Pleural Empyema in Spain (2016–2022): A Nationwide Study on Trends in Hospitalizations, Mortality, and Impact of Comorbidities
Abstract
1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Ethics
3. Results
3.1. Empyema as Primary or Secondary Diagnosis
3.2. Analysis of In-Hospital Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, S.P.F.; Parrish, J.S. Pleural Space Infections. Life 2023, 13, 376. [Google Scholar] [CrossRef]
- McCauley, L.; Dean, N. Pneumonia and empyema: Causal, casual or unknown. Thorac Dis. 2015, 7, 992. [Google Scholar]
- Asai, N.; Ohashi, W.; Shibata, Y.; Sakanashi, D.; Kato, H.; Hagihara, M.; Suematsu, H.; Mikamo, H. A 15-Year Observational Cohort of Acute Empyema at a Single-Center in Japan. Antibiotics 2024, 13, 1205. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, L.; San José, M.E.; Valdés, L. Management of Parapneumonic Pleural Effusion in Adults. Arch. Bronconeumol. 2015, 51, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Bobbio, A.; Bouam, S.; Frenkiel, J.; Zarca, K.; Fournel, L.; Canny, E.; Icard, P.; Porcher, R.; Alifano, M. Epidemiology and prognostic factors of pleural empyema. Thorax 2021, 76, 1117–1123. [Google Scholar] [CrossRef]
- Burgos, J.; Falcó, V.; Pahissa, A. The increasing incidence of empyema. Curr. Opin. Pulm. Med. 2013, 19, 350–356. [Google Scholar] [CrossRef]
- Merchant, N.; Liu, C. Thoracic empyema: Aetiology, diagnosis, treatment, and prevention. Curr. Opin. Pulm. Med. 2024, 30, 204–209. [Google Scholar] [CrossRef]
- Zhong, M.; Ni, R.; Zhang, H.; Sun, Y. Analysis of clinical characteristics and risk factors of community-Acquired pneumonia complicated by parapneumonic pleural effusion in elderly patients. BMC Pulm. Med. 2023, 23, 355. [Google Scholar] [CrossRef]
- Marks, D.J.B.; Fisk, M.D.; Koo, C.Y.; Pavlou, M.; Peck, L.; Lee, S.F.; Lawrence, D.; Macrae, M.B.; Wilson, A.P.R.; Brown, J.S.; et al. Thoracic empyema: A 12-year study from a UK tertiary cardiothoracic referral centre. PLoS ONE 2012, 7, e30074. [Google Scholar] [CrossRef]
- Bartlett, J.G. Anaerobic bacterial infections of the lung and pleural space. Clin. Infect. Dis. 1993, 16, 248–255. [Google Scholar] [CrossRef]
- Boyanova, L.; Djambazov, V.; Gergova, G.; Iotov, D.; Petrov, D.; Osmanliev, D.; Minchev, Z.; Mitov, I. Anaerobic microbiology in 198 cases of pleural empyema: A Bulgarian study. Anaerobe 2004, 10, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Alfageme, I.; Muñoz, F.; Peña, N.; Umbría, S. Empyema of the thorax in adults: Etiology, microbiologic findings, and management. Chest 1993, 103, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.R.; Bribriesco, A.; Crabtree, T.; Denlinger, C.; Eby, J.; Eiken, P.; Jones, D.R.; Keshavjee, S.; Maldonado, F.; Paul, S. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. Thorac. Cardiovasc. Surg. 2017, 153, e129–e146. [Google Scholar] [CrossRef] [PubMed]
- Iguina, M.M.; Sharma, S. Thoracic Empyema. In StatPearls; Danckers, M., Ed.; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK544279/ (accessed on 4 May 2025).
- Reichert, M.; Hecker, M.; Witte, B.; Bodner, J.; Padberg, W.; Weigand, M.A.; Hecker, A. Stage-Directed therapy of pleural empyema. Langenbeck’s Arch. Surg. 2017, 402, 15–26. [Google Scholar] [CrossRef]
- Báez-Saldaña, R.; Molina-Corona, H.; Martínez-Rendón, M.E.; Iñiguez-García, M.; Escobar-Rojas, A.; Fortoul-Vandergoes, T. Parapneumonic effusion and thoracic empyema in adults. Clinical aspects, microbiology and frequency of surgical outcome. Cirugía Y Cir. 2021, 89, 63–70. [Google Scholar] [CrossRef]
- Chan, K.P.F.; Ma, T.F.; Sridhar, S.; Lam, D.C.L.; Ip, M.S.M.; Ho, P.L. Changes in Etiology and Clinical Outcomes of Pleural empyema during the COVID-19 Pandemic. Microorganisms 2023, 11, 303. [Google Scholar] [CrossRef]
- Haggie, S.; Gunasekera, H.; Pandit, C.; Selvadurai, H.; Robinson, P.; Fitzgerald, D.A. Paediatric empyema: Worsening disease severity and challenges identifying patients at increased risk of repeat intervention. Arch. Dis. Child. 2020, 105, 886–890. [Google Scholar] [CrossRef]
- Arnold, D.T.; Hamilton, F.W.; Morris, T.T.; Suri, T.; Morley, A.; Frost, V.; Vipond, I.B.; Medford, A.R.; Payne, R.A.; Muir, P. Epidemiology of pleural empyema in English hospitals and the impact of influenza. Eur. Respir. 2021, 57, 2003546. [Google Scholar] [CrossRef]
- Ho, C.H.; Chen, Y.C.; Chu, C.C.; Wang, J.J.; Liao, K.M. Age-adjusted Charlson comorbidity score is associated with the risk of empyema in patients with COPD. Medicine 2017, 96, e8040. [Google Scholar] [CrossRef]
- Eryigit, H.; Orki, A.; Unaldi, M.; Ozdemir, A.; Orki, T.; Kosar, A.; Demirhan, R.; Arman, B. Accelerated treatment of concomitant empyema and lung cancer by video-assisted thoracoscopic surgery. Cir. Esp. 2016, 94, 100–104. [Google Scholar] [CrossRef]
- Redden, M.D.; Chin, T.Y.; Driel, M.L.V. Surgical versus non-surgical management for pleural empyema. Cochrane Database Syst. Rev. 2017, 2, 303. [Google Scholar] [CrossRef] [PubMed]
- Mummadi, S.R.; Stoller, J.K.; Lopez, R.; Kailasam, K.; Gillespie, C.T.; Hahn, P.Y. Epidemiology of Adult Pleural Disease in the United States. Chest 2021, 160, 1534–1551. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Lee, S.H.; Kim, K.T.; Jung, J.S.; Son, H.S.; Sun, K. Optimal Timing of Thoracoscopic Drainage and Decortication for Empyema. Ann. Thorac. Surg. 2014, 97, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Semmelmann, A.; Baar, W.; Haude, H.; Moneke, I.; Loop, T. Risk Factors for Postoperative Pulmonary Complications Leading to Increased Morbidity and Mortality in Patients Undergoing Thoracic Surgery for Pleural Empyema. Cardiothorac Vasc Anesth. 2023, 37, 1659–1667. [Google Scholar] [CrossRef]
- Tamiya, H.; Jo, T.; Yokoyama, A.; Sakamoto, Y.; Mitani, A.; Tanaka, G.; Matsui, H.; Ishimaru, M.; Yasunaga, H.; Nagase, T. Reduction in the need for surgery and mortality after early administration of fibrinolytics following empyema drainage. Eur. Cardio-Thorac. Surg. 2024, 66, ezae263. [Google Scholar] [CrossRef]
- Arnold, D.T.; Tucker, E.; Morley, A.; Milne, A.; Stadon, L.; Patole, S.; Nava, G.W.; Walker, S.P.; Maskell, N.A. A feasibility randomised trial comparing therapeutic thoracentesis to chest tube insertion for the management of pleural infection: Results from the ACTion trial. BMC Pulm. Med. 2022, 22, 330. [Google Scholar] [CrossRef]
- Sundaralingam, A.; Grabczak, E.M.; Burra, P.; Costa, M.I.; George, V.; Harriss, E.; Jankowska, E.A.; Janssen, J.P.; Karpathiou, G.; Laursen, C.B. ERS statement on benign pleural effusions in adults. Eur. Respir. 2024, 64, 2302307. [Google Scholar] [CrossRef]
2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total | p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|
Total PE cases | 2604 | 2752 | 2897 | 3068 | 2689 | 2685 | 3169 | 19,864 | ||
Total admission | 4,394,207 | 4,562,182 | 4,529,107 | 4,560,089 | 4,032,912 | 4,316,158 | 4,485,352 | 30,880,007 | ||
PE per 1000 admissions | 0.59 | 0.60 | 0.64 | 0.67 | 0.67 | 0.62 | 0.71 | 0.64 | <0.001 | |
Female sex (%) | 687 (26.4) | 726 (26.4) | 766 (26.4) | 779 (25.4) | 689 (25.6) | 670 (25) | 878 (27.7) | 5195 (26.15) | 0.274 | |
Mean age (SD) | 60 (19) | 61 (19) | 60 (20) | 60 (20) | 61 (18) | 61 (18) | 61 (21) | 61 (19) | 0.033 | |
Age group (%) | ≤17 | 104 (4) | 104 (3.8) | 131 (4.5) | 148 (4.8) | 75 (2.8) | 80 (3) | 185 (6) | 827 (4.2) | <0.001 |
18–65 | 1401 (53.8) | 1393 (50.6) | 1468 (50.7) | 1586 (51.7) | 1389 (51.7) | 1432 (53.3) | 1501 (47.4) | 10170 (51.2) | ||
≥66 | 1099 (42.2) | 1255 (45.6) | 1298 (44.8) | 1334 (43.5) | 1225 (45.6) | 1173 (43.7) | 1483 (46.8) | 8867 (44.6) | ||
PE as primary diagnosis (%) | 1039 (40) | 1056 (38) | 1064 (37) | 1106 (36) | 986 (37) | 969 (36) | 1140 (36) | 7360 (37) | 0.017 | |
CCI categories (%) | ≤1 | 1754 (67) | 1824 (66) | 1972 (68) | 2010 (66) | 1761 (66) | 1688 (63) | 2059 (65) | 13068 (66) | 0.006 |
2 | 362 (14) | 371 (14) | 360 (12) | 399 (13) | 353 (13) | 388 (14) | 417 (13) | 2650 (13) | ||
≥3 | 488 (19) | 557 (20) | 565 (20) | 659 (21) | 575 (21) | 609 (23) | 693 (22) | 4146 (21) | ||
Mean CCI (SD) | 1.6 (2.5) | 1.6 (2.5) | 1.6 (2.4) | 1.7 (2.6) | 1.7 (2.5) | 1.8 (2.6) | 1.7 (2.5) | 1.7 (2.5) | <0.001 | |
Pneumonia | 412 (15.8) | 445 (16.2) | 479 (16.5) | 471 (15.4) | 369 (13.7) | 337 (12.6) | 496 (15.7) | 3009 (15.2) | <0.001 | |
Sepsis | 76 (3) | 113 (4) | 105 (3.6) | 135 (4.4) | 97 (3.6) | 100 (3.7) | 123 (4) | 749 (3.8) | 0.129 | |
Pneumococcal sepsis | 25 (1) | 19 (0.7) | 42 (1.5) | 50 (1.6) | 22 (0.8) | 16 (0.6) | 35 (1.1) | 209 (1) | <0.001 | |
COVID-19 | - | - | - | - | 40 (1.5) | 88 (3.2) | 87 (2.7) | 215 (1) | <0.001 | |
Pleural drainage (%) | 1262 (88) | 1315 (88) | 1374 (91) | 1427 (91) | 1236 (92) | 1167 (93) | 1333 (93) | 9114 (91) | <0.001 | |
Lung cancer | 21 (0.8) | 24 (0.9) | 12 (0.4) | 19 (0.6) | 10 (0.4) | 15 (0.6) | 18 (0.6) | 119 (0.6) | 0.149 | |
Hospital ward (%) | Medical | 1869 (72) | 2026 (74) | 2190 (76) | 2296 (75) | 2021 (75) | 1991 (74) | 2366 (75) | 14759 (74) | 0.009 |
Surgical | 637 (24) | 618 (22) | 592 (20) | 677 (22) | 573 (21) | 570 (21) | 690 (22) | 4357 (22) | ||
ICU | 96 (4) | 100 (4) | 112 (4) | 90 (3) | 90 (3) | 112 (4) | 103 (3) | 703 (4) | ||
Others | 2 (0.1) | 8 (0.3) | 3 (0.1) | 5 (0.2) | 11 (0.4) | 11 (0.4) | 7 (0.2) | 40 (0.2) | ||
Severity | Low | 3 (0.1) | 4 (0.2) | 3 (0.1) | 6 (0.2) | 2 (0.1) | 4 (0.1) | 5 (0.2) | 27 (0.1) | <0.001 |
Moderate | 130 (5) | 127 (4.6) | 100 (3.5) | 120 (3.9) | 108 (4) | 95 (3.5) | 142 (4.5) | 822 (4) | ||
High | 1673 (64) | 1655 (60) | 1797 (62) | 1893 (62) | 1569 (58) | 1470 (55) | 1907 (60) | 11964 (60) | ||
Extreme | 778 (30) | 954 (34.7) | 989 (34) | 1040 (34) | 1007 (37) | 1112 (41) | 1113 (35) | 6993 (35) | ||
Mean LOS (SD) days | 19.7 (20) | 20.2 (23) | 19.6 (20) | 20.2 (24) | 20.6 (21) | 20.8 (25) | 20 (23) | 20 (22) | 0.074 | |
In-hospital mortality (%) | 287 (11) | 289 (10.5) | 283 (9.8) | 304 (9.9) | 286 (10.6) | 333 (12.4) | 350 (11) | 2132 (11) | 0.035 | |
Mean cost (EUR) | 886.53 | 876.92 | 920.78 | 909.94 | 1083.88 | 995.10 | 938.18 | 943.44 | <0.001 |
Primary Diagnosis N (%) | Secondary Diagnosis N (%) | p-Value | ||
---|---|---|---|---|
Total | 7360 | 12504 | ||
Year | 2016 | 68 (15) | 219 (13) | 0.809 |
2017 | 60 (13) | 229 (14) | ||
2018 | 61 (13) | 222 (13) | ||
2019 | 62 (14) | 242 (14) | ||
2020 | 53 (12) | 233 (14) | ||
2021 | 76 (17) | 257 (15) | ||
2022 | 73 (16) | 277 (17) | ||
Female sex | 116 (26) | 454 (27) | 0.541 | |
Mean age (SD) | 74 (13) | 70 (14) | <0.001 | |
Age group (%) | ≤17 | - | 9 (0.5) | 0.007 |
18–65 | 123 (27) | 567 (34) | ||
≥66 | 330 (73) | 1103 (66) | ||
Mean CCI (SD) | 1.4 (2.3) | 1.8 (2.6) | <0.001 | |
Charlson commorbidity index (%) | ≤1 | 5204 (71) | 7864 (63) | <0.001 |
2 | 908 (12) | 1742 (14) | ||
≥3 | 1248 (17) | 2898 (23) | ||
Hospital ward (%) | Medical | 369 (81) | 1068 (64) | <0.001 |
Surgical | 46 (10) | 170 (10) | ||
ICU | 37 (8) | 435 (26) | ||
Others | 1 (0.2) | 6 (0.4) | ||
Pneumonia (%) | - | 3369 (27) | ||
Sepis (%) | - | 749 (6) | ||
Lung abscess (%) | - | 253 (2) | ||
Lung Cancer (%) | - | 220 (2) | ||
COVID-19 (%) | - | 215 (2) | ||
Pneumococcal bacteremia (%) | - | 209 (1.6) | ||
COPD (%) | - | 161 (1) | ||
Aspiration pneumonia (%) | - | 143 (1) | ||
Pleural drainage (%) | 242 (86) | 487 (79) | 0.011 | |
Severity (%) | Low | - | 1(0.1) | <0.001 |
Moderate | 4 (1) | 13(1) | ||
High | 300 (66) | 399 (24) | ||
Extreme | 149 (33) | 1252 (75) | ||
Mean LOS (SD) | 10 (4–19) | 15 (6–30) | <0.001 | |
Mortality | 453 (6.2) | 1679 (13.4) | <0.001 | |
Mean cost (EUR) | 912.07 (363.7) | 1030.35 (436.7) | <0.001 |
In-Hospital Mortality | ||||
---|---|---|---|---|
Primary Diagnosis | Secondary Diagnosis | Any Position | ||
aOR (95%CI) p Value | aOR (95%CI) p Value | aOR (95%CI) | ||
Year | 1.01 (0.94–1.07) 0.751 | 0.98 (0.93–1.03) 0.592 | 0.99 (0.95–1.03) 0.831 | |
Female sex | 1.26 (0.94–1.69) 0.111 | 1.18 (0.94–1.47) 0.137 | 1.20 (1.01–1.44) 0.034 | |
Age | ≤17 (reference) | 1 | 1 | 1 |
18–65 | 0.34 (0.25–0.46) <0.001 | 12.30 (1.68–89.56) 0.013 | 13.45 (1.85–97.29) 0.010 | |
≥66 | - | 30.22 (4.15–219.89) 0.001 | 34.74(4.80–251.01) <0.001 | |
CCI | ≤1 (reference) | 1 | 1 | 1 |
2 | 2.13 (1.49–3.05) <0.001 | 2.52 (1.91–3.32) <0.001 | 2.40 (1.93–2.98) <0.001 | |
≥3 | 3.64 (2.72–4.87) <0.001 | 4.39 (3.51–5.49) <0.001 | 4.22 (3.54–5.03) <0.001 | |
Hospital ward | Medical | - | 0.71 (0.13–3.74) 0.688 | 0.77 (0.15–3.89) 0.752 |
Surgical | 0.30 (0.18–0.50) <0.001 | 0.32 (0.05–1.77) 0.194 | 0.29 (0.05–1.52) 0.145 | |
ICU | 6.93 (2.86–16.75) <0.001 | 9.38 (1.70–51.68) 0.010 | 9.29 (1.77–48.82) 0.008 | |
COVID-19 | - | 1.57 (0.67–3.69) 0.296 | 1.61 (0.68–3.77) 0.270 | |
Pneumonia | - | 0.63 (0.47–0.84) 0.002 | 0.67 (0.51–0.89) 0.006 | |
Lung cancer | - | 2.46 (1.32–4.58) 0.005 | 2.93 (1.58–5.44) 0.001 | |
Sepsis | - | 1.68 (1.22–2.31) 0.001 | 1.74 (1.27–2.38) <0.001 | |
Pleural drainage | 0.52 (0.35–0.77) 0.001 | 0.46 (0.35–0.60) <0.001 | 0.45 (0.37–0.56) <0.001 | |
Severity | Low (reference) | 1 | 1 | 1 |
Moderate | - | 0.82 (0.17–3.84) 0.807 | 0.49 (0.11–2.25) 0.366 | |
High | 0.24 (0.17–0.33) <0.001 | 0.55 (0.15–2.01) 0.347 | 0.43 (0.12–1.56) 0.204 | |
Extreme | - | 1.45 (0.40–5.22) 0.568 | 1.40 (0.39–5.05) 0.602 | |
LOS | <10 days | 2.67 (2.03–3.49) <0.001 | 2.34 (1.90–2.89) <0.001 | 2.40 (2.04–2.83) <0.001 |
≥10 days (reference) | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-de-Paz, B.; Fernandez-Cotarelo, M.-J.; Rodriguez-Romero, L.; Ribeiro-Neves-Pinto, C.; Quilez-Ruiz-Rico, N.; Álvaro-Álvarez, D.; Moreno-Cuerda, V.; Henriquez-Camacho, C. Pleural Empyema in Spain (2016–2022): A Nationwide Study on Trends in Hospitalizations, Mortality, and Impact of Comorbidities. J. Pers. Med. 2025, 15, 263. https://doi.org/10.3390/jpm15070263
Perez-de-Paz B, Fernandez-Cotarelo M-J, Rodriguez-Romero L, Ribeiro-Neves-Pinto C, Quilez-Ruiz-Rico N, Álvaro-Álvarez D, Moreno-Cuerda V, Henriquez-Camacho C. Pleural Empyema in Spain (2016–2022): A Nationwide Study on Trends in Hospitalizations, Mortality, and Impact of Comorbidities. Journal of Personalized Medicine. 2025; 15(7):263. https://doi.org/10.3390/jpm15070263
Chicago/Turabian StylePerez-de-Paz, Begoña, Maria-Jose Fernandez-Cotarelo, Lydia Rodriguez-Romero, Carolina Ribeiro-Neves-Pinto, Natividad Quilez-Ruiz-Rico, Dolores Álvaro-Álvarez, Victor Moreno-Cuerda, and Cesar Henriquez-Camacho. 2025. "Pleural Empyema in Spain (2016–2022): A Nationwide Study on Trends in Hospitalizations, Mortality, and Impact of Comorbidities" Journal of Personalized Medicine 15, no. 7: 263. https://doi.org/10.3390/jpm15070263
APA StylePerez-de-Paz, B., Fernandez-Cotarelo, M.-J., Rodriguez-Romero, L., Ribeiro-Neves-Pinto, C., Quilez-Ruiz-Rico, N., Álvaro-Álvarez, D., Moreno-Cuerda, V., & Henriquez-Camacho, C. (2025). Pleural Empyema in Spain (2016–2022): A Nationwide Study on Trends in Hospitalizations, Mortality, and Impact of Comorbidities. Journal of Personalized Medicine, 15(7), 263. https://doi.org/10.3390/jpm15070263