A Scoping Review of Precision Medicine in Breast Reconstruction (2011–2025)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genomics
3.2. Targeted Therapies
4. Discussion
4.1. Expanding Past Genomics
4.2. Next Steps in Regenerative Therapies
4.3. Barriers to Clinical Applications
4.4. Limitations
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Breast Cancer |
BR | Breast Reconstruction |
PM | Precision Medicine |
References
- Sikka, R.; Magauran, B.; Ulrich, A.; Shannon, M. Bench to Bedside: Pharmacogenomics, Adverse Drug Interactions, and the Cytochrome P450 System. Acad. Emerg. Med. 2005, 12, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Goutsouliak, K.; Veeraraghavan, J.; Sethunath, V.; De Angelis, C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Anglicheau, D. Precision Transplant Medicine: Biomarkers to the Rescue. J. Am. Soc. Nephrol. 2018, 29, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Stefanicka-Wojtas, D.; Kurpas, D. Personalised Medicine-Implementation to the Healthcare System in Europe (Focus Group Discussions). J. Pers. Med. 2023, 13, 380. [Google Scholar] [CrossRef]
- König, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What is precision medicine? Eur. Respir. J. 2017, 50, 1700391. [Google Scholar] [CrossRef]
- Gorgy, A.; Xu, H.H.; Hawary, H.E.; Nepon, H.; Lee, J.; Vorstenbosch, J. Integrating AI into Breast Reconstruction Surgery: Exploring Opportunities, Applications, and Challenges. Plast. Surg. 2024, 22925503241292349. [Google Scholar] [CrossRef]
- Seth, I.; Bulloch, G.; Joseph, K.; Hunter-Smith, D.J.; Rozen, W.M. Use of Artificial Intelligence in the Advancement of Breast Surgery and Implications for Breast Reconstruction: A Narrative Review. J. Clin. Med. 2023, 12, 5143. [Google Scholar] [CrossRef]
- Thiessen, F.E.F.; Tondu, T.; Verhoeven, V.; Hubens, G.; Steenackers, G.; Tjalma, W.A.A. Automatic detection of perforators for microsurgical reconstruction. Breast 2020, 53, 43. [Google Scholar] [CrossRef]
- Greene, J.M.; Fuller, K.A.; Persky, A.M. Practical Tips for Integrating Clinical Relevance into Foundational Science Courses. Am. J. Pharm. Educ. 2018, 82, 6603. [Google Scholar] [CrossRef]
- Naithani, N.; Sinha, S.; Misra, P.; Vasudevan, B.; Sahu, R. Precision medicine: Concept and tools. Med. J. Armed Forces India 2021, 77, 249–257. [Google Scholar] [CrossRef]
- Hickey, O.T.; Nugent, N.F.; Burke, S.M.; Hafeez, P.; Mudrakouski, A.L.; Shorten, G.D. Persistent pain after mastectomy with reconstruction. J. Clin. Anesth. 2011, 23, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.K.; Hwang, B.H.; Zhang, Y.; Monahan, J.F.; Davis, G.B.; Lee, Y.S.; Ragina, N.P.; Wang, C.; Zhou, Z.Y.; Hong, Y.K.; et al. Novel biomarkers of arterial and venous ischemia in microvascular flaps. PLoS ONE 2013, 8, e71628. [Google Scholar] [CrossRef]
- Sandberg, L.J.; Clemens, M.W.; Symmans, W.F.; Valero, V.; Caudle, A.S.; Smith, B.; Kuerer, H.M.; Hsu, L.; Kronowitz, S.J. Molecular Profiling Using Breast Cancer Subtype to Plan for Breast Reconstruction. Plast. Reconstr. Surg. 2017, 139, 586e–596e. [Google Scholar] [CrossRef]
- Basta, M.N.; Liu, P.Y.; Kwan, D.; Breuing, K.H.; Sullivan, R.; Jehle, C.C.; Bass, J.L.; Zienowicz, R.J.; Schmidt, S. Improved Diagnostic Accuracy of Periprosthetic Breast Infection: Novel Application of the Alpha Defensin-1 Biomarker. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2542. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.R.; Than, P.A.; Khong, S.M.L.; Rodrigues, M.; Findlay, M.W.; Navarrete, D.J.; Ghali, S.; Vaidya, J.S.; Gurtner, G.C. Therapeutic Breast Reconstruction Using Gene Therapy-Delivered IFNγ Immunotherapy. Mol. Cancer Ther. 2020, 19, 697–705. [Google Scholar] [CrossRef]
- Frisell, A.; Bergman, O.; Khan, A.; Gisterå, A.; Fisher, R.M.; Lagergren, J.; de Boniface, J.; Halle, M. Capsular inflammation after immediate breast reconstruction—Gene expression patterns and inflammatory cell infiltration in irradiated and non-irradiated breasts. J. Plast. Reconstr. Aesthet. Surg. 2023, 76, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Hou, X.; Fu, S.; Luan, J. Transcriptomic and machine learning analyses identify hub genes of metabolism and host immune response that are associated with the progression of breast capsular contracture. Genes. Dis. 2024, 11, 101087. [Google Scholar] [CrossRef]
- Anker, A.M.; Ruewe, M.; Prantl, L.; Baringer, M.; Pawlik, M.T.; Zeman, F.; Goecze, I.; Klein, S.M. Biomarker-guided acute kidney injury risk assessment under liberal versus restrictive fluid therapy—The prospective-randomized MAYDAY-trial. Sci. Rep. 2024, 14, 17094. [Google Scholar] [CrossRef]
- Miller, A.; De May, H.; Rou, D.L.; Agarwal, J.P.; Jeyapalina, S. Understanding the early molecular changes associated with radiation therapy-A preliminary bulk RNA sequencing study. PLoS ONE 2025, 20, e0316443. [Google Scholar] [CrossRef]
- Nirvik, P.; Kertai, M.D. Future of Perioperative Precision Medicine: Integration of Molecular Science, Dynamic Health Care Informatics, and Implementation of Predictive Pathways in Real Time. Anesth. Analg. 2022, 134, 900–908. [Google Scholar] [CrossRef]
- Argento, G.; Rendina, E.A.; Maurizi, G. Advancing Thoracic Surgical Oncology in the Era of Precision Medicine. Cancers 2025, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, O.; Miles, T.; Jones, R.P.; Mair, R.; Palmer, R.; Winter, H.; McDermott, F.D. Current and future genomic applications for surgeons. Ann, R. Coll. Surg. Engl. 2024, 106, 321–328. [Google Scholar] [CrossRef]
- Bargon, C.A.; Young-Afat, D.A.; Ikinci, M.; Braakenburg, A.; Rakhorst, H.A.; Mureau, M.A.M.; Verkooijen, H.M.; Doeksen, A. Breast cancer recurrence after immediate and delayed postmastectomy breast reconstruction-A systematic review and meta-analysis. Cancer 2022, 128, 3449–3469. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, R.A.; Rubin, J.P. Regenerative medicine and the future of plastic surgery. Plast. Reconstr. Surg. 2014, 133, 1511–1512. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.H.; Kao, A.P.; Singh, S.; Yu, S.L.; Kao, L.P.; Tsai, Z.Y.; Lin, S.D.; Li, S.S. Comparative expression profiles of mRNAs and microRNAs among human mesenchymal stem cells derived from breast, face, and abdominal adipose tissues. Kaohsiung J. Med. Sci. 2010, 26, 113–122. [Google Scholar] [CrossRef]
- Shi, A.P.; Fan, Z.M.; Ma, K.W.; Jiang, Y.F.; Wang, L.; Zhang, K.W.; Fu, S.B.; Xu, N.; Zhang, Z.R. Isolation and characterization of adult mammary stem cells from breast cancer-adjacent tissues. Oncol. Lett. 2017, 14, 2894–2902. [Google Scholar] [CrossRef]
- Koellensperger, E.; Bonnert, L.C.; Zoernig, I.; Marmé, F.; Sandmann, S.; Germann, G.; Gramley, F.; Leimer, U. The impact of human adipose tissue-derived stem cells on breast cancer cells: Implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Res. Ther. 2017, 8, 121. [Google Scholar] [CrossRef]
- Diehm, Y.F.; Thomé, J.; Will, P.; Kotsougiani-Fischer, D.; Haug, V.F.; Siegwart, L.C.; Kneser, U.; Fischer, S. Stem Cell-Enriched Hybrid Breast Reconstruction Reduces Risk for Capsular Contracture in a Hybrid Breast Model. Plast. Reconstr. Surg. 2023, 152, 572–580. [Google Scholar] [CrossRef]
- Benmeridja, L.; De Moor, L.; De Maere, E.; Vanlauwe, F.; Ryx, M.; Tytgat, L.; Vercruysse, C.; Dubruel, P.; Van Vlierberghe, S.; Blondeel, P.; et al. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting. J. Tissue Eng. Regen. Med. 2020, 14, 840–854. [Google Scholar] [CrossRef]
- Tytgat, L.; Van Damme, L.; Ortega Arevalo, M.d.P.; Declercq, H.; Thienpont, H.; Otteveare, H.; Blondeel, P.; Dubruel, P.; Van Vlierberghe, S. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. Int. J. Biol. Macromol. 2019, 140, 929–938. [Google Scholar] [CrossRef]
- Driscoll, D.; Farnia, S.; Kefalas, P.; Maziarz, R.T. Concise Review: The High Cost of High Tech Medicine: Planning Ahead for Market Access. Stem Cells Transl. Med. 2017, 6, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.J. Regenerative medicine. Opportunities and challenges: A brief overview. J. R. Soc. Interface 2010, 7 (Suppl. S6), S777–S781. [Google Scholar] [CrossRef]
- Olaya, W.; Esquivel, P.; Wong, J.H.; Morgan, J.W.; Freeberg, A.; Roy-Chowdhury, S.; Lum, S.S. Disparities in BRCA testing: When insurance coverage is not a barrier. Am. J. Surg. 2009, 198, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Speck, N.E.; Hellstern, P.; Farhadi, J. Microsurgical Breast Reconstruction in Patients with Disorders of Hemostasis: Perioperative Risks and Management. Plast. Reconstr. Surg. 2022, 150 (Suppl. 4), 95S–104S. [Google Scholar] [CrossRef] [PubMed]
Citation | Study Design | Population | Intervention/ Outcomes Measured | Key Findings | PM Relevance | PM Category/ Classification |
---|---|---|---|---|---|---|
Hickey et al. 2011 [11] | Retrospective clinical study | 42 women who underwent post-oncologic BR |
| Trend seen between persistent postsurgical pain and COMT genetic variations | Preoperative genetic screening to tailor pain management strategies for individual patients |
|
Nguyen et al. 2013 [12] | In vivo experimental | Rat model of flap ischemia using superficial inferior epigastric artery flap |
| Identified five potential biomarkers (Prol1, Muc1, Fcnb, Il1b, Vcsa1) of flap ischemia | Potential for real-time patient-specific monitoring based on personalized biomarkers |
|
Sandberget al 2017 [13] | Retrospective cohort clinical study | 1931 reconstructed breasts from BC patients who underwent mastectomy between 1999 and 2012 | BC subtyping:
| BC molecular subtype can inform optimal timing and type of BR | BC subtype can influence timing (i.e., immediate vs. delayed) of BR |
|
Basta et al. 2019 [14] | Prospective clinical study | 15 breasts with suspected periprosthetic infection |
| AD-1 more sensitive and specific for detecting these infections than culture, but difference not statistically significant | Unique biomarkers can be used to detect periprosthetic implant infections in BR and guide management |
|
Davis et al. 2020 [15] | Ex vivo experimental study | Rats with BC cells to create locoregional recurrence model |
| Reconstructions with IFNγ gene vector had significantly decreased tumor burden and increased survival compared to sham group | Autologous tissue used in BR can be augmented with targeted immunotherapy to reduce BC recurrence in candidate patients |
|
Frisell et al. 2023 [16] | Ex vivo clinical study with genetic analysis | BC patients who underwent implant-based BR; 13 irradiated and 12 non-radiated capsules |
| 200+ inflammatory genes identified, radiated breasts had increased B-cell inflammation and infiltration of breast capsules | Identification of patient-specific genes to guide development of tailored strategies to prevent and/or treat capsular contracture |
|
Mao et al. 2024 [17] | Retrospective clinical study | 12 patients/15 breasts with capsular contracture |
| PRKAR2B is a novel diagnostic biomarker for breast capsular contracture | Patient biomarkers that may help predict, diagnose, and potentially prevent capsular contracture in BR |
|
Anker et al. 2024 [18] | Prospective randomized clinical trial | 40 women undergoing post-oncologic autologous BR |
| Restrictive fluid administration group had higher TIMP-2 and IGFBP-7 levels indicating increased kidney stress | Tailored fluid management strategies to mitigate risk of kidney injury in BR based on biomarkers. |
|
Miller et al. 2025 [19] | Ex vivo clinical study with genetic analysis | 7 women with unilateral BC undergoing bilateral tissue expansion and mixed BR (implant on non-radiated side, autologous flap on radiated side) after radiation |
| Multiple genes in breast capsule suggest less microvascularization, increase in immune-related genes and decrease in keratin-related genes in skin | Identification of patient-specific genes to guide development of tailored strategies to prevent and/or treat radiation-induced fibrosis |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryanpour, Z.; McCranie, A.S.; Yu, J.W.; Winocour, J.; Egan, K.G.; Mathes, D.; Kaoutzanis, C. A Scoping Review of Precision Medicine in Breast Reconstruction (2011–2025). J. Pers. Med. 2025, 15, 178. https://doi.org/10.3390/jpm15050178
Aryanpour Z, McCranie AS, Yu JW, Winocour J, Egan KG, Mathes D, Kaoutzanis C. A Scoping Review of Precision Medicine in Breast Reconstruction (2011–2025). Journal of Personalized Medicine. 2025; 15(5):178. https://doi.org/10.3390/jpm15050178
Chicago/Turabian StyleAryanpour, Zain, Alec S. McCranie, Jason W. Yu, Julian Winocour, Katie G. Egan, David Mathes, and Christodoulos Kaoutzanis. 2025. "A Scoping Review of Precision Medicine in Breast Reconstruction (2011–2025)" Journal of Personalized Medicine 15, no. 5: 178. https://doi.org/10.3390/jpm15050178
APA StyleAryanpour, Z., McCranie, A. S., Yu, J. W., Winocour, J., Egan, K. G., Mathes, D., & Kaoutzanis, C. (2025). A Scoping Review of Precision Medicine in Breast Reconstruction (2011–2025). Journal of Personalized Medicine, 15(5), 178. https://doi.org/10.3390/jpm15050178