaluation of scapular dysfunction: A reliability study. J. Shoulder Elb. Surg. 2002, 11, 550–556. [Google Scholar] [CrossRef]
- Kamonseki, D.; Haik, M.; Camargo, P. Scapular movement training versus standardized exercises for individuals with chronic shoulder pain: Protocol for a randomized controlled trial. Braz. J. Phys. Ther. 2021, 25, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Seitz, A.L.; McClure, P.W.; Finucane, S.; Ketchum, J.M.; Walsworth, M.K.; Boardman, N.D.; Michener, L.A. The scapular assistance test results in changes in scapular position and subacromial space but not rotator cuff strength in subacromial impingement. J. Orthop. Sports Phys. Ther. 2012, 42, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Matias, R.; Gallardo-Zamora, P.; Sanchez-Aguilera, C.L.; Mardones-Varela, H.; Gallego-Izquierdo, T.; Pecos-Martin, D. Reliability of the Scapula Reposition Test in Subjects with Rotator Cuff Tendinopathy and Scapular Dyskinesis. J. Clin. Med. 2019, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
Muscle | Muscle Stiffness Assessment Location | EMG Electrodes’ Location | SVIC Positioning |
---|---|---|---|
UT | Midpoint between the 7th cervical spinous process and the acromion angle [40]. | 2 cm laterally to the middle of the line connecting the 7th cervical spinous process and the posterior tip of the acromion [41]. | Seated, with shoulder at 90° abduction and neck in same-side inclination, opposite-side rotation and extension [42]. |
MT | Midpoint between the 4th thoracic spinous process and the medial border of the scapular spine [43]. | Midpoint between the scapular spine’s root and the 3rd thoracic spinous process [8]. | Prone, with shoulder in horizontal abduction and lateral rotation [42]. |
LT | Midpoint between the 6th thoracic spinous process and the medial border of the scapular spine [43]. | At 2/3 of the line connecting the scapular spine’s root and the 8th thoracic spinous process [41]. | Prone, with shoulder in abduction (obliquely at 135°) [42]. |
SAup/mid | Over the 4th rib, in the middle of the latissimus dorsi and the pectoralis major [44]. | Supine, with shoulder in flexion, adduction, and lateral rotation [44]. | |
SAlow | Over the 7th rib, in the middle of the axilla [44]. | Supine, with shoulder at 125° of forward flexion [44]. | |
LS | Midpoint between the sternocleidomastoid and the UT, at C4/C5 level [45]. | Prone, with shoulder in horizontal abduction and lateral rotation [46]. |
ICC | 95% CI | SEM | MDC95% | ||
---|---|---|---|---|---|
EMG data | UT (%) | 0.78 | [0.16; 0.94] | 3.83 | 10.60 |
MT (%) | 0.56 | [−1.48; 0.92] | 1.39 | 3.86 | |
LT (%) | 0.69 | [−0.06; 0.92] | 3.64 | 10.09 | |
SAup/mid (%) | 0.42 | [6.15; 0.97] | 4.14 | 11.46 | |
SAlow (%) | 0.89 | [0.55; 0.98] | 2.33 | 6.46 | |
LS (%) | 0.93 | [0.38; 0.99] | 0.75 | 2.08 | |
3D kinematic data | Scapular Ab/Ad (°) | 0.14 | [−2.97; 0.78] | 1.41 | 3.91 |
Scapular El/Dep (°) | 0.73 | [0.01; 0.92] | 0.36 | 0.99 | |
Scapular Ur/Dr (°) | 0.63 | [−0.19; 0.90] | 0.35 | 0.98 | |
Scapular Winging (°) | 0.66 | [−0.09; 0.90] | 0.23 | 0.63 | |
Scapulohumeral Rhythm | 0.38 | [−1.30; 0.83] | 0.40 | 1.11 | |
Movement quality data | Trunk Fw. Flexion (°) | 0.71 | [−0.21; 0.93] | 1.11 | 3.07 |
Trunk Ax. Rotation (°) | 0.35 | [−3.14; 0.87] | 2.74 | 7.60 | |
Trunk Lat. Flexion (°) | 0.74 | [−0.15; 0.94] | 0.65 | 1.81 | |
% Time to Peak Acceleration | 0.63 | [−0.50; 0.92] | 5.53 | 15.33 | |
Global Movement Smoothness | 0.76 | [−0.03; 0.94] | 0.11 | 0.30 |
Sample (n = 18) | |||
---|---|---|---|
Height (m) | (mean ± SD) | 1.66 ± 0.06 | |
Body mass (kg) | 63.50 ± 8.35 | ||
Body mass index (kg/m2) | 23.19 ± 2.94 | ||
Age (years) | 43.44 ± 13.93 | ||
Length of pectoralis minor (cm) | 9.35 ± 0.69 | ||
Length of levator scapulae (cm) | 8.89 ± 0.76 | ||
Sex | Female | [frequency (n)] | 89% (16) |
Male | 11% (2) | ||
Upper limb dominance | Right-handed | 89% (16) | |
Left-handed | 11% (2) | ||
Shoulder pain location | Dominant side | 44% (8) | |
Non-dominant side | 56% (10) | ||
Scapular dyskinesis type | Type II | 39% (n = 7) | |
Type III | 17% (n = 3) | ||
Type II + III | 44% (n = 8) | ||
Scapular modification tests | Negative tests | 61% (n = 11) | |
Positive scapular assistance test | 17% (n = 3) | ||
Positive scapular reposition test | 11% (n = 2) | ||
Positive scapular assistance test and scapular reposition test | 11% (n = 2) |
Outcome Domain | Outcome | Assessment Moment’s | Comparison Between M0 and M1 | ||||
---|---|---|---|---|---|---|---|
M0 | M1 | t/U | p | Effect Size | |||
Shoulder function | Shoulder Pain and Disability Index (SPADI) | (mean ± SD) | 31.72 ± 17.68 | 8.17 ± 6.18 | 6.091 | <0.0001 * | 1.44 |
Pain | Numeric rating scale | (median ± IQR) | 5.50 ± 3.00 | 1.00 ± 2.00 | 0.000 | <0.0001 * | - |
Psychosocial factors | Pain Catastrophizing Scale | 10.00 ± 9.75 | 1.50 ± 9.00 | 9.500 | 0.004 * | - | |
Tampa Scale for Kinesiophobia | 24.00 ± 6.00 | 20.50 ± 12.50 | 42.500 | 0.106 | - | ||
Muscle stiffness (N/m) | MT stiffness | (mean ± SD) | 452.48 ± 110.91 | 395.09 ± 80.02 | 2.732 | 0.014 * | 0.64 |
UT stiffness | 388.00 ± 83.89 | 390.98 ± 67.72 | −0.215 | 0.833 | −0.05 | ||
LT stiffness | 516.63 ± 127.41 | 504.00 ± 97.45 | 0.747 | 0.465 | 0.18 | ||
LS stiffness | (median ± IQR) | 223.17 ± 57.42 | 249.59 ± 74.00 | 113.000 | 0.231 | - | |
SAup/mid stiffness | 179.50 ± 43.33 | 187.83 ± 8067 | 110.500 | 0.276 | - | ||
SAlow stiffness | 182.83 ± 98.08 | 175.67 ± 95.33 | 83.000 | 0.758 | - |
Rest Before Drinking Task | Entire Drinking Task | |||||||
---|---|---|---|---|---|---|---|---|
(mean ± SD) | S-Value (t)/p-Value | Effect Size | (mean ± SD) | S-Value (t)/p-Value | Effect Size | |||
Scapulohumeral rhythm | M0 | 1.577 ± 0.51 | 0.315/0.757 | 0.072 | ||||
M1 | 1.545 ± 0.37 | |||||||
Movement Quality | Global movement smoothness | M0 | 2.164 ± 0.86 | −3.567/0.003 * | −0.865 | |||
M1 | 2.941 ± 0.23 | |||||||
Time to peak acceleration (%) | M0 | 54.055 ± 15.71 | 0.191/0.851 | 0.045 | ||||
M1 | 53.284 ± 10.26 | |||||||
Trunk Fw. Flexion (°) | M0 | 0.380 ± 0.44 | 1.228/0.240 | 0.317 | −6.847 ± 3.86 | 1.431/0.174 | 0.369 | |
M1 | 0.134 ± 0.54 | −8.407 ± 3.96 | ||||||
(median ± IQR) | S-value (U)/p-value | |||||||
Trunk Lat. Flexion (°) | M0 | 0.001 ± 0.42 | 0.139/0.891 | 0.036 | −0.138 ± 2.78 | 82.000/0.211 | ||
M1 | −0.020 ± 0.31 | 1.454 ± 5.02 | ||||||
(median ± IQR) | S-value (U)/p-value | |||||||
Trunk Ax. Rotation (°) | M0 | 0.003 ± 0.51 | 59.000/0.407 | 5.257 ± 4.92 | 59.000/0.683 | |||
M1 | −0.015 ± 0.37 | 5.125 ± 9.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, A.S.C.; Soares, A.L.; Castro, C.; Matias, R.; Cruz, E.B.; Vilas-Boas, J.P.; Sousa, A.S.P. Shoulder and Scapular Function Before and After a Scapular Therapeutic Exercise Program for Chronic Shoulder Pain and Scapular Dyskinesis: A Pre–Post Single-Group Study. J. Pers. Med. 2025, 15, 285. https://doi.org/10.3390/jpm15070285
Melo ASC, Soares AL, Castro C, Matias R, Cruz EB, Vilas-Boas JP, Sousa ASP. Shoulder and Scapular Function Before and After a Scapular Therapeutic Exercise Program for Chronic Shoulder Pain and Scapular Dyskinesis: A Pre–Post Single-Group Study. Journal of Personalized Medicine. 2025; 15(7):285. https://doi.org/10.3390/jpm15070285
Chicago/Turabian StyleMelo, Ana S. C., Ana L. Soares, Catarina Castro, Ricardo Matias, Eduardo B. Cruz, J. Paulo Vilas-Boas, and Andreia S. P. Sousa. 2025. "Shoulder and Scapular Function Before and After a Scapular Therapeutic Exercise Program for Chronic Shoulder Pain and Scapular Dyskinesis: A Pre–Post Single-Group Study" Journal of Personalized Medicine 15, no. 7: 285. https://doi.org/10.3390/jpm15070285
APA StyleMelo, A. S. C., Soares, A. L., Castro, C., Matias, R., Cruz, E. B., Vilas-Boas, J. P., & Sousa, A. S. P. (2025). Shoulder and Scapular Function Before and After a Scapular Therapeutic Exercise Program for Chronic Shoulder Pain and Scapular Dyskinesis: A Pre–Post Single-Group Study. Journal of Personalized Medicine, 15(7), 285. https://doi.org/10.3390/jpm15070285