Oxygen–Ozone Therapy in Tendinopathy Management: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Current Treatment Options for Tendinopathy: Scientific Evidence
4.2. Ozone Therapy
4.3. Clinical Evidence Supporting O2-O3 Therapy
4.4. Safety Profile and Limitations of O2-O3 Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
O2-O3 | Oxygen–ozone |
NSAIDs | Non-steroidal anti-inflammatory drugs |
ECM | Extracellular matrix |
ROM | Range of motion |
MRI | Magnetic Resonance Imaging |
VAS | Visual Analog Scale |
WORC | Western Ontario Rotator Cuff Index |
SPADI | Shoulder Pain and Disability Index |
ESWT | Extracorporeal shockwave therapy |
PUFAs | Polyunsaturated fatty acids |
H2O2 | Hydrogen peroxide |
LOPs | Lipid oxidation products |
ROS | Reactive oxygen species |
AREs | Antioxidant response elements |
References
- Asahara, H.; Inui, M.; Lotz, M.K. Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. J. Bone Min. Res. 2017, 32, 1773–1782. [Google Scholar] [CrossRef]
- Ning, C.; Li, P.; Gao, C.; Fu, L.; Liao, Z.; Tian, G.; Yin, H.; Li, M.; Sui, X.; Yuan, Z.; et al. Recent advances in tendon tissue engineering strategy. Front. Bioeng. Biotechnol. 2023, 11, 1115312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benage, L.G.; Sweeney, J.D.; Giers, M.B.; Balasubramanian, R. Dynamic Load Model Systems of Tendon Inflammation and Mechanobiology. Front. Bioeng. Biotechnol. 2022, 10, 896336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dyment, N.A.; Barrett, J.G.; Awad, H.A.; Bautista, C.A.; Banes, A.J.; Butler, D.L. A brief history of tendon and ligament bioreactors: Impact and future prospects. J. Orthop. Res. 2020, 38, 2318–2330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russo, V.; El Khatib, M.; Prencipe, G.; Mauro, A.; Di Giacinto, O.; Haidar-Montes, A.A.; Pulcini, F.; Dufrusine, B.; Cerveró-Varona, A.; Faydaver, M.; et al. Tendon 3D Scaffolds Establish a Tailored Microenvironment Instructing Paracrine Mediated Regenerative Amniotic Epithelial Stem Cells Potential. Biomedicines 2022, 10, 2578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theodossiou, S.K.; Murray, J.B.; Schiele, N.R. Cell-cell junctions in developing and adult tendons. Tissue Barriers 2020, 8, 1695491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Makuku, R.; Werthel, J.D.; Zanjani, L.O.; Nabian, M.H.; Tantuoyir, M.M. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: A concise literature review. J. Int. Med. Res. 2022, 50, 03000605221117212. [Google Scholar] [CrossRef]
- Klos, K.; Gueorguiev, B.; Carow, J.B.; Modabber, A.; Nebelung, S.; Kim, B.S.; Horst, K.; Weber, C.D.; Knobe, M. Soft tissue microcirculation around the healthy Achilles tendon: A cross-sectional study focusing on the Achilles tendon and dorsal surgical approaches to the hindfoot. J. Orthop. Surg. Res. 2018, 13, 142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, M.; Li, W.; Ni, X.; Sui, Y.; Li, H.; Chen, X.; Lu, Y.; Jiang, M.; Wang, C. Growth factors in the treatment of Achilles tendon injury. Front. Bioeng. Biotechnol. 2023, 11, 1250533. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mead, M.P.; Gumucio, J.P.; Awan, T.M.; Mendias, C.L.; Sugg, K.B. Pathogenesis and Management of Tendinopathies in Sports Medicine. Transl. Sports Med. 2018, 1, 5–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morrissey, D. Guidelines and pathways for clinical practice in tendinopathy: Their role and development. J. Orthop. Sports Phys. Ther. 2015, 45, 819–822. [Google Scholar] [CrossRef]
- Jeon, H.; McGrath, M.L.; Grandgenett, N.; Rosen, A.B. Clinical measures and their contribution to dysfunction in individuals with patellar tendinopathy. J. Sport. Rehabil. 2015, 28, 165–170. [Google Scholar] [CrossRef]
- Langan, S.P.; Murphy, T.; Johnson, W.M.; Carreker, J.D.; Riemann, B.L. The Influence of Active Hamstring Stiffness on Markers of Isotonic Muscle Performance. Sports 2021, 9, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Notarnicola, A.; Maccagnano, G.; Farì, G.; Bianchi, F.P.; Moretti, L.; Covelli, I.; Ribatti, P.; Mennuni, C.; Tafuri, S.; Pesce, V.; et al. Extracorporeal shockwave therapy for plantar fasciitis and gastrocnemius muscle: Effectiveness of a combined treatment. J. Biol. Regul. Homeost. Agents 2020, 34, 285–290. [Google Scholar] [CrossRef]
- Klatte-Schulz, F.; Minkwitz, S.; Schmock, A.; Bormann, N.; Kurtoglu, A.; Tsitsilonis, S.; Manegold, S.; Wildemann, B. Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics. Int. J. Mol. Sci. 2018, 19, 404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canosa-Carro, L.; Bravo-Aguilar, M.; Abuín-Porras, V.; Almazán-Polo, J.; García-Pérez-de-Sevilla, G.; Rodríguez-Costa, I.; López-López, D.; Navarro-Flores, E.; Romero-Morales, C. Current understanding of the diagnosis and management of the tendinopathy: An update from the lab to the clinical practice. Dis. Mon. 2022, 68, 101314. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; de Miranda, V.A.R.; Guimarães, J.A.M.; de Araujo Souza, G.G.; Wainchtock, V.S.; Grangeiro Neto, J.A.; de Araújo Goes, R.; Perini, J.A. Association of TNF-α -308G > A polymorphism with susceptibility to tendinopathy in athletes: A case-control study. BMC Sports Sci. Med. Rehabil. 2021, 13, 51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kane, S.F.; Olewinski, L.H.; Tamminga, K.S. Management of Chronic Tendon Injuries. Am. Fam. Physician 2019, 100, 147–157. [Google Scholar] [PubMed]
- Fearon, A.; Neeman, T.; Smith, P.; Scarvell, J.; Cook, J. Pain, not structural impairments may explain activity limitations in people with gluteal tendinopathy or hip osteoarthritis: A cross sectional study. Gait Posture 2017, 52, 237–243. [Google Scholar] [CrossRef]
- Moonot, P.; Dakhode, S. Current concept review of Achilles tendinopathy. J. Clin. Orthop. Trauma. 2024, 50, 102374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reuter, R.M.; Hiller, W.D.; Ainge, G.R.; Brown, D.W.; Dierenfield, L.; Shellock, F.G.; Crues, J.V. Ironman triathletes: MRI assessment of the shoulder. Skelet. Radiol. 2008, 37, 737–741. [Google Scholar] [CrossRef]
- Hidalgo-Tallón, F.J.; Torres-Morera, L.M.; Baeza-Noci, J.; Carrillo-Izquierdo, M.D.; Pinto-Bonilla, R. Updated Review on Ozone Therapy in Pain Medicine. Front. Physiol. 2022, 13, 840623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Sire, A.; Agostini, F.; Lippi, L.; Mangone, M.; Marchese, S.; Cisari, C.; Bernetti, A.; Invernizzi, M. Oxygen-Ozone Therapy in the Rehabilitation Field: State of the Art on Mechanisms of Action, Safety and Effectiveness in Patients with Musculoskeletal Disorders. Biomolecules 2021, 11, 356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Góngora-Rodríguez, J.; Rosety-Rodríguez, M.Á.; Rodríguez-Almagro, D.; Martín-Valero, R.; Góngora-Rodríguez, P.; Rodríguez-Huguet, M. Structural and Functional Changes in Supraspinatus Tendinopathy through Percutaneous Electrolysis, Percutaneous Peripheral Nerve Stimulation and Eccentric Exercise Combined Therapy: A Single-Blinded Randomized Clinical Trial. Biomedicines 2024, 12, 771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ulusoy, G.R.; Bilge, A.; Öztürk, Ö. Comparison of corticosteroid injection and ozone injection for relief of pain in chronic lateral epicondylitis. Acta Orthop. Belg. 2019, 85, 317–324. [Google Scholar] [PubMed]
- Kizilkaya, V.; Uruc, V.; Levent, A.; Kanat, Ö.; Yıldızgören, M.; Dogramaci, Y.; Kalaci, A. Effectiveness of Ozone Therapy on Tendon Healing: An Experimental Study in Generated Achilles Tendon Injury Model in Rats. J. Hard Tissue Biol. 2018, 27, 309–314. [Google Scholar] [CrossRef]
- Atar, M.Ö.; Korkmaz, N.; Aslan, S.G.; Tezen, Ö.; Köylü, S.U.; Demir, Y.; Kesikburun, S. Comparison of ultrasound-guided subacromial corticosteroid and ozone (O2-O3) injections in the treatment of chronic rotator cuff tendinopathy: A randomized clinical trial. Korean J. Pain 2023, 36, 128–136. [Google Scholar] [CrossRef]
- Babaei-Ghazani, A.; Fadavi, H.R.; Eftekharsadat, B.; Ebadi, S.; Ahadi, T.; Ghazaei, F.; Khabbaz, M.S. A randomized control trial of comparing ultrasound-guided ozone (O2-O3) vs. corticosteroid injection in patients with shoulder impingement. Am.J. Phys. Med. Rehabil. 2019, 98, 1018–1025. [Google Scholar] [CrossRef]
- Irby, A.; Gutierrez, J.; Chamberlin, C.; Thomas, S.J.; Rosen, A.B. Clinical management of tendinopathy: A systematic review of systematic reviews evaluating the effectiveness of tendinopathy treatments. Scand. J. Med. Sci. Sports 2020, 30, 1810–1826. [Google Scholar] [CrossRef]
- Lim, H.Y.; Wong, S.H. Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: A systematic review. Physiother. Res. Int. 2018, 23, e1721. [Google Scholar] [CrossRef]
- Farì, G.; Megna, M.; Ranieri, M.; Agostini, F.; Ricci, V.; Bianchi, F.P.; Rizzo, L.; Farì, E.; Tognolo, L.; Bonavolontà, V.; et al. Could the Improvement of Supraspinatus Muscle Activity Speed up Shoulder Pain Rehabilitation Outcomes inWheelchair Basketball Players? Int. J. Environ. Res. Public Health 2022, 20, 255. [Google Scholar] [CrossRef]
- Capotosto, S.; Nazemi, A.K.; Komatsu, D.E.; Penna, J. Prolotherapy in the Treatment of Sports-Related Tendinopathies: A Systematic Review of Randomized Controlled Trials. Orthop. J. Sports Med. 2024, 12, 23259671241275087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sauerschnig, M.; Stolberg-Stolberg, J.; Schmidt, C.; Wienerroither, V.; Plecko, M.; Schlichting, K.; Perka, C.; Dynybil, C. Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction. Eur. J. Med. Res. 2018, 23, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Notarnicola, A.; Ladisa, I.; Lanzilotta, P.; Bizzoca, D.; Covelli, I.; Bianchi, F.P.; Maccagnano, G.; Farì, G.; Moretti, B. Shock Waves and Therapeutic Exercise in Greater Trochanteric Pain Syndrome: A Prospective Randomized Clinical Trial with Cross-Over. J. Pers. Med. 2023, 13, 976. [Google Scholar] [CrossRef]
- Klonschinski, T.; Ament, S.J.; Schlereth, T.; Rompe, J.D.; Birklein, F. Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med. 2011, 12, 1532–1537. [Google Scholar] [CrossRef]
- Naterstad, I.F.; Joensen, J.; Bjordal, J.M.; Couppé, C.; Lopes-Martins, R.A.B.; Stausholm, M.B. Efficacy of low-level laser therapy in patients with lower extremity tendinopathy or plantar fasciitis: Systematic review and meta-analysis of randomised controlled trials. BMJ Open 2022, 12, e059479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsai, W.-C.; Tang, S.F.-T.; Liang, F.-C. Effect of therapeutic ultrasound on tendons. Am. J. Phys. Med. Rehabil. 2011, 90, 1068–1073. [Google Scholar] [CrossRef]
- Lubrano, E.; Mazas, P.F.; Freiwald, J.; Krüger, K.; Grattagliano, I.; Mur, E.; Silva, R.Q.; Maruri, G.R.; de Medeiros, L.S. An International Multidisciplinary Delphi-Based Consensus on Heat Therapy in Musculoskeletal Pain. Pain Ther. 2023, 12, 93–110, Erratum in Pain Ther. 2023, 12, 111–115. https://doi.org/10.1007/s40122-022-00449-y. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, G.W.; Won, Y.H.; Park, S.H.; Seo, J.H.; Kim, D.H.; Lee, H.N.; Ko, M.H. Effects of a Newly Developed Therapeutic Deep Heating Device Using High Frequency in Patients with Shoulder Pain and Disability: A Pilot Study. Pain Res. Manag. 2019, 2019, 8215371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bocci, V.A.; Zanardi, I.; Travagli, V. Ozone acting on human blood yields a hormetic dose-response relationship. J. Transl. Med. 2011, 9, 66. [Google Scholar] [CrossRef]
- Smith, N.L.; Wilson, A.L.; Gandhi, J.; Vatsia, S.; Khan, S.A. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med. Gas Res. 2017, 7, 212–219. [Google Scholar] [CrossRef]
- Bocci, V. How a calculated oxidative stress can yield multiple therapeutic effects. Free Radic. Res. 2012, 46, 1068–1075. [Google Scholar] [CrossRef]
- Bocci, V.; Aldinucci, C.; Bianchi, L. The use of hydrogen peroxide as a medical drug. Riv. Ital. Ossigeno Ozonoterapia 2005, 4, 30–39. [Google Scholar]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, J.H. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. Oxid. Med. Cell Longev. 2021, 2021, 6635460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef]
- Meyer, G.A.; Thomopoulos, S.; Abu-Amer, Y.; Shen, K.C. Tenotomy-induced muscle atrophy is sex-specific and independent of NFκB. eLife 2022, 11, e82016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buhrmann, C.; Mobasheri, A.; Busch, F.; Aldinger, C.; Stahlmann, R.; Montaseri, A.; Shakibaei, M. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2011, 286, 28556–28566. [Google Scholar] [CrossRef]
- Pelinsari, S.M.; Sarandy, M.M.; Vilela, E.F.; Novaes, R.D.; Schlamb, J.; Gonçalves, R.V. Ozone Exposure Controls Oxidative Stress and the Inflammatory Process of Hepatocytes in Murine Models. Antioxidants 2024, 13, 212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Xiao, M.; Yang, F.; Zhao, Z.; Liang, A. Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Med. Gas Res. 2025, 15, 164–170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vélez, B.P. Ozone therapy, a supplement for patients with fibromyalgia. Ozone Ther. Glob. J. 2014, 4, 39–49. [Google Scholar]
- Clavo, B.; Perez, J.L.; Lopez, L.; Suárez, G.; Lloret, M.; Rodríguez, V.; Macías, D.; Santana, M.; Morera, J.; Fiuza, D.; et al. Effect of ozone therapy on muscle oxygenation. J. Altern. Complement. Med. 2003, 9, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Bestch, M.; Tingart, M.; Baroncini, A. Ozone injection therapy for intervertebral disc herniation. Br. Med. Bull. 2020, 136, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Sconza, C.; Respizzi, S.; Virelli, L.; Vandenbulcke, F.; Iacono, F.; Kon, E.; Di Matteo, B. Oxygen-Ozone Therapy for the Treatment of Knee Osteoarthritis: A Systematic Review of Randomized Controlled Trials. Arthroscopy 2020, 36, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Arias-Vázquez, P.I.; Guzzardo, M.N.; Guzzardo, D.R.; Castillo-Avila, R.G.; Tovilla-Zárate, C.A.; Ake Montiel, M.A.N. Efficacy of ozone injections for reducing musculoskeletal pain in comparison with corticosteroid injections: A systematic review and meta-analysis. J. Back Musculoskelet. Rehabil. 2024, 37, 821–838. [Google Scholar] [CrossRef]
- Iaconisi, G.N.; Mancini, R.; Ricci, V.; Donati, D.; Sconza, C.; Marvulli, R.; Ranieri, M.; Megna, M.; Varrassi, G.; Della Tommasa, S.; et al. Biochemical Mechanisms and Rehabilitation Strategies in Osteoporosis-Related Pain: A Systematic Review. Clin. Pract. 2024, 14, 2737–2758. [Google Scholar] [CrossRef]
- Lima Neto, T.J.; Delanora, L.A.; Sá Simon, M.E.; Carmo Ribeiro, K.H.; Matsumoto, M.A.; Quírino Louzada, M.J.; Shibli, J.A.; Ervolino, E.; Faverani, L.P. Ozone Improved Bone Dynamic of Female Rats Using Zoledronate. Tissue Eng. Part C Methods 2024, 30, 1–14. [Google Scholar] [CrossRef]
- Bocci, V.; Aldinucci, C. Biochemical modifications induced in human blood by oxygenation-ozonation. J. Biochem. Mol. Toxicol. 2006, 20, 133–138. [Google Scholar] [CrossRef]
- Schwartz-Tapia, A.; Martínez-Sánchez, G.; Sabah, F. Madrid Declaration on Ozone Therapy; International Scientific Committee of Ozone Therapy: Madrid, Spain, 2015; p. 50. [Google Scholar]
- Latini, E.; Curci, E.R.; Massimiani, A.; Nusca, S.M.; Santoboni, F.; Trischitta, D.; Vetrano, M.; Vulpiani, M.C. Ultrasonography for oxygen-ozone therapy in musculoskeletal diseases. Med. Gas Res. 2019, 9, 18–23. [Google Scholar] [CrossRef]
- de Sire, A.; Marotta, N.; Ferrillo, M.; Agostini, F.; Sconza, C.; Lippi, L.; Respizzi, S.; Giudice, A.; Invernizzi, M.; Ammendolia, A. Oxygen–ozone therapy for reducing pro-inflammatory cytokines serum levels in musculoskeletal and temporomandibular disorders: A comprehensive review. Int. J. Mol. Sci. 2022, 23, 2528. [Google Scholar] [CrossRef]
Title | First Author and Publication Year | Study Sample and Design | Outcomes of the Study | Results |
---|---|---|---|---|
Comparison of corticosteroid injection and ozone injection for relief of pain in chronic lateral epicondylitis | Ulusoy G.R. et al., 2019 [25] | Retrospective cohort study. 80 patients with unilateral chronic lateral epicondylitis. One group treated with ozone injections (n = 42) and the other group treated with a single corticosteroid injection (n = 38). No co-interventions or activity restrictions. | Pain associated with chronic lateral epicondylitis assessed with Verhaar scores. Outcomes assessed at baseline, 3, 6, and 9 months. | The ozone therapy group showed significantly better pain scores compared to the corticosteroid group at 3, 6, and 9 months after injection. |
Effectiveness of Ozone Therapy on Tendon Healing: An Experimental Study in Generated Achilles Tendon Injury Model in Rats | Kizilkaya, V. et al., (2018) [26] | Experimental study. 60 male Wistar rats. Rats were randomly assigned to the ozone therapy group (n = 30) or to the no treatment group (n = 30). | Remodeling, proliferation, collagen deposition, inflammation. Tendon tissues were harvested at 2, 4, and 6 weeks post-injury for histopathological and biomechanical analysis. | The ozone therapy had beneficial effects on Achilles tendon rupture healing. |
Comparison of ultrasound-guided subacromial corticosteroid and ozone injections in the treatment of chronic rotator cuff tendinopathy: a randomized clinical trial | Atar MÖ. et al., (2023) [27] | Randomized clinical trial. 44 patients with chronic supraspinatus tendinopathy randomly assigned to the ozone group (n = 22) or corticosteroid group (n = 22). Injections in both groups were administered into subacromial bursa with an ultrasound-guided in-plane posterolateral approach. Both groups followed a daily shoulder exercise program. | Primary outcome measure was the change in the Western Ontario Rotator Cuff Index (WORC) score. Secondary outcome measures included Visual Analog Scale (VAS) and Shoulder Pain and Disability Index (SPADI) scores. Outcomes were assessed at 4 and 12 weeks. | Both the groups showed clinically significant improvements in shoulder pain, quality of life, and function |
A Randomized Control Trial of Comparing Ultrasound-Guided Ozone vs. Corticosteroid Injection in Patients With Shoulder Impingement. | Babaei-Ghazani A. et al., (2019) [28] | Randomized control trial. 30 patients with shoulder impingement were randomly assigned to the ultrasound-guided injection with ozone group (n = 15) or ultrasound-guided injection with corticosteroid (n = 15). Both groups followed a daily home-based physical therapy program | Shoulder pain, disability scale, shoulder ROM, ultrasonographic measures. Outcomes were assessed at 2 and 8 weeks. | Both groups showed significant improvements in VAS, Shoulder Pain and Disability Scale. No statistical differences were observed between the groups in terms of ROM and ultrasonographic measures. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farì, G.; Pignatelli, G.; Longo, S.C.; Brindisino, F.; Giovannico, G.; Della Tommasa, S.; Dell’Anna, L.; De Palma, L.; Quarta, F.; Bernetti, A. Oxygen–Ozone Therapy in Tendinopathy Management: A Comprehensive Review. J. Pers. Med. 2025, 15, 459. https://doi.org/10.3390/jpm15100459
Farì G, Pignatelli G, Longo SC, Brindisino F, Giovannico G, Della Tommasa S, Dell’Anna L, De Palma L, Quarta F, Bernetti A. Oxygen–Ozone Therapy in Tendinopathy Management: A Comprehensive Review. Journal of Personalized Medicine. 2025; 15(10):459. https://doi.org/10.3390/jpm15100459
Chicago/Turabian StyleFarì, Giacomo, Giovanni Pignatelli, Sara Clelia Longo, Fabrizio Brindisino, Giuseppe Giovannico, Simone Della Tommasa, Laura Dell’Anna, Luisa De Palma, Francesco Quarta, and Andrea Bernetti. 2025. "Oxygen–Ozone Therapy in Tendinopathy Management: A Comprehensive Review" Journal of Personalized Medicine 15, no. 10: 459. https://doi.org/10.3390/jpm15100459
APA StyleFarì, G., Pignatelli, G., Longo, S. C., Brindisino, F., Giovannico, G., Della Tommasa, S., Dell’Anna, L., De Palma, L., Quarta, F., & Bernetti, A. (2025). Oxygen–Ozone Therapy in Tendinopathy Management: A Comprehensive Review. Journal of Personalized Medicine, 15(10), 459. https://doi.org/10.3390/jpm15100459