Presepsin: An Emerging Biomarker in the Management of Cardiometabolic Disorders
Abstract
:1. Introduction
2. The Role of Inflammation in Diabetes and Cardiovascular Disease
3. Presepsin as a Biomarker of Bacterial Infections
4. Presepsin in Cardiometabolic Diseases
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A. Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association. Circulation 2023, 148, 1606–1635, Erratum in Circulation 2024, 149, e1023. [Google Scholar] [CrossRef] [PubMed]
- DeGroat, W.; Abdelhalim, H.; Patel, K.; Mendhe, D.; Zeeshan, S.; Ahmed, Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci. Rep. 2024, 14, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [PubMed]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar]
- The DCCT Research Group. Diabetes Control and Complications Trial (DCCT): Results of feasibility study. Diabetes Care 1987, 10, 1–19. [Google Scholar]
- UK Prospective Diabetes Study Group. UKProspective Diabetes Study (UKPDS) VIII. Study design, progress and performance. Diabetologia 1991, 34, 877–890. [Google Scholar]
- Koufakis, T.; Kotsa, K. Alternative methods for assessing glycemia might prove useful in cases of discordance between glycated hemoglobin and self-monitoring of blood glucose. Acta Diabetol. 2020, 57, 1523–1524. [Google Scholar]
- Popovic, D.S.; Karakasis, P.; Koufakis, T.; Fragakis, N.; Papanas, N.; Mitrovic, M.; Gouveri, E.; Patoulias, D. Effect of sodium-glucose cotransporter-2 inhibitors on continuous glucose monitoring metrics, as adjunctive to insulin in adults with type 1 diabetes mellitus: A meta-analysis of randomized controlled trials. Metabolism 2024, 153, 155791. [Google Scholar]
- Karakasis, P.; Koufakis, T.; Patoulias, D.; Barkas, F.; Klisic, A.; Mitrovic, M.; Doumas, M.; Papanas, N.; Popovic, D.S. Effects of glucagon-like peptide-1 receptor agonists on glycated haemoglobin and continuous glucose monitoring metrics as adjunctive therapy to insulin in adults with type 1 diabetes: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2024, 26, 6043–6054. [Google Scholar] [PubMed]
- Kieu, A.; King, J.; Govender, R.D.; Östlundh, L. The Benefits of Utilizing Continuous Glucose Monitoring of Diabetes Mellitus in Primary Care: A Systematic Review. J. Diabetes Sci. Technol. 2023, 17, 762–774. [Google Scholar]
- Raj, R.; Mishra, R.; Jha, N.; Joshi, V.; Correa, R.; Kern, P.A. Time in range, as measured by continuous glucose monitor, as a predictor of microvascular complications in type 2 diabetes: A systematic review. BMJ Open Diabetes Res. Care 2022, 210, e002573. [Google Scholar]
- Anhalt, H. Limitations of Continuous Glucose Monitor Usage. Diabetes Technol. Ther. 2016, 18, 115–117. [Google Scholar]
- Koufakis, T.; Dimitriadis, G.; Metallidis, S.; Zebekakis, P.; Kotsa, K. The role of autoimmunity in the pathophysiology of type 2 diabetes: Looking at the other side of the moon. Obes. Rev. 2021, 22, e13231. [Google Scholar]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar]
- Alzamil, H. Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance. J. Obes. 2020, 2020, 5076858. [Google Scholar]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar]
- Gabarin, R.S.; Li, M.; Zimmel, P.A.; Marshall, J.C.; Li, Y.; Zhang, H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J. Innate Immun. 2021, 13, 323–332. [Google Scholar]
- Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018, 155, 407–417. [Google Scholar]
- Hersoug, L.G.; Møller, P.; Loft, S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes. Rev. 2016, 17, 297–312. [Google Scholar] [PubMed]
- Qin, X.; Zou, H. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmol. 2022, 22, 86. [Google Scholar]
- Awoyemi, A.; Trøseid, M.; Arnesen, H.; Solheim, S.; Seljeflot, I. Markers of metabolic endotoxemia as related to metabolic syndrome in an elderly male population at high cardiovascular risk: A cross-sectional study. Diabetol. Metab. Syndr. 2018, 10, 59. [Google Scholar] [PubMed]
- Trøseid, M.; Nestvold, T.K.; Rudi, K.; Thoresen, H.; Nielsen, E.W.; Lappegård, K.T. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: Evidence from bariatric surgery. Diabetes Care 2013, 36, 3627–3632. [Google Scholar]
- Moludi, J.; Maleki, V.; Jafari-Vayghyan, H.; Vaghef-Mehrabany, E.; Alizadeh, M. Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clin. Exp. Pharmacol. Physiol. 2020, 47, 927–939. [Google Scholar] [PubMed]
- Wang, X.; Bao, W.; Liu, J.; OuYang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar]
- Lee, C.C.; Adler, A.I.; Sandhu, M.S.; Sharp, S.J.; Forouhi, N.G.; Erqou, S.; Luben, R.; Bingham, S.; Khaw, K.T.; Wareham, N.J.; et al. Association of C-reactive protein with type 2 diabetes: Prospective analysis and meta-analysis. Diabetologia 2009, 52, 1040–1047. [Google Scholar]
- Hirschfield, G.M.; Pepys, M.B. C-reactive protein and cardiovascular disease: New insights from an old molecule. QJM 2003, 96, 793–807. [Google Scholar]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; Kastelein, J.; Koenig, W.; Genest, J.; Lorenzatti, A.; et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: A secondary analysis from the CANTOS randomised controlled trial. Lancet 2018, 391, 319–328. [Google Scholar]
- Abbasi, A.; Corpeleijn, E.; Postmus, D.; Gansevoort, R.T.; De Jong, P.E.; Gans, R.O.; Struck, J.; Hillege, H.L.; Stolk, R.P.; Navis, G.; et al. Plasma procalcitonin is associated with obesity, insulin resistance, and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2010, 95, E26–E31. [Google Scholar]
- Katte, J.C.; Kengne, A.P.; Tchapmi, D.; Agoons, B.B.; Nyirenda, M.; Mbacham, W.; Sobngwi, E. Procalcitonin Correlates with Cardiovascular Risk Better Than Highly Sensitive C-Reactive Protein in Patients with Type 2 Diabetes in Sub-Saharan Africa: Results From a Cross-Sectional Study. Cureus 2021, 13, e18357. [Google Scholar] [CrossRef]
- Abbasi, A.; Corpeleijn, E.; Postmus, D.; Gansevoort, R.T.; de Jong, P.E.; Gans, R.O.; Struck, J.; Hillege, H.L.; Stolk, R.P.; Navis, G.; et al. Plasma procalcitonin and risk of type 2 diabetes in the general population. Diabetologia 2011, 54, 2463–2465. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, M.P.; Mollar, A.; Palau, P.; Carratalá, A.; Núñez, E.; Santas, E.; Bodí, V.; Chorro, F.J.; Miñana, G.; Blasco, M.L.; et al. Procalcitonin and long-term prognosis after an admission for acute heart failure. Eur. J. Intern. Med. 2015, 26, 42–48. [Google Scholar] [CrossRef]
- Mollar, A.; Villanueva, M.P.; Carratalá, A.; Núñez, E.; Sanchis, J.; Núñez, J. Determinants of procalcitonin concentration in acute heart failure. Int. J. Cardiol. 2014, 177, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.; Henriques, M.; Parker, T.; Slutsky, A.S.; Zhang, H. Human neutrophil peptides: A novel potential mediator of inflammatory cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1817–H1824. [Google Scholar] [CrossRef]
- Arai, M.; Lefer, D.J.; So, T.; DiPaula, A.; Aversano, T.; Becker, L.C. An anti-CD18 antibody limits infarct size and preserves left ventricular function in dogs with ischemia and 48-hour reperfusion. J. Am. Coll. Cardiol. 1996, 27, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Steyers, C.M., 3rd; Miller, F.J., Jr. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014, 15, 11324–11349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avgerinou, G.; Tousoulis, D.; Siasos, G.; Oikonomou, E.; Maniatis, K.; Papageorgiou, N.; Paraskevopoulos, T.; Miliou, A.; Koumaki, D.; Latsios, G.; et al. Anti-tumor necrosis factor α treatment with adalimumab improves significantly endothelial function and decreases inflammatory process in patients with chronic psoriasis. Int. J. Cardiol. 2011, 151, 382–383. [Google Scholar] [CrossRef] [PubMed]
- Gupta, L.; Thomas, J.; Ravichandran, R.; Singh, M.; Nag, A.; Panjiyar, B.K. Inflammation in Cardiovascular Disease: A Comprehensive Review of Biomarkers and Therapeutic Targets. Cureus 2023, 15, e45483. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bochaton, T.; Lassus, J.; Paccalet, A.; Derimay, F.; Rioufol, G.; Prieur, C.; Bonnefoy-Cudraz, E.; Crola Da Silva, C.; Bernelin, H.; Amaz, C.; et al. Association of myocardial hemorrhage and persistent microvascular obstruction with circulating inflammatory biomarkers in STEMI patients. PLoS ONE 2021, 16, e0245684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guarner, V.; Rubio-Ruiz, M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip. Top. Gerontol. 2015, 40, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, W.; Xie, J. Circulating interleukin-6 levels and cardiovascular and all-cause mortality in the elderly population: A meta-analysis. Arch. Gerontol. Geriatr. 2017, 73, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Bakirci, E.M.; Topcu, S.; Kalkan, K.; Tanboga, I.H.; Borekci, A.; Sevimli, S.; Acikel, M. The role of the nonspecific inflammatory markers in determining the anatomic extent of venous thromboembolism. Clin. Appl. Thromb. Hemost. 2015, 21, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Wu, G. Relationship of Neutrophil-to-Lymphocyte Ratio with Carotid Plaque Vulnerability and Occurrence of Vulnerable Carotid Plaque in Patients with Acute Ischemic Stroke. BioMed Res. Int. 2021, 2021, 6894623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrone, M.A.; Aimo, A.; Bernardini, S.; Clerico, A. Inflammageing and Cardiovascular System: Focus on Cardiokines and Cardiac-Specific Biomarkers. Int. J. Mol. Sci. 2023, 24, 844. [Google Scholar] [CrossRef]
- Lin, G.; Dai, C.; Xu, K.; Wu, M. Predictive value of neutrophil to lymphocyte ratio and red cell distribution width on death for ST segment elevation myocardial infarction. Sci. Rep. 2021, 11, 11506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiller, C.; Reindl, M.; Holzknecht, M.; Klapfer, M.; Beck, A.; Henninger, B.; Mayr, A.; Klug, G.; Reinstadler, S.J.; Metzler, B. Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. Eur. J. Intern. Med. 2019, 64, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.; Giannopoulos, G.; Panagopoulou, V.; Bouras, G.; Raisakis, K.; Kossyvakis, C.; Karageorgiou, S.; Papadimitriou, C.; Vastaki, M.; Kaoukis, A.; et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: A prospective, randomized study. JACC Heart Fail. 2014, 2, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.; Giannopoulos, G.; Papoutsidakis, N.; Panagopoulou, V.; Kossyvakis, C.; Raisakis, K.; Cleman, M.W.; Stefanadis, C. Colchicine and the heart: Pushing the envelope. J. Am. Coll. Cardiol. 2013, 62, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Kyriazopoulou, E.; Leventogiannis, K.; Tavoulareas, G.; Mainas, E.; Toutouzas, K.; Mathas, C.; Prekates, A.; Sakka, V.; Panagopoulos, P.; Syrigos, K.; et al. Presepsin as a diagnostic and prognostic biomarker of severe bacterial infections and COVID-19. Sci. Rep. 2023, 13, 3814. [Google Scholar]
- Drăgoescu, A.N.; Pădureanu, V.; Stănculescu, A.D.; Chiuțu, L.C.; Florescu, D.N.; Gheonea, I.A.; Pădureanu, R.; Stepan, A.; Streba, C.T.; Drocaș, A.I.; et al. Presepsin as a Potential Prognostic Marker for Sepsis According to Actual Practice Guidelines. J. Pers. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- Piccioni, A.; Santoro, M.C.; de Cunzo, T.; Tullo, G.; Cicchinelli, S.; Saviano, A.; Valletta, F.; Pascale, M.M.; Candelli, M.; Covino, M.; et al. Presepsin as Early Marker of Sepsis in Emergency Department: A Narrative Review. Medicina 2021, 57, 770. [Google Scholar] [CrossRef]
- Giavarina, D.; Carta, M. Determination of reference interval for presepsin, an early marker for sepsis. Biochem. Med. 2015, 25, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Yaegashi, Y.; Shirakawa, K.; Sato, N.; Suzuki, Y.; Kojika, M.; Imai, S.; Takahashi, G.; Miyata, M.; Furusako, S.; Endo, S. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J. Infect. Chemother. 2005, 11, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, J.; Park, D.W.; Seok, H.; Ahn, S.; Kim, J.; Park, J.; Cho, H.J.; Moon, S. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: A prospective observational study according to the Sepsis-3 definitions. BMC Infect. Dis. 2022, 22, 8. [Google Scholar]
- Koizumi, Y.; Sakanashi, D.; Mohri, T.; Watanabe, H.; Shiota, A.; Asai, N.; Kato, H.; Hagihara, M.; Murotani, K.; Yamagishi, Y.; et al. Can presepsin uniformly respond to various pathogens?—An in vitro assay of new sepsis marker. BMC Immunol. 2020, 21, 33. [Google Scholar]
- Bas, S.; Gauthier, B.R.; Spenato, U.; Stingelin, S.; Gabay, C. CD14 is an acute-phase protein. J. Immunol. 2004, 172, 4470–4479. [Google Scholar]
- Miyoshi, M.; Inoue, Y.; Nishioka, M.; Ikegame, A.; Nakao, T.; Kishi, S.; Doi, T.; Nagai, K. Clinical evaluation of presepsin considering renal function. PLoS ONE 2019, 14, e0215791. [Google Scholar]
- Chenevier-Gobeaux, C.; Trabattoni, E.; Roelens, M.; Borderie, D.; Claessens, Y.E. Presepsin (sCD14-ST) in emergency department: The need for adapted threshold values? Clin. Chim. Acta 2014, 427, 34–36. [Google Scholar] [CrossRef]
- Juneja, D.; Jain, N.; Singh, O.; Goel, A.; Arora, S. Comparison between presepsin, procalcitonin, and CRP as biomarkers to diagnose sepsis in critically ill patients. J. Anaesthesiol. Clin. Pharmacol. 2023, 39, 458–462. [Google Scholar] [CrossRef]
- Yoon, S.H.; Kim, E.H.; Kim, H.Y.; Ahn, J.G. Presepsin as a diagnostic marker of sepsis in children and adolescents: A systemic review and meta-analysis. BMC Infect. Dis. 2019, 19, 760. [Google Scholar] [CrossRef]
- Ha, E.Y.; Park, I.R.; Chung, S.M.; Roh, Y.N.; Park, C.H.; Kim, T.G.; Kim, W.; Moon, J.S. The Potential Role of Presepsin in Predicting Severe Infection in Patients with Diabetic Foot Ulcers. J. Clin. Med. 2024, 13, 2311. [Google Scholar] [CrossRef] [PubMed]
- Bizzoca, D.; Piazzolla, A.; Moretti, L.; Vicenti, G.; Moretti, B.; Solarino, G. Physiologic postoperative presepsin kinetics following primary cementless total hip arthroplasty: A prospective observational study. World J. Orthop. 2023, 14, 547–553. [Google Scholar] [CrossRef]
- Botnariu, E.G.; Forna, N.C.; Popa, A.D.; Antohe, I.; Lacatusu, C.; Bogdan, M. Presepsin as a Biomarker for Sepsis Evolutions in Diabetis. Rev. Chim. 2015, 66, 2057–2059. [Google Scholar]
- Kouroupis, D.; Zografou, I.; Balaska, A.; Reklou, A.; Varouktsi, A.; Paschala, A.; Pyrpasopoulou, A.; Stavropoulos, K.; Vogiatzis, K.; Sarvani, A.; et al. Presepsin Levels in Infection-Free Subjects with Diabetes Mellitus: An Exploratory Study. Biomedicines 2024, 12, 1960. [Google Scholar] [CrossRef]
- Gomes, J.M.G.; Costa, J.A.; Alfenas, R.C.G. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism 2017, 68, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Maltese, G.; Koufakis, T.; Kotsa, K.; Karalliedde, J. Can sodium-glucose cotransporter 2 inhibitors ‘spin the thread of life’? Trends Endocrinol. Metab. 2023, 34, 1–4. [Google Scholar] [CrossRef]
- Koufakis, T.; Pavlidis, A.N.; Metallidis, S.; Kotsa, K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: Meeting at the crossroads between heart, diabetes and infectious diseases. Int. J. Clin. Pharm. 2012, 43, 764–767. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nishiyama, M.; Taguchi, T.; Asai, M.; Yoshida, M.; Kambayashi, M.; Terada, Y.; Hashimoto, K. Insulin exhibits short-term anti-inflammatory but long-term proinflammatory effects in vitro. Mol. Cell. Endocrinol. 2009, 298, 25–32. [Google Scholar] [CrossRef]
- Jain, M.K.; Ridker, P.M. Anti-inflammatory effects of statins: Clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 2005, 4, 977–987. [Google Scholar] [CrossRef]
- Koufakis, T.; Kouroupis, D.; Dimakopoulos, G.; Georgiadis, T.; Kourti, A.; Doukelis, P.; Zografou, I.; Patoulias, D.; Popovic, D.S.; Pyrpasopoulou, A.; et al. Obesity, but Not Overweight, Is Associated with Increased Presepsin Levels in Infection-Free Individuals: An Exploratory Study. Biomedicines 2025, 13, 701. [Google Scholar] [CrossRef]
- Zografou, I.; Kouroupis, D.; Dimakopoulos, G.; Doukelis, P.; Doumas, M.; Koufakis, T. Correlation Between Presepsin Levels and Continuous Glucose Monitoring Metrics in Infection-Free Individuals with Type 1 Diabetes. J. Diabetes Sci. Technol. 2024, 19322968241288865. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Wang, J.; Rodbard, D.; Kohn, M.A.; Li, C.; Liepmann, D.; Kerr, D.; Ahn, D.; Peters, A.L.; Umpierrez, G.E.; et al. A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. J. Diabetes Sci. Technol. 2023, 17, 1226–1242. [Google Scholar] [CrossRef] [PubMed]
- Biyik, I.; Caglar, F.N.T.; Isiksacan, N.; Kocamaz, N.; Kasapoglu, P.; Gedikbasi, A.; Akturk, F. Serum Presepsin Levels Are Not Elevated in Patients with Controlled Hypertension. Int. J. Hypertens. 2018, 2018, 8954718. [Google Scholar] [PubMed]
- Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des. 2012, 18, 4385–4413. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Saz-Lara, A.; García-Ortiz, L.; Lugones-Sánchez, C.; Notario-Pacheco, B.; Martinez-Vizcaino, V.; Gomez-Marcos, M.A. Comparative Effect of Antihypertensive Drugs in Improving Arterial Stiffness in Hypertensive Adults (RIGIPREV Study). A Protocol for Network Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 13353. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, Q.; Liu, B.; Shao, F.; Li, C. Presepsin As a Biomarker for Evaluating Prognosis and Early Innate Immune Response of Out-of-Hospital Cardiac Arrest Patients After Return of Spontaneous Circulation. Crit. Care Med. 2019, 47, e538–e546. [Google Scholar] [CrossRef]
- Handke, J.; Scholz, A.S.; Dehne, S.; Krisam, J.; Gillmann, H.J.; Janssen, H.; Arens, C.; Espeter, F.; Uhle, F.; Motsch, J.; et al. Presepsin for pre-operative prediction of major adverse cardiovascular events in coronary heart disease patients undergoing noncardiac surgery: Post hoc analysis of the Leukocytes and Cardiovascular Peri-operative Events-2 (LeukoCAPE-2) Study. Eur. J. Anaesthesiol. 2020, 37, 908–919. [Google Scholar]
- Handke, J.; Scholz, A.S.; Gillmann, H.J.; Janssen, H.; Dehne, S.; Arens, C.; Kummer, L.; Uhle, F.; Weigand, M.A.; Motsch, J.; et al. Elevated Presepsin Is Associated with Perioperative Major Adverse Cardiovascular and Cerebrovascular Complications in Elevated-Risk Patients Undergoing Noncardiac Surgery: The Leukocytes and Cardiovascular Perioperative Events Study. Anesth. Analg. 2019, 128, 1344–1353. [Google Scholar]
- Bıyık, İ.; Çağlar, F.N.T.; Işıksaçan, N.; Şahin, M.H.; Karabulut, D.; Aktürk, F. Serum Presepsin Levels in Patients with Decompensated Heart Failure. J. Updates Cardiovasc. Med. 2018, 6, 60–67. [Google Scholar] [CrossRef]
- Nishimura, H.; Ishii, J.; Muramatsu, T.; Harada, M.; Motoyama, S.; Matsui, S.; Naruse, H.; Watanabe, E.; Izawa, H.; Ozaki, Y. Presepsin, Soluble CD14 Subtype, Is a Novel Marker of Short-term Mortality in Patients Hospitalized for Worsening Heart Failure. J. Card. Fail. 2017, 23, S6. [Google Scholar]
- Ishii, J.; Takahashi, H.; Nishimura, H.; Fujiwara, W.; Ohta, M.; Kawai, H.; Muramatsu, T.; Harada, M.; Yamada, A.; Naruse, H.; et al. Circulating presepsin (soluble CD14 subtype) as a novel marker of mortality in patients treated at medical cardiac intensive care units. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946.1838. [Google Scholar] [CrossRef]
- Toprak, K.; Inanır, M.; Memioğlu, T.; Kaplangoray, M.; Palice, A.; Tascanov, M.B. Could Zonulin and Presepsin Be Biomarkers and Therapeutic Targets for Acute Myocarditis? Arq. Bras. Cardiol. 2023, 120, e20230017. [Google Scholar]
- Caglar, F.N.T.; Isiksacan, N.; Biyik, I.; Opan, S.; Cebe, H.; Akturk, I.F. Presepsin (sCD14-ST): Could it be a novel marker for the diagnosis of ST elevation myocardial infarction? Arch. Med. Sci. Atheroscler. Dis. 2017, 2, e3–e8. [Google Scholar]
- Nishimura, H.; Ishii, J.; Takahashi, H.; Kawai, H.; Muramatsu, T.; Harada, M.; Motoyama, S.; Naruse, H.; Watanabe, E.; Hayashi, M.; et al. Abstract 11016: Combined Assessment of Presepsin, Soluble CD14 Subtype, and B-Type Natriuretic Peptide Predicts Cardiovascular Events in Outpatients with Chronic Kidney Disease. Circulation 2018, 138 (Suppl. S1), A11016. [Google Scholar]
- Sehestedt, T.; Hansen, T.W.; Li, Y.; Richart, T.; Boggia, J.; Kikuya, M.; Thijs, L.; Stolarz-Skrzypek, K.; Casiglia, E.; Tikhonoff, V.; et al. Are blood pressure and diabetes additive or synergistic risk factors? Outcome in 8494 subjects randomly recruited from 10 populations. Hypertens Res. 2011, 34, 714–721. [Google Scholar] [PubMed]
- Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation. Emerging Safety Science: Workshop Summary; National Academies Press: Washington, DC, USA, 2008; p. 7. Available online: https://www.ncbi.nlm.nih.gov/books/NBK4041/ (accessed on 1 December 2024).
- Filipovic, M.G.; Luedi, M.M. Cardiovascular Biomarkers: Current Status and Future Directions. Cells 2023, 12, 2647. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Calderón, P.; Wiedemann, L.; Benítez-Páez, A. The microbiota composition drives personalized nutrition: Gut microbes as predictive biomarkers for the success of weight loss diets. Front. Nutr. 2022, 9, 1006747. [Google Scholar]
- Cefalo, C.M.A.; Cinti, F.; Moffa, S.; Impronta, F.; Sorice, G.P.; Mezza, T.; Pontecorvi, A.; Giaccari, A. Sotagliflozin, the first dual SGLT inhibitor: Current outlook and perspectives. Cardiovasc. Diabetol. 2019, 18, 20. [Google Scholar]
- Zeng, L.; Ma, J.; Wei, T.; Wang, H.; Yang, G.; Han, C.; Zhu, T.; Tian, H.; Zhang, M. The effect of canagliflozin on gut microbiota and metabolites in type 2 diabetic mice. Genes. Genom. 2024, 46, 541–555. [Google Scholar]
First Author, Year [Ref.] | Study Design | Study Population | Key Findings |
---|---|---|---|
Caglar, 2017 [84] | Cross-sectional | 48 patients with STEMI and 50 controls | Presepsin levels were higher in STEMI patients compared with controls |
Nishimura, 2017 [81] | Prospective | 506 patients hospitalized with worsening HF | Presepsin was an independent predictor of 6-month mortality |
Biyik, 2018 [74] | Cross-sectional | 48 patients with well-controlled HT (22% with DM)/49 normotensive controls (19.6% with DM) | Presepsin levels were lower in patients with HT than controls and positively correlated with hsCRP |
Nishimura, 2018 [85] | Prospective | 239 outpatients with CKD | The combined assessment of presepsin and BNP predicted CV events |
Qi, 2019 [77] | Retrospective | 165 out-of-hospital cardiac arrest patients (22.4% with DM)/100 healthy controls (8% with DM) | Presepsin levels were higher in patients than controls. Low presepsin concentrations were an independent prognostic factor for survival and favorable neurological outcomes |
Handke, 2019 [79] | Prospective | 40 patients with elevated CV risk undergoing non-cardiac surgery | Preoperative presepsin levels were associated with the risk of perioperative MACCEs |
Ishii, 2020 [82] | Prospective | 1636 patients treated at medical CICUs | Presepsin levels on admission were an independent predictor of mortality |
Kouroupis, 2024 [65] | Cross-sectional | 10 patients with uncontrolled T1DM/10 patients with well-controlled T1DM/23 patients with uncontrolled T2DM/19 patients with well-controlled T2DM/13 normoglycemic controls | Presepsin was lower in the well-controlled T2DM group compared to the well-controlled T1DM group. Presepsin levels were associated with the duration of DM |
Zografou, 2024 [72] | Cross-sectional | 10 patients with uncontrolled T1DM/10 patients with well-controlled T1DM, and 12 participants used CGM | No differences in presepsin levels between the well-controlled and uncontrolled groups. Presepsin was negatively correlated with TIR and positively correlated with GMI and GRI |
Koufakis, 2025 [71] | Cross-sectional | 27 individuals with obesity, 34 with overweight and 20 lean controls, all free of DM | Presepsin levels were higher in the obesity group compared to the overweight and control groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouroupis, D.; Zografou, I.; Doukelis, P.; Patoulias, D.; Popovic, D.S.; Karakasis, P.; Pyrpasopoulou, A.; Stavropoulos, K.; Papadopoulos, C.; Giouleme, O.; et al. Presepsin: An Emerging Biomarker in the Management of Cardiometabolic Disorders. J. Pers. Med. 2025, 15, 125. https://doi.org/10.3390/jpm15040125
Kouroupis D, Zografou I, Doukelis P, Patoulias D, Popovic DS, Karakasis P, Pyrpasopoulou A, Stavropoulos K, Papadopoulos C, Giouleme O, et al. Presepsin: An Emerging Biomarker in the Management of Cardiometabolic Disorders. Journal of Personalized Medicine. 2025; 15(4):125. https://doi.org/10.3390/jpm15040125
Chicago/Turabian StyleKouroupis, Dimitrios, Ioanna Zografou, Panagiotis Doukelis, Dimitrios Patoulias, Djordje S. Popovic, Paschalis Karakasis, Athina Pyrpasopoulou, Konstantinos Stavropoulos, Christodoulos Papadopoulos, Olga Giouleme, and et al. 2025. "Presepsin: An Emerging Biomarker in the Management of Cardiometabolic Disorders" Journal of Personalized Medicine 15, no. 4: 125. https://doi.org/10.3390/jpm15040125
APA StyleKouroupis, D., Zografou, I., Doukelis, P., Patoulias, D., Popovic, D. S., Karakasis, P., Pyrpasopoulou, A., Stavropoulos, K., Papadopoulos, C., Giouleme, O., Kotsa, K., Doumas, M., & Koufakis, T. (2025). Presepsin: An Emerging Biomarker in the Management of Cardiometabolic Disorders. Journal of Personalized Medicine, 15(4), 125. https://doi.org/10.3390/jpm15040125