Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices
Abstract
1. Introduction
Objectives
2. Materials and Methods
3. Results
4. Discussion
4.1. Recommendations for Clinical Practice
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Department of Health. Self-Care: A National View in 2007 Compared to 2004–2005; Stationery Office: London, UK, 2007. [Google Scholar]
- Dineen-Griffin, S.; Garcia-Cardenas, V.; Williams, K.; Benrimoj, S.I. Helping patients help themselves: A systematic review of self-management support strategies in primary health care practice. PLoS ONE 2019, 14, e0220116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S.; Adeyi, O.; Barker, P.; Daelmans, B.; Doubova, S.V.; et al. High-quality health systems in the Sustainable Development Goals era: Time for a revolution. Lancet Glob. Health 2018, 6, e1196–e1252, Erratum in Lancet Glob Health 2018, 6, e1162. Erratum in Lancet Glob. Health 2021, 9, e1067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Titler, M.G. The Evidence for Evidence-Based Practice Implementation. In Patient Safety and Quality: An Evidence-Based Handbook for Nurses; Hughes, R.G., Ed.; Agency for Health Care Research and Quality: Rockville, MD, USA, 2008; Chapter 7. Available online: https://www.ncbi.nlm.nih.gov/books/NBK2659/ (accessed on 15 April 2023).
- Cosgrave, C.; Malatzky, C.; Gillespie, J. Social Determinants of Rural Health Workforce Retention: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 16, 314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on Implementing High-Quality Primary Care; Robinson, S.K.; Meisnere, M.; Phillips, R.L., Jr. Implementing High-Quality Primary Care: Rebuilding the Foundation of Health Care; National Academies Press: Washington, DC, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK571800/ (accessed on 16 May 2023).
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors Int. 2021, 2, 100117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Noncommunicable Diseases [Internet]; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 16 May 2023).
- Jacobs, R.J.; Ownby, R.L.; Acevedo, A.; Waldrop-Valverde, D. A qualitative study examining health literacy and chronic illness self-management in Hispanic and non-Hispanic older adults. J. Multidiscip. Health 2017, 10, 167–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. 2021. Available online: https://www.who.int/publications/m/item/implementation-roadmap-2023-2030-for-the-who-global-action-plan-for-the-prevention-and-control-of-ncds-2023-2030 (accessed on 16 May 2023).
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Diabetes [Internet]; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 16 May 2023).
- Global Action Plan for the Prevention and Control of NCDs 2013–2020; World Health Organization: Geneva, Switzerland, 2013.
- Launer, J. Guidelines and Mindlines. Postgrad. Med. J. 2015, 91, 663–664. [Google Scholar] [CrossRef]
- World Health Organization. Action Plan for the Prevention and Control of Non-Communicable Diseases in the WHO European Region: Population-Level Interventions Prioritized; World Health Organization: Geneva, Switzerland, 2016; Available online: https://iris.who.int/handle/10665/94384 (accessed on 15 April 2023).
- Poitras, M.-E.; Maltais, M.-E.; Bestard-Denommé, L.; Stewart, M.; Fortin, M. What are the effective elements in patient-centered and multimorbidity care? A scoping review. BMC Health Serv. Res. 2018, 18, 446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Littlejohns, L.B.; Wilson, A. Strengthening complex systems for chronic disease prevention: A systematic review. BMC Public Health 2019, 19, 729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wranik, W.D.; Price, S.; Haydt, S.M.; Edwards, J.; Hatfield, K.; Weir, J.; Doria, N. Implications of interprofessional primary care team characteristics for health services and patient health outcomes: A systematic review with narrative synthesis. Health Policy 2019, 123, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Haregu, T.N.; Byrnes, A.; Singh, K.; Sathish, T.; Pasricha, N.; Wickramasinghe, K.; Thankappan, K.R.; Oldenburg, B. A scoping review of non-communicable disease research capacity strengthening initiatives in low and middle-income countries. Glob. Health Res. Policy 2019, 4, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reynolds, R.; Dennis, S.; Hasan, I.; Slewa, J.; Chen, W.; Tian, D.; Bobba, S.; Zwar, N. A systematic review of chronic disease management interventions in primary care. BMC Fam. Pract. 2018, 19, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Owolabi, M.; Olowoyo, P.; Miranda, J.J.; Akinyemi, R.; Feng, W.; Yaria, J.; Makanjuola, T.; Yaya, S.; Kaczorowski, J.; Thabane, L.; et al. Gaps in Hypertension Guidelines in Low- and Middle-Income Versus High-Income Countries. Hypertension 2016, 68, 1328–1337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poureslami, I.; Nimmon, L.; Rootman, I.; Fitzgerald, M.J. Health literacy and chronic disease management: Drawing from expert knowledge to set an agenda. Health Promot. Int. 2017, 32, 743–754. [Google Scholar] [CrossRef]
- Mackey, L.M.; Doody, C.; Werner, E.L.; Fullen, B. Self-Management Skills in Chronic Disease Management: What Role Does Health Literacy Have? Med. Decis. Mak. 2016, 36, 741–759. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 5 April 2023).
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Country Health Profile: Poland [Internet]. 2018. Available online: https://health.ec.europa.eu/system/files/2021-12/2021_chp_poland_english.pdf (accessed on 18 May 2023).
- Yusuf, S.; Rangarajan, S.; Teo, K.; Islam, S.; Li, W.; Liu, L.; Bo, J.; Lou, Q.; Lu, F.; Liu, T.; et al. Cardiovascular Risk and Events in 17 Low-, Middle-, and High-Income Countries. N. Engl. J. Med. 2014, 371, 818–827. [Google Scholar] [CrossRef]
- Borghi, C.; Tubach, F.; De Backer, G.; Dallongeville, J.; Guallar, E.; Medina, J.; Perk, J.; Roy, C.; Banegas, J.R.; Rodriguez-Artalejo, F.; et al. Lack of control of hypertension in primary cardiovascular disease prevention in Europe: Results from the EURIKA study. Int. J. Cardiol. 2016, 218, 83–88. [Google Scholar] [CrossRef]
- Sinnige, J.; Korevaar, J.C.; Westert, G.P.; Spreeuwenberg, P.; Schellevis, F.G.; Braspenning, J.C. Multimorbidity patterns in a primary care population aged 55 years and over. Fam. Pract. 2015, 32, 505–513. [Google Scholar] [CrossRef]
- Mancia, G. Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens 2013, 31, 1281–1357. [Google Scholar] [CrossRef]
- Nicoll, R.; Henein, M.Y. Hypertension and lifestyle modification: How useful are the guidelines? Br. J. Gen. Pract. 2010, 60, 879–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization Regional Office for the Eastern Mediterranean. Questions and Answers on Management of Noncommunicable Diseases in Primary Health Care. WHO Eastern Mediterranean Region. Available online: https://www.emro.who.int/noncommunicable-diseases/publications/questions-and-answers-on-management-of-noncommunicable-diseases-in-primary-health-care.html (accessed on 17 May 2023).
- Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S. Use of Healthcare Services by Patients with Non-Communicable Diseases in Nepal: A Qualitative Study with Healthcare Providers. J. Clin. Diagn. Res. 2017, 11, LC01–LC05. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mash, R.J.; Cairncross, J. Comprehensive patient education and counselling for non-communicable diseases in primary care, Western Cape. South Afr. Fam. Pract. 2023, 65, e1–e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fekadu, G.; Bekele, F.; Tolossa, T.; Fetensa, G.; Turi, E.; Getachew, M.; Abdisa, E.; Assefa, L.; Afeta, M.; Demisew, W.; et al. Impact of COVID-19 pandemic on chronic diseases care follow-up and current perspectives in low resource settings: A narrative review. Int. J. Physiol. Pathophysiol. Pharmacol. 2021, 13, 86–93. [Google Scholar] [PubMed] [PubMed Central]
- Tykarski, A.; Filipiak, K.J.; Januszewicz, A.; Narkiewicz, K.; Tykarski, A.; Gryglewska, B.; Widecka, K.; Dyrda, K.; Paczkowska, A.; Gaciong, Z.; et al. Zasady postępowania w nadciśnieniu tętniczym—2019 rok. Nadciśnienie Tętnicze W Prakt. 2019, 5, 1–86. [Google Scholar]
- American Heart Association. Non-Pharmacological Interventions for Hypertension [Internet]. 2017. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6207493/ (accessed on 18 May 2023).
- Xiao, H.; Dai, X.; Wagenaar, B.H.; Liu, F.; Augusto, O.; Guo, Y.; Unger, J.M. The impact of the COVID-19 pandemic on health services utilization in China: Time-series analyses for 2016-2020. Lancet Reg. Health—West. Pac. 2021, 9, 100122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kendzerska, T.; Zhu, D.T.; Gershon, A.S.; Edwards, J.D.; Peixoto, C.; Robillard, R.; E Kendall, C. The Effects of the Health System Response to the COVID-19 Pandemic on Chronic Disease Management: A Narrative Review. Risk Manag. Health Policy 2021, 14, 575–584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Greiwe, J. Telemedicine Lessons Learned During the COVID-19 Pandemic. Curr. Allergy Asthma Rep. 2022, 22, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnston, L.M.; Goldsmith, L.J.; Finegood, D.T. Developing co-funded multi-sectoral partnerships for chronic disease prevention: A qualitative inquiry into federal governmental public health staff experience. Health Res. Policy Syst. 2020, 18, 92. [Google Scholar] [CrossRef]
- Hodge, J.G.; Corbett, A. Legal Preemption and the Prevention of Chronic Conditions. Prev. Chronic Dis. 2016, 13, E85. [Google Scholar] [CrossRef] [PubMed]
- Lionis, C.; Tsiraki, M.; Bardis, V.; Philalithis, A. Seeking quality improvement in primary care in Crete, Greece: The first actions. Croat Med. J. 2004, 45, 599–603. [Google Scholar] [PubMed]
- Starfield, B. Is patient-centered care the same as person-focused care? Perm. J. 2011, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, P.; Yeoman, L.; Gibson, L.; Esiovwa, R.; Williamson, A.E.; Mair, F.S.; Lowrie, R. A systematic review of interventions by healthcare professionals to improve management of non-communicable diseases and communicable diseases requiring long-term care in adults who are homeless. BMJ Open 2018, 8, e020161. [Google Scholar] [CrossRef] [PubMed]
- Dröes, R.M.; Van Mierlo, L.D.; Meiland, F.J.; Schmitz, M.J. Adaptive Implementation of Psychosocial Interventions in Dementia Care. Dementia 2003, 2, 361–382. [Google Scholar] [CrossRef]
- Meiland, F.; Dröes, R.M.; Smeets, C.; Jolles, J. The Dutch model of integrated care for dementia: Developing, implementing, and evaluating joint care across sectors. Dementia 2004, 3, 411–435. [Google Scholar]
- Meiland, F.; Dröes, R.M.; de Lange, J.; Vernooij-Dassen, M. Development and implementation of the ‘meeting centres support programme for people with dementia and their carers’ in the Netherlands. Dementia 2005, 4, 492–496. [Google Scholar]
- Wensing, M.; Vrijhoef, H.J.; Koetsenruijter, J.; van Lieshout, J. Quality improvement through effective implementation of integrated care. Int. J. Integr. Care 2010, 10, e007. [Google Scholar]
- Billings, J.; de Bruin, S.R.; Baan, C.; Nijpels, G. Advancing integrated care evaluation in shifting contexts: Blending implementation research with case study design in project SUSTAIN. BMC Health Serv. Res. 2020, 20, 971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Age Distribution of Patients in the Rural and Urban Centers | |||||||||
centre | n | age | Wilcoxon test p | ||||||
median | min | max | |||||||
rural | 1472 | 64 | 7 | 96 | p < 0.001 | ||||
urban | 451 | 62 | 21 | 92 | |||||
total | 1923 | 63 | 7 | 96 | |||||
Gender distribution of patients in the rural and urban centers | |||||||||
centre | gender | Fisher test p | |||||||
female | male | ||||||||
n | % | n | % | ||||||
rural | 816 | 55.4 | 656 | 44.6 | 0.626 | ||||
urban | 256 | 56.8 | 195 | 43.2 | |||||
total | 1072 | 55.7 | 851 | 42.3 | n = 1923 | ||||
Distribution of the number of patient visits in the rural and urban centers | |||||||||
centre | n | number of patient visits | Wilcoxon test p | ||||||
median | min | max | |||||||
rural | 1472 | 7 | 1 | 36 | p < 0.001 | ||||
urban | 451 | 2 | 1 | 25 | |||||
total | 1923 | 6 | 1 | 36 | |||||
Age distribution on visits to rural and urban centers | |||||||||
centre | n | age | Wilcoxon test p | ||||||
median | |||||||||
rural | 12,591 | 68 | p < 0.001 | ||||||
urban | 1242 | 65 | |||||||
total | 13,833 | 67 | |||||||
Gender distribution on visits to rural and urban centers | |||||||||
centre | gender | Fisher test p | |||||||
female | male | ||||||||
n | % | n | % | ||||||
rural | 7390 | 58.7 | 5201 | 41.3 | 0.002 | ||||
urban | 672 | 54.1 | 570 | 45.9 | |||||
total | 8062 | 58.3 | 5771 | 41.7 | 13,833 | ||||
Distribution of the presence of major diagnoses (E10, E11, I10, I11) on visits to rural and urban centers | |||||||||
centre | E10 | E11 | I10 | I11 | Fisher test p | ||||
n | % | n | % | n | % | n | % | ||
rural | 86 | 0.7 | 669 | 5.3 | 7660 | 60.8 | 4176 | 33.2 | p = 0.002 |
urban | 78 | 6.3 | 270 | 21.7 | 850 | 68.4 | 44 | 3.5 | |
total | 164 | 1.2 | 939 | 6.8 | 8510 | 61.5 | 4220 | 30.5 | 13,833 |
Distribution of the type of visits in the rural and urban centers | |||||||||
centre | visit’s type | Fisher test p | |||||||
remote | outpatient | ||||||||
n | % | n | % | ||||||
rural | 4742 | 37.7 | 7849 | 62.3 | p < 0.001 | ||||
urban | 221 | 17.8 | 1021 | 82.2 | |||||
total | 4963 | 35.9 | 8870 | 64.1 |
Age Distribution at Visits during the COVID Period | |||||||||
period | n | age | Wilcoxon test p | ||||||
median | |||||||||
pre-COVID | 5220 | 66 | p < 0.001 | ||||||
COVID | 8613 | 68 | |||||||
total | 13,833 | 67 | |||||||
Gender distribution on visits during the COVID period | |||||||||
period | gender | Fisher test p | |||||||
female | male | ||||||||
n | % | n | % | ||||||
pre-COVID | 3017 | 57.8 | 2203 | 42.2 | 0.374 | ||||
COVID | 5045 | 58.6 | 3568 | 41.4 | |||||
total | 8062 | 58.3 | 5771 | 41.7 | 13,833 | ||||
Distribution of the presence of the main diagnoses (E10, E11, I10, I11) at visits during the COVID periods | |||||||||
period | E10 | E11 | I10 | I11 | Fisher test | ||||
n | % | n | % | n | % | n | % | p | |
pre-COVID | 90 | 1.7 | 432 | 8.3 | 2648 | 50.7 | 2050 | 39.3 | p < 0.001 |
COVID | 74 | 0.9 | 507 | 5.9 | 5862 | 68.1 | 2170 | 25.2 | |
total | 164 | 1.2 | 939 | 6.8 | 8510 | 61.5 | 4220 | 30.5 | 13,833 |
Distribution of the type of visit in the COVID period | |||||||||
period | visit’s type | Fisher test p | |||||||
remote | outpatient | ||||||||
n | % | n | % | ||||||
pre-COVID | 0 | 0.0 | 5220 | 100.0 | p < 0.001 | ||||
COVID | 4963 | 57.6 | 3650 | 42.4 | |||||
total | 4963 | 35.9 | 8870 | 64.1 |
cE10—Age Distribution at Visits during the COVID Periods | |||||
E10 period | n | age | Wilcoxon test p | ||
median | |||||
pre-COVID | 90 | 55.0 | 0.27 | ||
COVID | 74 | 52.5 | |||
total | 164 | 55 | |||
cE10—Gender distribution at visits during the COVID periods | |||||
E10 period | gender | Fisher test p | |||
female | male | ||||
n | % | n | % | ||
pre-COVID | 29 | 32.2 | 61 | 67.8 | p < 0.001 |
COVID | 7 | 9.5 | 67 | 90.5 | |
total | 36 | 22.0 | 128 | 78.0 | |
cE10—Distribution of the type of visits during the COVID periods | |||||
E10 period | visit’s type | Fisher test p | |||
remote | outpatient | ||||
n | % | n | % | ||
pre-COVID | 0 | 0.0 | 90 | 100.0 | 0 |
COVID | 45 | 60.8 | 29 | 39.2 | |
total | 45 | 27.4 | 119 | 72.6 | |
cE11—Age distribution at visits during the COVID periods | |||||
E11 period | age | Wilcoxon test p | |||
n | median | ||||
pre-COVID | 432 | 66 | 0.43 | ||
COVID | 507 | 65 | |||
total | 939 | 65 | |||
cE11—Gender distribution at visits during the COVID periods | |||||
E11 period | gender | Fisher test p | |||
female | male | ||||
n | % | n | % | ||
pre-COVID | 218 | 50.5 | 214 | 49.5 | 0.239 |
COVID | 236 | 46.5 | 271 | 53.5 | |
total | 454 | 48.3 | 485 | 51.7 | |
cE11—Gender distribution at visits in the COVID periods | |||||
E11 period | visit’s type | Fisher test p | |||
remote | outpatient | ||||
n | % | n | % | ||
pre-COVID | 0 | 0.0 | 432 | 100.0 | p < 0.001 |
COVID | 298 | 58.8 | 209 | 41.2 | |
total | 298 | 31.7 | 641 | 68.3 |
cI10—Age Distribution at Visits during the COVID Periods | |||||
I10 period | n | age | Wilcoxon test | ||
median | |||||
pre-COVID | 2648 | 61 | p < 0.001 | ||
COVID | 5862 | 65 | |||
total | 8510 | 64 | |||
cI10—Gender distribution at visits during the COVID periods | |||||
I10 period | gender | Fisher test p | |||
Female | male | ||||
n | % | n | % | ||
pre-COVID | 1498 | 56.6 | 1150 | 43.4 | 0.906 |
COVID | 3325 | 56.7 | 2537 | 43.3 | |
total | 4823 | 56.7 | 3687 | 43.3 | |
cI10—Distribution of the type of visits during the COVID periods | |||||
I10 period | visit’s type | Fisher test p | |||
Remote | outpatient | ||||
n | % | n | % | ||
pre-COVID | 0 | 0.0 | 2648 | 100.0 | p < 0.001 |
COVID | 3080 | 52.5 | 2782 | 47.5 | |
total | 3080 | 36.2 | 5430 | 63.8 | |
cI11—Age distribution at visits during the COVID periods | |||||
I11 period | n | age | Wilcoxon test p | ||
median | |||||
pre-COVID | 2050 | 74 | p < 0.001 | ||
COVID | 2170 | 81 | |||
total | 4220 | 78 | |||
cI11—Gender distribution at visits during the COVID periods | |||||
I11 period | gender | Fisher test p | |||
Female | male | ||||
n | % | n | % | ||
pre-COVID | 1272 | 62.0 | 778 | 38.0 | p < 0.001 |
COVID | 1477 | 68.1 | 693 | 31.9 | |
total | 2749 | 65.1 | 1471 | 34.9 | |
cI11—Distribution of the type of visits during the COVID periods | |||||
I11 period | visit’s type | Fisher test p | |||
Remote | outpatient | ||||
n | % | n | % | ||
pre-COVID | 0 | 0 | 2050 | 100 | p < 0.001 |
COVID | 1540 | 71 | 630 | 29 | |
total | 1540 | 36.5 | 2680 | 63.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda-Sikuła, M.; Kurpas, D. Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices. J. Pers. Med. 2024, 14, 706. https://doi.org/10.3390/jpm14070706
Duda-Sikuła M, Kurpas D. Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices. Journal of Personalized Medicine. 2024; 14(7):706. https://doi.org/10.3390/jpm14070706
Chicago/Turabian StyleDuda-Sikuła, Marta, and Donata Kurpas. 2024. "Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices" Journal of Personalized Medicine 14, no. 7: 706. https://doi.org/10.3390/jpm14070706
APA StyleDuda-Sikuła, M., & Kurpas, D. (2024). Enhancing Chronic Disease Management: Personalized Medicine Insights from Rural and Urban General Practitioner Practices. Journal of Personalized Medicine, 14(7), 706. https://doi.org/10.3390/jpm14070706