The Insufficient Number of Informative SNPs in a Preclinical Karyomapping Test for PGT-M Depends on the Reference Selected
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Preclinical Test for Karyomapping
2.3. Karyomapping Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PGT-M | Preimplantation genetic testing for monogenic disorders |
PCR | Polymerase chain reaction |
SNP | Single-nucleotide polymorphism |
STR | Short tandem repeat |
ADO | Allelic dropout |
IVF | In vitro fertilization |
PGT-SR | Preimplantation genetic testing for structural rearrangements |
CMT | Charcot–Marie–Tooth disease |
DM1 | Myotonic dystrophy 1 |
References
- Poulton, A.; Menezes, M.; Hardy, T.; Lewis, S.; Hui, L. Clinical outcomes following preimplantation genetic testing for monogenic conditions: A systematic review of observational studies. Am. J. Obstet. Gynecol. 2024, 232, 150–163. [Google Scholar] [CrossRef]
- Hornak, M.; Bezdekova, K.; Kubicek, D.; Navratil, R.; Hola, V.; Balcova, M.; Bohmova, M.; Weisova, K.; Vesela, K. OneGene PGT: Comprehensive preimplantation genetic testing method utilizing next-generation sequencing. J. Assist. Reprod. Genet. 2024, 41, 185–192. [Google Scholar] [CrossRef]
- Zou, W.; Li, M.; Wang, X.; Lu, H.; Hao, Y.; Chen, D.; Zhu, S.; Ji, D.; Zhang, Z.; Zhou, P.; et al. Preimplantation genetic testing for monogenic disorders (PGT-M) offers an alternative strategy to prevent children from being born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes: A retrospective study. J. Assist. Reprod. Genet. 2024, 41, 1245–1259. [Google Scholar] [CrossRef]
- Giuliano, R.; Maione, A.; Vallefuoco, A.; Sorrentino, U.; Zuccarello, D. Preimplantation genetic testing for genetic diseases: Limits and review of current literature. Genes 2023, 14, 2095. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhu, X.; Yang, M.; Liu, Y.; Wang, N.; Long, C.; Kuo, Y.; Lian, Y.; Huang, J.; et al. Concurrent preimplantation genetic testing and competence assessment of human embryos by transcriptome sequencing. Adv. Sci. 2024, 11, e2309817. [Google Scholar] [CrossRef]
- De Rycke, M.; Berckmoes, V. Preimplantation genetic testing for monogenic disorders. Genes 2020, 11, 871. [Google Scholar] [CrossRef]
- Brown, S. Identity-by-state analysis: A new method for PGT-M. Hum. Reprod. 2020, 35, 485–487. [Google Scholar] [CrossRef]
- Fernandes, S.L.E.; de Carvalho, F.A.G. Preimplantation genetic testing: A narrative review. Porto Biomed. J. 2024, 9, 262. [Google Scholar] [CrossRef]
- Parikh, F.R.; Athalye, A.S.; Kulkarni, D.K.; Sanap, R.R.; Dhumal, S.B.; Warang, D.J.; Naik, D.J.; Madon, P.F. Evolution and utility of preimplantation genetic testing for monogenic disorders in assisted reproduction—A narrative review. J. Hum. Reprod. Sci. 2021, 14, 329–339. [Google Scholar] [CrossRef]
- Wang, C.W.; Liu, Y.L.; Chen, C.H. Targeting myotonic dystrophy by preimplantation genetic diagnosis-karyomapping. Taiwan. J. Obstet. Gynecol. 2019, 58, 891–894. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Fu, Y.; Wang, Y.; Liu, Y.; Ding, C.; Cai, B.; Pan, J.; Wang, J.; Li, R.; et al. Clinical application of next generation sequencing-based haplotype linkage analysis in the preimplantation genetic testing for germline mosaicisms. Orphanet J. Rare Dis. 2023, 18, 137. [Google Scholar] [CrossRef]
- Wang, J.; Lu, B.-M.; Li, R.; Guo, J.; Xu, Y.; Pan, J.-F.; Zeng, Y.; Zhou, C.-Q.; Xu, Y.-W. Karyomapping in preimplantation genetic testing for β-thalassemia combined with HLA matching: A systematic summary. J. Assist. Reprod. Genet. 2019, 36, 2515–2523. [Google Scholar] [CrossRef]
- ESHRE PGT-M Working Group; Carvalho, F.; Moutou, C.; Dimitriadou, E.; Dreesen, J.; Giménez, C.; Goossens, V.; Kakourou, G.; Vermeulen, N.; Zuccarello, D.; et al. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders. Hum. Reprod. Open 2020, 2020, hoaa018. [Google Scholar] [CrossRef]
- Handyside, A.H. Live births following karyomapping–a “key” milestone in the development of preimplantation genetic diagnosis. Reprod. Biomed. Online 2015, 31, 307–308. [Google Scholar] [CrossRef]
- Handyside, A.H.; Harton, G.L.; Mariani, B.; Thornhill, A.R.; Affara, N.; Shaw, M.-A.; Griffin, D.K. Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med. Genet. 2010, 47, 651–658. [Google Scholar] [CrossRef]
- Natesan, S.A.; Bladon, A.J.; Coskun, S.; Qubbaj, W.; Prates, R.; Munne, S.; Coonen, E.; Dreesen, J.C.; Stevens, S.J.; Paulussen, A.D.; et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet. Med. 2014, 16, 838–845. [Google Scholar] [CrossRef]
- Gould, R.L.; Griffin, D.K. Karyomapping and how is it improving preimplantation genetics? Expert Rev. Mol. Diagn. 2017, 17, 611–621. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, L.; Shi, H.; Niu, W.; Wang, Y.; Bu, B.; Liu, Y.; Bao, X.; Song, W.; Jin, H.; et al. Preimplantation genetic testing for four families with severe combined immunodeficiency: Three unaffected livebirths. Orphanet J. Rare Dis. 2025, 20, 14. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, F.; Guan, S.; Yan, Z.; Zhu, X.; Kuo, Y.; Wang, N.; Zhi, X.; Lian, Y.; Huang, J.; et al. A comprehensive PGT-M strategy for ADPKD patients with de novo PKD1 mutations using affected embryo or gametes as proband. J. Assist. Reprod. Genet. 2021, 38, 2425–2434. [Google Scholar] [CrossRef]
- Beyer, C.E.; Lewis, A.; Willats, E.; Mullen, J. Preimplantation genetic testing using Karyomapping for a paternally inherited reciprocal translocation: A case study. J. Assist. Reprod. Genet. 2019, 36, 951–963. [Google Scholar] [CrossRef]
- Robert, L.N.; Roderick, R.M.; Huntington, W. Complex inheritance of common multifactorial disorders. In Thompson and Thompson Genetics in Medicine; Chapter 8; Elsevier: Amsterdam, The Netherlands, 2016; pp. 133–153. [Google Scholar]
- Konstantinidis, M.; Prates, R.; Goodall, N.-N.; Fischer, J.; Tecson, V.; Lemma, T.; Chu, B.; Jordan, A.; Armenti, E.; Wells, D.; et al. Live births following karyomapping of human blastocysts: Experience from clinical application of the method. Reprod. Biomed. Online 2015, 31, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nagi, J.; Wells, D.; Doye, K.; Loutradi, K.; Exeter, H.; Drew, E.; Alfarawati, S.; Naja, R.; Serhal, P. Karyomapping: A single centre’s experience from application of methodology to ongoing pregnancy and live-birth rates. Reprod. Biomed. Online 2017, 35, 264–271. [Google Scholar] [CrossRef] [PubMed]
Reference | Children | Parent | Sibling |
---|---|---|---|
Number of cases | 80 | 148 | 35 |
KM applicable, n (%) | 79 (99) | 140 (95) | 22 (63) |
Not applicable, n (%) | 1 (1) | 8 (5.4) | 13 (37) |
Mean number of informative SNPs | |||
5′ region | 39 | 22 | 21 |
Main region | 4 | 3 | 6 |
3′ region | 44 | 17 | 12 |
Total | 87 | 42 | 39 |
Number of cases < 5 informative SNPs | 0 | 0 | 10 |
Disease | Not Applicable (%, Per Couple) | Inheritance Mode | Gene | Locus | No. of Available SNPs | Mean No. of Informative SNPs |
---|---|---|---|---|---|---|
Neurofibromatosis, type I (NF1) | 6/27 (22.2) | AD | NF1 | 17q11.2 | 616 | 45.9 |
Kennedy disease | 5/5 (100) | X-linked | AR | Xq12 | 114 | 28.8 |
Charcot–Marie–Tooth disease, type 1A (CMT1A) | 2/32 (6.3) | AD | PMP22 | 17p12 | 599 | 37.1 |
Myotonic dystrophy 1 (DM1) | 2/24 (8.3) | AD | DMPK | 19q13.32 | 243 | 31.1 |
von Hippel–Lindau syndrome (VHL) | 1/6 (17) | AD | VHL | 3p25.3 | 406 | 37.1 |
Marfan syndrome (MFS) | 1/12 (8.3) | AD | FBN1 | 15q21.1 | 549 | 44.8 |
Spinocerebellar ataxia (SCA) | 1/4 (25) | AD | ATXN3 | 14q32.12 | 402 | 36 |
Hemophilia A (HEMA) | 1/14 (7.1) | X-linked | F8 | Xq28 | 550 | 45.8 |
Fabry disease | 1/2 (50) | X-linked | GLA | Xq22.1 | 593 | 44 |
Duchenne muscular dystrophy (DMD) | 1/12 (8.3) | X-linked | DMD | Xp21.2-p21.1 | 656 | 100 |
Ornithine transcarbamylase deficiency (OTC) | 1/3 (33.3) | X-linked | OTC | Xp11.4 | 421 | 60.4 |
Case No. | Disease | Inheritance Mode | Gene | Affected Partner of the Couple | Family Member Selected as a Reference | Genetic Status of Reference | Informative SNPs | ||
---|---|---|---|---|---|---|---|---|---|
5′ Region | Main Region | 3′ Region | |||||||
1 | VHL | AD | VHL | Male | Sibling (brother) | Affected | 0 | 0 | 0 |
2 | CMT1A | AD | PMP22 | Female | Sibling (sister) | Affected | 0 | 0 | 0 |
3 | CMT1A | AD | PMP22 | Female | Sibling (sister) | Affected | 0 | 0 | 0 |
4 | DM1 | AD | DMPK | Male | Sibling (brother) | Affected | 0 | 0 | 0 |
5 | DM1 | AD | DMPK | Male | Sibling (sister) | Affected | 0 | 0 | 0 |
6 | DMD | X-linked | DMD | Female | Sibling (sister) | Carrier | 0 | 0 | 0 |
7 | MFS | AD | FBN1 | Male | Sibling (brother) | Affected | 0 | 0 | 0 |
8 | SCA | AD | ATXN3 | Male | Sibling (sister) | Affected | 0 | 0 | 0 |
9 | OTC | X-linked | OTC | Female | Sibling (sister) | Affected | 0 | 0 | 0 |
10 | NF1 | AD | NF1 | Male | Sibling (sister) | Affected | 0 | 0 | 3 |
11 | NF1 | AD | NF1 | Female | Sibling (sister) | Affected | 0 | 0 | 7 |
12 | NF1 | AD | NF1 | Female | Sibling (brother) | Affected | 0 | 0 | 7 |
13 | HEMA | X-linked | F8 | Female | Sibling (brother) | Affected | 36 | 0 | 0 |
14 | NF1 | AD | NF1 | Male | Children | Affected | 0 | 0 | 13 |
15 | NF1 | AD | NF1 | Male | Grandfather | Affected | 0 | 0 | 7 |
16 | NF1 | AD | NF1 | Male | Grandmother | Affected | 0 | 0 | 16 |
17 | Fabry disease | X-linked | GLA | Female | Grandmother | Carrier | 32 | 0 | 0 |
18 | Kennedy disease | X-linked | AR | Female | Grandfather | Affected | 0 | 0 | 23 |
19 | Kennedy disease | X-linked | AR | Female | Grandfather | Affected | 0 | 0 | 27 |
20 | Kennedy disease | X-linked | AR | Female | Grandfather | Affected | 0 | 0 | 33 |
21 | Kennedy disease | X-linked | AR | Female | Grandfather | Affected | 0 | 0 | 33 |
22 | Kennedy disease | X-linked | AR | Female | Grandfather | Affected | 0 | 0 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.J.; Hong, Y.; Han, G.; Lee, H.-S.; Park, E.A.; Lee, K.-A.; Yu, E.J.; Kang, I.S. The Insufficient Number of Informative SNPs in a Preclinical Karyomapping Test for PGT-M Depends on the Reference Selected. J. Pers. Med. 2025, 15, 273. https://doi.org/10.3390/jpm15070273
Kim MJ, Hong Y, Han G, Lee H-S, Park EA, Lee K-A, Yu EJ, Kang IS. The Insufficient Number of Informative SNPs in a Preclinical Karyomapping Test for PGT-M Depends on the Reference Selected. Journal of Personalized Medicine. 2025; 15(7):273. https://doi.org/10.3390/jpm15070273
Chicago/Turabian StyleKim, Min Jee, Yeseul Hong, Gaeul Han, Hyoung-Song Lee, Eun A. Park, Kyung-Ah Lee, Eun Jeong Yu, and Inn Soo Kang. 2025. "The Insufficient Number of Informative SNPs in a Preclinical Karyomapping Test for PGT-M Depends on the Reference Selected" Journal of Personalized Medicine 15, no. 7: 273. https://doi.org/10.3390/jpm15070273
APA StyleKim, M. J., Hong, Y., Han, G., Lee, H.-S., Park, E. A., Lee, K.-A., Yu, E. J., & Kang, I. S. (2025). The Insufficient Number of Informative SNPs in a Preclinical Karyomapping Test for PGT-M Depends on the Reference Selected. Journal of Personalized Medicine, 15(7), 273. https://doi.org/10.3390/jpm15070273