The Role of Dual-Energy CT in Differentiating Adrenal Adenomas from Metastases: A Comprehensive Narrative Review
Abstract
:1. Introduction
2. Technical Principles of Dual-Energy CT
3. Virtual Non-Contrast (VNC) Imaging
4. Iodine Density Quantification
5. Iodine Density-to-VNC Attenuation Ratio
6. Fat Fraction Analysis
7. Mean Attenuation and Attenuation Changes
8. Spectral Curve Analysis
9. Material Density Analysis
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.H.; Chaudhry, F.S.; Mayo-Smith, W.W. The incidental adrenal mass on CT: Prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy. AJR Am. J. Roentgenol. 2008, 190, 1163–1168. [Google Scholar] [CrossRef]
- Bovio, S.; Cataldi, A.; Reimondo, G.; Sperone, P.; Novello, S.; Berruti, A.; Borasio, P.; Fava, C.; Dogliotti, L.; Scagliotti, G.V.; et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J. Endocrinol. Investig. 2006, 29, 298–302. [Google Scholar] [CrossRef]
- Young, W.F. Clinical practice. The incidentally discovered adrenal mass. N. Engl. J. Med. 2007, 356, 601–610. [Google Scholar] [CrossRef]
- Reginelli, A.; Vacca, G.; Belfiore, M.; Sangiovanni, A.; Nardone, V.; Vanzulli, A.; Grassi, R.; Cappabianca, S. Pitfalls and differential diagnosis on adrenal lesions: Current concepts in CT/MR imaging: A narrative review. Gland Surg. 2020, 9, 2331–2342. [Google Scholar] [CrossRef]
- Albano, D.; Agnello, F.; Midiri, F.; Pecoraro, G.; Bruno, A.; Alongi, P.; Toia, P.; Di Buono, G.; Agrusa, A.; Sconfienza, L.M.; et al. Imaging features of adrenal masses. Insights Imaging 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Schieda, N.; Siegelman, E.S. Update on CT and MRI of Adrenal Nodules. AJR Am. J. Roentgenol. 2017, 208, 1206–1217. [Google Scholar] [CrossRef]
- Barat, M.; Cottereau, A.-S.; Gaujoux, S.; Tenenbaum, F.; Sibony, M.; Bertherat, J.; Libé, R.; Gaillard, M.; Jouinot, A.; Assié, G.; et al. Adrenal Mass Characterization in the Era of Quantitative Imaging: State of the Art. Cancers 2022, 14, 569. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, T.; Cicero, G.; Mazziotti, S.; Ascenti, G.; Albrecht, M.H.; Martin, S.S.; Othman, A.E.; Vogl, T.J.; Wichmann, J.L. Dual energy computed tomography virtual monoenergetic imaging: Technique and clinical applications. Br. J. Radiol. 2019, 92, 20180546. [Google Scholar] [CrossRef] [PubMed]
- Abu-Omar, A.; Murray, N.; Ali, I.T.; Khosa, F.; Barrett, S.; Sheikh, A.; Nicolaou, S.; Tamburrini, S.; Iacobellis, F.; Sica, G.; et al. Utility of Dual-Energy Computed Tomography in Clinical Conundra. Diagnostics 2024, 14, 775. [Google Scholar] [CrossRef]
- Ho, L.M.; Marin, D.; Neville, A.M.; Barnhart, H.X.; Gupta, R.T.; Paulson, E.K.; Boll, D.T. Characterization of Adrenal Nodules With Dual-Energy CT: Can Virtual Unenhanced Attenuation Values Replace True Unenhanced Attenuation Values? Am. J. Roentgenol. 2012, 198, 840–845. [Google Scholar] [CrossRef]
- Nagayama, Y.; Inoue, T.; Oda, S.; Tanoue, S.; Nakaura, T.; Ikeda, O.; Yamashita, Y. Adrenal Adenomas versus Metastases: Diagnostic Performance of Dual-Energy Spectral CT Virtual Noncontrast Imaging and Iodine Maps. Radiology 2020, 296, 324–332. [Google Scholar] [CrossRef]
- Cao, J.; Lennartz, S.; Parakh, A.; Joseph, E.; Blake, M.; Sahani, D.; Kambadakone, A. Dual-layer dual-energy CT for characterization of adrenal nodules: Can virtual unenhanced images replace true unenhanced acquisitions? Abdom. Radiol. 2021, 46, 4345–4352. [Google Scholar] [CrossRef]
- Loonis, A.-S.T.; Yu, H.; Glazer, D.I.; Bay, C.P.; Sodickson, A.D. Dual Energy–Derived Metrics for Differentiating Adrenal Adenomas From Nonadenomas on Single-Phase Contrast-Enhanced CT. Am. J. Roentgenol. 2023, 220, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Weidinger, S.; Czwikla, R.; Kaltenbach, B.; Albrecht, M.H.; Lenga, L.; Vogl, T.J.; Wichmann, J.L. Iodine and Fat Quantification for Differentiation of Adrenal Gland Adenomas From Metastases Using Third-Generation Dual-Source Dual-Energy Computed Tomography. Investig. Radiol. 2018, 53, 173–178. [Google Scholar] [CrossRef]
- Wu, L.; Yue, X.; Wu, L.; Yang, M.; Chen, Y.; Yu, J.; Diao, N.; Zhang, X.; Zhu, L.; Han, P. Differential diagnosis of adrenal adenomas and metastases using spectral parameters in dual-layer detector spectral CT. J. Cancer Res. Clin. Oncol. 2023, 149, 10453–10463. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, M.T.; Gassenmaier, S.; Walter, S.S.; Artzner, C.; Lades, F.; Faby, S.; Nikolaou, K.; Bongers, M.N. Differentiation of adrenal adenomas from adrenal metastases in single-phased staging dual-energy CT and radiomics. Diagn. Interv. Radiol. 2022, 28, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Liu, A.; Dong, Y.; Liu, Y.; Wang, H.; Sun, M.; Pu, R.; Chen, A. The Value of Nonenhanced Single-Source Dual-Energy CT for Differentiating Metastases from Adenoma in Adrenal Glands. Acad. Radiol. 2015, 22, 834–839. [Google Scholar] [CrossRef]
- Gupta, R.T.; Ho, L.M.; Marin, D.; Boll, D.T.; Barnhart, H.X.; Nelson, R.C. Dual-Energy CT for Characterization of Adrenal Nodules: Initial Experience. Am. J. Roentgenol. 2010, 194, 1479–1483. [Google Scholar] [CrossRef]
- Mileto, A.; Nelson, R.C.; Marin, D.; Roy Choudhury, K.; Ho, L.M. Dual-Energy Multidetector CT for the Characterization of Incidental Adrenal Nodules: Diagnostic Performance of Contrast-enhanced Material Density Analysis. Radiology 2015, 274, 445–454. [Google Scholar] [CrossRef]
- Morgan, D.E.; Weber, A.C.; Lockhart, M.E.; Weber, T.M.; Fineberg, N.S.; Berland, L.L. Differentiation of High Lipid Content From Low Lipid Content Adrenal Lesions Using Single-Source Rapid Kilovolt (Peak)-Switching Dual-Energy Multidetector CT. J. Comput. Assist. Tomogr. 2013, 37, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Cano Alonso, R.; Álvarez Vázquez, A.; Andreu Vázquez, C.; Thuissard Vasallo, I.J.; Fernández Alfonso, A.; Recio Rodríguez, M.; Martínez De Vega, V. Dual-energy CT in the differentiation between adrenal adenomas and metastases: Usefulness of material density maps and monochromatic images. Radiol. Engl. Ed. 2023, 65, 402–413. [Google Scholar] [CrossRef]
- Shi, J.W.; Dai, H.Z.; Shen, L.; Xu, D.F. Dual-energy CT: Clinical application in differentiating an adrenal adenoma from a metastasis. Acta Radiol. 2014, 55, 505–512. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Aim of the Study | Dual-Energy Technology | Main Results | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cano Alonso et al., 2023 [22] | To assess the ability of dual-energy CT (DECT) monochromatic images and material decomposition maps to differentiate adrenal adenomas from metastases and propose optimal cutoff values. | Rapid-kilovoltage-switching DECT (GE Revolution CT, GE HealthCare, Waukesha, Wisconsin, United States) with material decomposition analysis (water–iodine and fat–water basis pairs) and monochromatic imaging (55, 70, and 140 keV). | Phase and Parameter | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) | |||
Arterial Phase (70 keV, HU) | 0.76 | ≤42.4 | 92 | 60 | ||||||
Arterial Phase (140 keV, HU) | 0.94 | ≤18.9 | 88 | 94 | ||||||
Portal Phase (55 keV, HU) | 0.76 | ≤95.4 | 68 | 84 | ||||||
Portal Phase (70 keV, HU) | 0.82 | ≤58.4 | 80 | 84 | ||||||
Portal Phase (140 keV, HU) | 0.90 | ≤16.35 | 96 | 84 | ||||||
Diagnostic Performance of DECT Material Density Maps for Differentiating Adenomas and Metastases | ||||||||||
Phase and Parameter | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) | ||||||
Arterial Phase (Water–Iodine, mg/cm3) | 0.97 | ≥1012.5 | 88 | 96 | ||||||
Portal Phase (Water–Iodine, mg/cm3) | 0.93 | ≥1009.5 | 92 | 92 | ||||||
Cao et al., 2021 [13] | To evaluate the diagnostic performance of dual-layer dual-energy CT (dlDECT) in characterizing adrenal nodules and to determine whether virtual unenhanced (VUE) images can replace true unenhanced (TUE) acquisitions. | Dual-layer dual-energy CT (Philips iQon, Philips Medical Systems, Cleveland, Ohio, United States) with material decomposition-based virtual unenhanced imaging. | Nodule Type | True Unenhanced Attenuation (Mean ± SD, HU) | Virtual Unenhanced Attenuation (Mean ± SD, HU) | p-Value | ||||
All Adrenal Nodules (n = 73) | 7.1 ± 19.8 | 20.0 ± 17.2 | <0.05 | |||||||
Adenomas (n = 65) | 6.9 ± 12.8 | 20.5 ± 9.9 | <0.0001 | |||||||
Virtual Unenhanced Attenuation Thresholds for Lipid-Rich Adenomas | Sensitivity (%) | Specificity (%) | ||||||||
≤10 HU (Standard Threshold) | 20 (9/45) | 100 (26/26) | ||||||||
≤22 HU (Adjusted Threshold) | 82 (37/45) | 85 (22/26) | ||||||||
Gupta et al., 2010 [19] | To evaluate whether dual-energy CT (DECT) can improve the diagnostic performance of CT in differentiating adrenal adenomas from metastatic lesions. | Single-source 64-MDCT scanner (GE LightSpeed VCT, GE HealthCare, Waukesha, Wisconsin, United States) with dual-energy software (Volume Dual Energy, GE Healthcare. Waukesha, Wisconsin, United States) using 140 kVp and 80 kVp acquisitions. | Parameter | Adenomas (n = 26) | Metastases (n = 5) | p-Value | ||||
Mean Attenuation at 140 kVp (HU) | 2.2 ± 9.9 | 28.5 ± 2.9 | <0.003 | |||||||
Mean Attenuation at 80 kVp (HU) | 2.6 ± 13.3 | 37.7 ± 6.0 | <0.003 | |||||||
Mean Attenuation Change (80–140 kVp) (HU) | 0.4 ± 7.1 | 9.2 ± 4.3 | <0.003 | |||||||
Mean Transverse Diameter (mm) | 15.9 ± 6.8 | 40.7 ± 21.9 | - | |||||||
Subgroup Analysis: Lipid-Rich vs. Lipid-Poor Adenomas vs. Metastases | ||||||||||
Parameter | Lipid-Rich Adenomas (n = 20) | Lipid-Poor Adenomas (n = 6) | Metastases (n = 5) | p-Value | ||||||
Mean Attenuation at 140 kVp (HU) | −2.2 ± 6.0 | 16.6 ± 5.4 | 28.5 ± 2.9 | <0.01 | ||||||
Mean Attenuation at 80 kVp (HU) | −2.0 ± 10.7 | 17.9 ± 9.4 | 37.7 ± 6.0 | <0.01 | ||||||
Mean Attenuation Change (80–140 kVp) (HU) | 0.2 ± 7.7 | 1.3 ± 4.6 | 9.2 ± 4.3 | <0.01 | ||||||
Ho et al., 2012 [11] | To determine whether virtual unenhanced (VUE) attenuation values derived from contrast-enhanced dual-energy CT can reliably replace true unenhanced attenuation values in the characterization of adrenal nodules. | Dual-source CT (Siemens Somatom Definition, Siemens Healthineers, Forchheim, Germany) with 80 kVp and 140 kVp energy levels, using an iodine subtraction algorithm to generate virtual unenhanced images. | Nodule Type | True Unenhanced Attenuation (Mean ± SD, HU) | Virtual Unenhanced Attenuation (Mean ± SD, HU) | p-Value | ||||
All Nodules (n = 23) | 12.9 ± 13.4 | 14.7 ± 15.1 | 0.20 | |||||||
Adenomas (n = 19) | 8.9 ± 10.4 | 10.3 ± 13.1 | 0.45 | |||||||
Lipid-Rich Adenomas (n = 9) | −0.41 ± 2.6 | 2.8 ± 11.5 | 0.34 | |||||||
Lipid-Poor Adenomas (n = 10) | 19.6 ± 6.5 | 20.0 ± 9.6 | 0.83 | |||||||
Metastases (n = 4) | 32.9 ± 5.9 | 37.2 ± 7.0 | 0.01 | |||||||
Ju et al., 2015 [18] | To evaluate the diagnostic performance of nonenhanced single-source dual-energy CT (ssDECT) in differentiating adrenal metastases from adenomas. | Single-source dual-energy CT (GE Discovery CT750 HD, GE HealthCare, Waukesha, Wisconsin, United States) with fast tube voltage switching (80 and 140 kVp) and material decomposition analysis. | Parameter | Metastases (n = 63, Median ± Range) | Adenomas (n = 64, Median ± Range) | p-Value | ||||
CT Number at 40 keV (HU) | 50.47 ± 29.93 | -0.76 ± 33.04 | <0.001 | |||||||
CT Number at 140 keV (HU) | 29.00 ± 9.36 | 13.73 ± 18.96 | <0.001 | |||||||
Effective Atomic Number (Z-eff) | 7.76 ± 0.23 | 7.42 ± 0.32 | <0.001 | |||||||
Fat Concentration (mg/mL) | −177.37 ± 296.38 | 126.73 ± 328.07 | <0.001 | |||||||
Spectral Curve Patterns in Adenomas and Metastases | ||||||||||
Curve Type | Metastases (n = 63) | Adenomas (n = 64) | p-Value | |||||||
Ascending (K > 0.1) | 3.2% (2/63) | 60.9% (39/64) | <0.05 | |||||||
Straight (−0.1 ≤ K ≤ 0.1) | 20.6% (13/63) | 21.9% (14/64) | - | |||||||
Descending (K < −0.1) | 76.2% (48/63) | 17.2% (11/64) | <0.05 | |||||||
Diagnostic Accuracy of ssDECT Parameters in Differentiating Adenomas and Metastases | ||||||||||
Parameter | Threshold | Sensitivity (%) | Specificity (%) | AUC | ||||||
CT Number at 40 keV (HU) | ≥21.78 | 92.1 | 76.6 | 0.90 | ||||||
Effective Atomic Number (Z-eff) | ≥7.59 | 81.0 | 75.0 | 0.88 | ||||||
Fat Concentration (mg/mL) | ≤−73.98 | 82.8 | 73.0 | 0.84 | ||||||
Loonis et al., 2023 [14] | To compare the diagnostic performance of various dual-energy CT (DECT)-derived metrics, including virtual non-contrast (VNC) attenuation, fat fraction, iodine density, and relative enhancement ratio, for characterizing adrenal masses. | Dual-source DECT (Siemens SOMATOM Definition Flash and SOMATOM Force, Siemens Healthineers, Forchheim, Germany) using three-material decomposition (fat, iodine, soft tissue) and virtual non-contrast imaging. | Parameter | Adenomas (Mean ± SD) | Nonadenomas (Mean ± SD) | p-Value | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) |
Virtual Non-contrast (VNC) Attenuation (HU) | 18.5 ± 12.9 | 34.1 ± 8.9 | <0.001 | 0.85 | ≤15.2 HU | 39% | 100% | |||
Fat Fraction (%) | 24.3 ± 8.2 | 14.2 ± 5.6 | <0.001 | 0.85 | ≥23.8% | 59% | 100% | |||
Normalized Iodine Density | 0.34 ± 0.15 | 0.17 ± 0.17 | <0.001 | 0.81 | ≥0.90 | 1% | 100% | |||
Relative Enhancement Ratio | 186% ± 96% | 58% ± 59% | <0.001 | 0.87 | ≥214% | 37% | 100% | |||
Martin et al., 2018 [15] | To evaluate the diagnostic performance of third-generation dual-source dual-energy CT (DECT) iodine and fat quantification in differentiating adrenal adenomas from metastases. | Third-generation dual-source DECT (Siemens SOMATOM Force, Siemens Healthineers, Forchheim, Germany) using material decomposition analysis for iodine density and fat fraction quantification. | Parameter | Adenomas (Mean ± SD) | Metastases (Mean ± SD) | p-Value | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) |
Unenhanced Attenuation (HU) | 7.2 ± 14.8 | 26.9 ± 16.2 | <0.001 | 0.75 | ≥10.0 HU | 64.9 | 73.1 | |||
Contrast-Enhanced Attenuation (HU) | 42.1 ± 16.0 | 90.6 ± 19.4 | <0.001 | 0.80 | ≥46.5 HU | 58.3 | 84.6 | |||
Iodine Density (mg/mL) | 1.3 ± 0.4 | 3.2 ± 1.4 | <0.001 | 0.97 | ≥1.6 mg/mL | 97.2 | 96.2 | |||
Fat Fraction (%) | 34.2 ± 12.6 | 10.7 ± 7.8 | <0.001 | 0.93 | ≤17.7% | 89.2 | 88.5 | |||
Mileto et al., 2015 [20] | To determine whether contrast-enhanced dual-energy multidetector CT (DECT) with material decomposition analysis can differentiate adrenal adenomas from nonadenoma and compare its performance with that of non-enhanced CT. | Dual-energy multidetector CT (GE Discovery CT750 HD, GE HealthCare, Waukesha, Wisconsin, United States) with fast tube voltage switching (80 and 140 kVp) and material decomposition (fat–iodine and fat–water basis pairs). | Parameter | Adenomas (Mean ± SD) | Nonadenomas (Mean ± SD) | p-Value | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) |
Unenhanced Attenuation (HU) | 5.5 ± 18.2 | 32.3 ± 8.8 | <0.0001 | - | ≤10.0 HU | 67 | 100 | |||
Fat–Iodine Density (mg/cm3) | 970.4 ± 17.2 | 1012.3 ± 9.3 | <0.0001 | - | ≤997 mg/cm3 | 96 | 100 | |||
Iodine–Fat Density (mg/cm3) | 2.5 ± 0.3 | 4.5 ± 1.5 | <0.0001 | - | ≤3.0 mg/cm3 | 96 | 100 | |||
Fat–Water Density (mg/cm3) | −666.7 ± 154.8 | −2141.8 ± 953.2 | <0.0001 | - | ≥−950 mg/cm3 | 96 | 100 | |||
Water–Fat Density (mg/cm3) | 1628.4 ± 177.3 | 3225.0 ± 986.1 | <0.0001 | - | ≤1963.6 mg/cm3 | 96 | 100 | |||
Morgan et al., 2013 [21] | To evaluate whether single-source rapid kilovolt (peak)-switching dual-energy multidetector CT (RSDECT) can differentiate high-lipid-content (HLC) from low-lipid-content (LLC) adrenal lesions. | Single-source rapid kilovolt (peak)-switching DECT (GE Discovery CT750 HD, GE HealthCare, Waukesha, Wisconsin, United States) with material decomposition imaging using water–iodine and fat–iodine basis pairs. | Parameter | HLC Adenomas (Mean ± SD) | LLC Adenomas (Mean ± SD) | Metastases (Mean ± SD) | p-Value | |||
Unenhanced Attenuation (HU) | −8.5 ± 13.9 | 27.4 ± 8.8 | 40.9 ± 12.3 | <0.001 | ||||||
Attenuation at 140 keV (HU) | 5.44 ± 8.8 | 24.0 ± 4.4 | 28.5 ± 13.7 | <0.001 | ||||||
Fat-Iodine Density (mg/mL) | 986 ± 8 | 1002 ± 4 | 1006 ± 13 | <0.001 | ||||||
Water-Iodine Density (mg/mL) | 994 ± 8 | 1011 ± 5 | 1014 ± 13 | <0.001 | ||||||
ROC Analysis for Differentiating HLC and LLC Lesions | ||||||||||
RSDECT Parameter | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) | ||||||
140 keV Attenuation (HU) | 0.929 | ≤9.5 HU | 64% | 94.4% | ||||||
Fat-Iodine Density (mg/mL) | 0.917 | ≤987 mg/mL | 59% | 94.4% | ||||||
Water-Iodine Density (mg/mL) | 0.912 | ≤994 mg/mL | 50% | 94.4% | ||||||
Nagayama et al., 2020 [12] | To determine whether virtual non-contrast (VNC) attenuation, iodine density, and their combination enable reliable differentiation between adrenal adenomas and metastases using portal venous phase dual-energy CT. | Dual-layer spectral detector CT (Philips iQon Spectral CT, Philips Medical Systems, Cleveland, Ohio, United States). | Parameter | Adenomas (Mean ± SD) | Metastases (Mean ± SD) | p-Value | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) |
Unenhanced Attenuation (HU) | 10 ± 13 | 35 ± 6 | <0.001 | 0.96 | ≤22 HU | 85 | 96 | |||
Virtual Non-contrast (VNC) Attenuation (HU) | 21 ± 10 | 36 ± 6 | <0.001 | 0.91 | ≤29 HU | 79 | 95 | |||
Iodine Density (mg/mL) | 2.4 ± 0.8 | 1.7 ± 1.0 | <0.001 | 0.79 | ≥1.82 mg/mL | 78 | 71 | |||
Iodine/VNC Ratio | 14.5 ± 10.2 | 4.6 ± 1.4 | <0.001 | 0.98 | ≥6.7 | 95 | 95 | |||
Shi et al., 2014 [23] | To evaluate the ability of dual-energy CT (DECT) to differentiate adrenal adenomas from metastases using attenuation measurements at different energy levels. | Dual-source DECT (Siemens SOMATOM Definition Flash, Siemens Healthineers, Forchheim, Germany) with tube voltages of 80 kVp and 140 kVp, allowing for monoenergetic image reconstruction at 40–100 keV. | Parameter | Adenomas (Mean ± SD, HU) | Metastases (Mean ± SD, HU) | p-Value | ||||
Mean Attenuation at 80 kVp | 10.1 ± 21.7 | 35.6 ± 8.4 | <0.001 | |||||||
Mean Attenuation at 140 kVp | 18.4 ± 16.0 | 33.7 ± 7.6 | <0.001 | |||||||
Mean Attenuation Change (MAVC 80–140 kVp, HU) | 8.2 ± 6.8 | −1.8 ± 2.3 | <0.001 | |||||||
Mean Attenuation at 40 keV | −4.0 ± 32.7 | 38.7 ± 10.8 | <0.001 | |||||||
Mean Attenuation at 100 keV | 18.9 ± 15.5 | 33.6 ± 7.6 | <0.001 | |||||||
Mean Attenuation Change (MAVC 40–100 keV, HU) | 23.0 ± 19.3 | −5.0 ± 6.2 | <0.001 | |||||||
ROC Analysis for Differentiating Adenomas and Metastases | ||||||||||
Parameter | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) | ||||||
MAVC 80–140 kVp (HU) | 0.964 | >2.42 HU | 78.6 | 100 | ||||||
MAVC 40–100 keV (HU) | 0.964 | >6.95 HU | 78.6 | 100 | ||||||
Winkelmann et al., 2022 [17] | To evaluate the ability of dual-energy CT (DECT)-based iodine quantification, virtual non-contrast (VNC) imaging, and radiomic analysis in differentiating adrenal adenomas from metastases. | Dual-source CT (Siemens SOMATOM Definition Flash/Force, Siemens Healthineers, Forchheim, Germany) with postprocessing techniques including VNC imaging, iodine quantification, fat fraction analysis, and radiomics. | Parameter | AUC | Optimal Threshold | Sensitivity (%) | Specificity (%) | p-Value | ||
Virtual Non-Contrast (VNC) Attenuation (HU) | 0.89 | ≥13.07 HU | 87.5 | 78.2 | <0.001 | |||||
Fat Fraction (%) | 0.86 | ≤17.20% | 68.8 | 93.8 | <0.001 | |||||
Iodine Density (mg/mL) | 0.67 | ≤0.93 mg/mL | 37.5 | 96.9 | 0.075 | |||||
CT-Mixed Attenuation (HU) | 0.57 | >61.33 HU | 56.3 | 62.5 | 0.42 | |||||
Wu et al., 2023 [16] | To assess the diagnostic value of spectral parameters in differentiating adrenal adenomas from metastases using dual-layer spectral CT (DLSCT). | Dual-layer spectral detector CT (Philips iQon Spectral CT, Philips Medical Systems, Cleveland, Ohio, United States). | Parameter | Optimal Threshold | Sensitivity (%) | Specificity (%) | AUC | |||
Iodine-to-CTVNC Ratio | ≥4.18 | 74.4 | 91.9 | 0.920 | ||||||
CTVNC (HU) | ≤23 | 100.0 | 52.4 | 0.743 | ||||||
Slope of the Spectral HU Curve (s-SHC) | ≥2.1 | 95.4 | 42.9 | 0.723 | ||||||
Z-effective (Z-eff) | ≥8.25 | 93.0 | 42.9 | 0.706 | ||||||
Iodine Density (mg/mL) | ≥1.53 | 81.4 | 50.8 | 0.695 | ||||||
Normalized Iodine Density (NID) | ≥0.4 | 74.4 | 54.0 | 0.668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiralongo, F.; Mosconi, C.; Foti, P.V.; Calogero, A.E.; La Vignera, S.; Ini’, C.; Castiglione, D.G.; David, E.; Tamburrini, S.; Barbarino, S.; et al. The Role of Dual-Energy CT in Differentiating Adrenal Adenomas from Metastases: A Comprehensive Narrative Review. J. Pers. Med. 2025, 15, 131. https://doi.org/10.3390/jpm15040131
Tiralongo F, Mosconi C, Foti PV, Calogero AE, La Vignera S, Ini’ C, Castiglione DG, David E, Tamburrini S, Barbarino S, et al. The Role of Dual-Energy CT in Differentiating Adrenal Adenomas from Metastases: A Comprehensive Narrative Review. Journal of Personalized Medicine. 2025; 15(4):131. https://doi.org/10.3390/jpm15040131
Chicago/Turabian StyleTiralongo, Francesco, Cristina Mosconi, Pietro Valerio Foti, Aldo Eugenio Calogero, Sandro La Vignera, Corrado Ini’, Davide Giuseppe Castiglione, Emanuele David, Stefania Tamburrini, Sebastiano Barbarino, and et al. 2025. "The Role of Dual-Energy CT in Differentiating Adrenal Adenomas from Metastases: A Comprehensive Narrative Review" Journal of Personalized Medicine 15, no. 4: 131. https://doi.org/10.3390/jpm15040131
APA StyleTiralongo, F., Mosconi, C., Foti, P. V., Calogero, A. E., La Vignera, S., Ini’, C., Castiglione, D. G., David, E., Tamburrini, S., Barbarino, S., Palmucci, S., & Basile, A. (2025). The Role of Dual-Energy CT in Differentiating Adrenal Adenomas from Metastases: A Comprehensive Narrative Review. Journal of Personalized Medicine, 15(4), 131. https://doi.org/10.3390/jpm15040131