Artificial Intelligence-Assisted Emergency Department Vertical Patient Flow Optimization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Main Discussion
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
ED | Emergency Department |
VPP | Vertical Processing Pathway |
ESI | Emergency Severity Index |
LOS | Length of Stay |
EP | Emergency Physician |
IV | Intravenous |
IRB | Institutional Review Board |
AUC | Area Under the Curve |
SD | Standard Deviation |
hrs | Hours |
IT | Information Technology |
References
- Lowie, B.; Hicks, C.; Falat, C.; Hydorn, S.C.; Windsor, T.A.; Smedley, A.; Fu, Y.; Gatz, J.D. Overcoming stagnant flow: A scoping review of vertical movement in the emergency department. Acad. Emerg. Med. 2024, 31, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, E.; Elbattah, M.; Ammirati, C.; Dequen, G.; Ghazali, D.A. Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study. Int. J. Environ. Res. Public Health 2022, 19, 9667. [Google Scholar] [CrossRef] [PubMed]
- Aleksandra, S.; Robert, K.; Klaudia, K.; Dawid, L.; Mariusz, S. Artificial Intelligence in Optimizing the Functioning of Emergency Departments; a Systematic Review of Current Solutions. Arch. Acad. Emerg. Med. 2024, 12, e22. [Google Scholar]
- Hodgson, N.R.; Saghafian, S.; Klanderman, M.C.; Urumov, A.; Traub, S.J. Physician-driven early evaluation: Encounters seen in a vertical model. JEM Rep. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Feizi, A.; Orfanoudaki, A.; Saghafian, S.; Martini, W.A.; Hodgson, N. Vertical Patient Streaming in Emergency Departments; HKS Working Paper No. RWP23-014; Harvard University: Cambridge, MA, USA, 2023; Available online: https://ssrn.com/abstract=4465161 (accessed on 1 April 2025).
- Traub, S.J.; Stewart, C.F.; Didehban, R.; Bartley, A.C.; Saghafian, S.; Smith, V.D.; Silvers, S.M.; LeCheminant, R.; Lipinski, C.A. Emergency Department Rotational Patient Assignment. Ann. Emerg. Med. 2016, 67, 206–215. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Systems 2017, 30, 4768–4777. [Google Scholar]
- Kellermann, A.L. Waiting room medicine: Has it really come to this? Ann. Emerg. Med. 2010, 56, 468–471. [Google Scholar] [CrossRef]
- Oskvarek, J.J.; Zocchi, M.S.; Black, B.S.; Celedon, P.; Leubitz, A.; Moghtaderi, A.; Nikolla, D.A.; Rahman, N.; Pines, J.M. Emergency Department Volume, Severity, and Crowding Since the Onset of the Coronavirus Disease 2019 Pandemic. Ann. Emerg. Med. 2023, 82, 650–660. [Google Scholar] [CrossRef]
- Gorgens, S. They Are Dying in the Waiting Room. Ann. Emeg. Med. 2025, 85, 91. [Google Scholar] [CrossRef]
- Han, J.H.; Zhou, C.; France, J.D.; Zhong, S.; Jones, I.; Storrow, A.B.; Aronsky, D. The effect of emergency department expansion on emergency department overcrowding. Acad. Emerg. Med. 2007, 14, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.R.; Rowe, B.H.; Metge, C.; Star, N.D.; Aboud, Z.; Kreindler, S.A. Realist analysis of streaming interventions in emergency departments. BMJ Lead. 2021, 5, 167–173. [Google Scholar] [CrossRef]
- Hsieh, A.; Arena, A.; Oraha, A.; Cotarela, A.; McLean, M.; Hsieh, A.; Hsieh, I.C.; Chen, I.; Mok, N.; Milizia, R. Implementation of Vertical Split Flow Model for Patient Throughput at a Community Hospital Emergency Department—PubMed. J. Emerg. Med. 2023, 64, 77–82. [Google Scholar] [CrossRef]
- Iscoe, M.S.; Venkatesh, A.K.; Holland, M.L.; Krumholz, H.M.; Sheares, K.D.; Melnick, E.R. Emergency Physician EHR Time per Encounter Based on Patient and Clinical Factors. JAMA Netw. Open 2024, 7, e2427389. [Google Scholar] [CrossRef]
- Kachman, M.; Brennam, I.; Oskvarek, J.J.; Waseem, T.; Pones, J.M. How artificial intelligence could transform emergency care. Am. J. Emerg. Med. 2024, 81, 40–46. [Google Scholar] [CrossRef]
- Kijpaisalratana, N.; Sanglertsinlapachai, D.; Techaratsami, S.; Musikatavorn, K.; Saoraya, J. Machine learning algorithms for early sepsis detection in the emergency department: A retrospective study. Int. J. Med. Inform. 2022, 160, 104689. [Google Scholar] [CrossRef]
- Choi, A.; Choi, S.Y.; Chung, K.; Chung, H.S.; Song, T.; Choi, B.; Kim, J.H. Development of a machine learning-based clinical decision support system to predict clinical deterioration in patients visiting the emergency department. Sci. Rep. 2023, 13, 8561. [Google Scholar] [CrossRef]
- Logothetis, S.B.; Green, D.; Holland, M.; Moibayed, N.A. Predicting acute clinical deterioration with interpretable machine learning to support emergency care decision making. Sci. Rep. 2023, 13, 13563. [Google Scholar]
- Da’Costa, A.; Teke, J.; Origbo, J.E.; Osonuga, A.; Egbon, E.; Olawade, D.B. AI-driven triage in emergency departments: A review of benefits, challenges, and future directions. Int. J. Med. Inform. 2025, 197, 105838. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, O.; Wolf, L.; Brecher, D.; Lewis, E.; Masek, K.; Montgomery, K.; Andrieiev, Y.; McLaughlin, M.; Liu, S.; Dunne, R.; et al. Improving ED Emergency Severity Index Acuity Assignment Using Machine Learning and Clinical Natural Language Processing. J. Emerg. Nurs. 2021, 47, 265–278. [Google Scholar] [CrossRef]
- Vântu, A.; Vasilescu, A.; Băicoianu, A. Medical emergency department triage data processing using a machine-learning solution. Heliyon 2023, 9, e18402. [Google Scholar] [CrossRef] [PubMed]
- Xiaom, Y.; Zhang, J.; Chi, C.; Ma, Y.; Song, A. Criticality and clinical department prediction of ED patients using machine learning based on heterogeneous medical data. Comput. Biol. Med. 2023, 165, 107390. [Google Scholar]
Pre-Intervention (N = 5522) | Post-Intervention (N = 5493) | p-Value | |
---|---|---|---|
Outcomes | |||
ED Length of Stay (Minutes [SD]) | 258.74 (121.88) | 247.99 (115.44) | p < 0.001 |
Admission Status Discharged (%) | 67.08% | 66.96% | p > 0.05 |
ED return within 72 hrs | 3.89% | 3.84% | p > 0.05 |
ED return within 72 hrs with admit | 2.37% | 2.17% | p > 0.05 |
Patient Characteristics | |||
Sex | 53.48% | 54.31% | p > 0.05 |
Female (%) | |||
Age | 58.92 (20.98) | 58.55 (20.92) | p > 0.05 |
Mean Years (SD) | |||
Race | 88.52% | 88.15% | p > 0.05 |
White (%) | |||
ESI (Mean [SD]) | 2.88 (0.66) | 2.90 (0.64) | p > 0.05 |
Procedures Administered | |||
IV (%) | 64.98% | 65.83% | p > 0.05 |
CT with IV contrast | 24.85% | 24.63% | p > 0.05 |
CT without IV contrast | 19.76% | 19.83% | p > 0.05 |
X-ray | 45.60% | 44.13% | p > 0.05 |
Ultrasound | 11.81% | 12.53% | p > 0.05 |
ESI | Pre-Intervention | Post-Intervention | Statistical Test | p-Value |
---|---|---|---|---|
1 | 0 (0.0%) | 0 (0.0%) | Fisher | p > 0.05 |
2 | 4 (0.28%) | 7 (0.53%) | Fisher | p > 0.05 |
3—Excluding Skin/Urinary/Eye | 47 (1.55%) | 163 (5.26%) | χ2 | p < 0.001 |
3—Skin/Urinary/Eye | 3 (1.23%) | 21 (8.64%) | Fisher | p < 0.001 |
4 | 139 (18.08%) | 469 (59.97%) | χ2 | p < 0.001 |
5 | 7 (20.0%) | 19 (82.61%) | Fisher | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodgson, N.R.; Saghafian, S.; Martini, W.A.; Feizi, A.; Orfanoudaki, A. Artificial Intelligence-Assisted Emergency Department Vertical Patient Flow Optimization. J. Pers. Med. 2025, 15, 219. https://doi.org/10.3390/jpm15060219
Hodgson NR, Saghafian S, Martini WA, Feizi A, Orfanoudaki A. Artificial Intelligence-Assisted Emergency Department Vertical Patient Flow Optimization. Journal of Personalized Medicine. 2025; 15(6):219. https://doi.org/10.3390/jpm15060219
Chicago/Turabian StyleHodgson, Nicole R., Soroush Saghafian, Wayne A. Martini, Arshya Feizi, and Agni Orfanoudaki. 2025. "Artificial Intelligence-Assisted Emergency Department Vertical Patient Flow Optimization" Journal of Personalized Medicine 15, no. 6: 219. https://doi.org/10.3390/jpm15060219
APA StyleHodgson, N. R., Saghafian, S., Martini, W. A., Feizi, A., & Orfanoudaki, A. (2025). Artificial Intelligence-Assisted Emergency Department Vertical Patient Flow Optimization. Journal of Personalized Medicine, 15(6), 219. https://doi.org/10.3390/jpm15060219