Assessment of Some Risk Factors and Biological Predictors in the Post COVID-19 Syndrome in Asthmatic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Determination of Biochemical Parameters
2.2. The Determination of Hematological Parameters
2.3. The Statistical Analysis
2.4. Ethics Consideration
3. Results
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenhalgh, T.; Knight, M.; A’court, C.; Buxton, M.; Husain, L. Management of post-acute COVID-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Arora, U.; Kumar, A.; Wig, N. The “post-COVID” syndrome: How deep is the damage? J. Med. Virol. 2021, 93, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, Â.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Marzook, H.; Ahmad, F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: An overview. Clin. Exp. Med. 2023, 23, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Silva Andrade, B.; Siqueira, S.; de Assis Soares, W.R.; de Souza Rangel, F.; Santos, N.O.; dos Santos Freitas, A.; Ribeiro da Silveira, P.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef] [PubMed]
- Achkar, M.; Jamal, O.; Chaaban, T. Post-COVID lung disease(s). Ann. Thorac. Med. 2022, 17, 137–144. [Google Scholar] [PubMed]
- Global Initiative for Asthma GINA Global Strategy for Asthma Management and Prevention Global Initiative for Asthma (GINA) What’s New in GINA. 2021. Available online: www.ginasthma.org (accessed on 21 November 2022).
- Lee, S.C.; Son, K.J.; Han, C.H.; Jung, J.Y.; Park, S.C. Impact of comorbid asthma on severity of coronavirus disease (COVID-19). Sci. Rep. 2020, 10, 21805. [Google Scholar] [CrossRef] [PubMed]
- Nassoro, D.D.; Mujwahuzi, L.; Mwakyula, I.H.; Possi, M.K.; Lyantagaye, S.L. Asthma and COVID-19: Emphasis on Adequate Asthma Control. Can. Respir. J. 2021, 2021, 9621572. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Liu, S.-H.; Manachevakul, S.; Lee, T.-A.; Kuo, C.-T.; Bello, D. Biomarkers in long COVID-19: A systematic review. Front. Med. 2023, 10, 1085988. [Google Scholar] [CrossRef]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid. Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Tjendra, Y.; Al Mana, A.F.; Espejo, A.P.; Akgun, Y.; Millan, N.C.; Gomez-Fernandez, C.; Cray, C. Predicting Disease Severity and Outcome in COVID-19 Patients: A Review of Multiple Biomarkers. Arch. Pathol. Lab. Med. 2020, 144, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Delshad, M.; Tavakolinia, N.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Bagheri, N.; Bashash, D. The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19. Int. Immunopharmacol. 2021, 95, 107586. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Deng, Y.; Weng, Z.; Yang, L. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int. J. Infect. Dis. 2020, 96, 131–135. [Google Scholar] [CrossRef]
- Available online: https://emeraldmed.ro/covid-19-si-boala-trombotica-si-trombo-embolica/ (accessed on 15 July 2023).
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated With Post−COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef]
- Vasileva, D.; Badawi, A. C-reactive protein as a biomarker of severe H1N1 influenza. Inflamm. Res. 2019, 68, 39–46. [Google Scholar] [CrossRef]
- Serin, I.; Sari, N.D.; Dogu, M.H.; Acikel, S.D.; Babur, G.; Ulusoy, A.; Onar, M.I.; Gokce, E.C.; Altunok, O.; Yaylaci Mert, F.; et al. A new parameter in COVID-19 pandemic: Initial lactate dehydrogenase (LDH)/Lymphocyte ratio for diagnosis and mortality. J. Infect. Public Health. 2020, 13, 1664–1670. [Google Scholar] [CrossRef]
- Crisan-Dabija, R.; Covic, A.; Brinza, C.; Popa, I.V.; Burlacu, A. Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review. Appl. Sci. 2021, 11, 3482. [Google Scholar] [CrossRef]
- Tordjman, M.; Mekki, A.; Mali, R.D.; Monnier, H.; Neveu, S.; Chassagnon, G.; Mihoubi, F.; Carlier, N.; Marey, J.; Fournier, L.; et al. Determining extent of COVID-19 pneumonia on CT based on biological variables. Respir. Med. 2020, 175, 106206. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, Y.; Wang, F.; Ren, H.; Zhang, S.; Shi, X.; Yu, X.; Dong, K. Clinical characteristics and outcomes of patients with severe COVID-19 with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001343. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020, 53, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.M.; Mohamed, S.O.O.; Elkhidir, I.H.E.; Elbathani, M.E.H.; Ibrahim, A.A.H.; Elhassan, A.B.E.; Tawer Salman, M.S.; Elhassan, M.A.; Elnil, M.; Hassan Abuzied, A.I. The Association of Lymphocyte count, CRP, D-Dimer, and LDH with Severe Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. Sudan J. Med. Sci. 2020, 15, 9–19. [Google Scholar] [CrossRef]
- Usul, E.; Şan, İ.; Bekgöz, B.; Şahin, A. Role of hematological parameters in COVID-19 patients in the emergency room. Biomark. Med. 2020, 14, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Rawy, A.M.; Sadek, M.S.; Mogahed, M.M.; Khamis, A.; Allam, A.H. Relationship between bronchial asthma and COVID-19 infection in adults: Clinical and laboratory assessment. Egypt J. Bronchol. 2023, 17, 12. [Google Scholar] [CrossRef]
- Kanannejad, Z.; Alyasin, S.; Esmaeilzadeh, H.; Nabavizadeh, H.; Amin, R. Asthma and COVID-19 pandemic: Focus on the eosinophil count and ACE2 expression. Eur. Ann. Allergy Clin. Immunol. 2022, 54, 284–289. [Google Scholar] [CrossRef]
- Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020, 38, 1–9. [Google Scholar]
- Kaszuba, M.; Madej, N.; Pilinski, R.; Sliwka, A. Post-COVID-19 Symptoms in Adults with Asthma—Systematic Review. Biomedicines 2023, 11, 2268. [Google Scholar] [CrossRef]
- Kantri, A.; Ziati, J.; Khalis, M.; Haoudar, A.; El Aidaoui, K.; Daoudi, Y.; Chikhaoui, I.; El Kettani, C. Hematological and biochemical abnormalities associated with severe forms of COVID-19: A retrospective single-center study from Morocco. PLoS ONE 2021, 16, e0246295. [Google Scholar] [CrossRef]
- Dobrin, M.E.; Rohozneanu, O.E.; Dabija, C.; Cernat, R.E.; Buculei, I.; Cernat, R.I.; Popa, E.; Trofor, A. Prospective biochemical and hematological markers to differentiation severe from non-severe COVID-19 disease. Eur. Respir. J. 2021, 58, PA3879. [Google Scholar]
- Fialek, B.; Pruc, M.; Smereka, J.; Jas, R.; Rahnama-Hezavah, M.; Denegri, A.; Szarpak, A.; Jaguszewski, M.J.; Peacock, F.W.; Szarpak, L. Diagnostic value of lactate dehydrogenase in COVID-19: A systematic review and meta-analysis. Cardiol. J. 2022, 29, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.S. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef] [PubMed]
- Gęca, T.; Wojtowicz, K.; Guzik, P.; Góra, T. Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. Int. J. Environ. Res. Public. Health 2022, 19, 6555. [Google Scholar] [CrossRef]
- Islam, M.B.; Chowdhury, U.N.; Nashiry, M.A.; Moni, M.A. Severity of COVID-19 patients with coexistence of asthma and vitamin D deficiency. Inform. Med. Unlocked 2022, 34, 101116. [Google Scholar] [CrossRef]
- Jahangirimehr, A.; Abdolahi Shahvali, E.; Rezaeijo, S.M.; Khalighi, A.; Honarmandpour, A.; Honarmandpour, F.; Labibzadeh, M.; Bahmanyari, N.; Heydarheydari, S. Machine learning approach for automated predicting of COVID-19 severity based on clinical and paraclinical characteristics: Serum levels of zinc, calcium, and vitamin D. Clin. Nutr. ESPEN 2022, 51, 404–411. [Google Scholar] [CrossRef]
Characteristics of the Patients | Moderate Form | Severe Form |
---|---|---|
COVID-19 | COVID-19 | |
(n = 21) | (n = 16) | |
Variable | Mean ± SD | Mean ± SD |
Age (years) | 66.71 ± 14.04 | 61.61 ± 14.31 |
Gender | ||
Male (n/%) | 4 (19%) | 10 (63%) |
Female (n/%) | 17 (81%) | 6 (37%) |
Residential area | ||
Rural area (n/%) | 9 (43%) | 9 (56%) |
Urban area (n/%) Smoking status | 12 (57%) | 7 (44%) |
Ex-smokers/non-smokers | 18 (49%)/4 (11%) | 8 (22%)/7 (18%) |
Hospitalization days | 5.43 ± 4.9 | 7.26 ± 5.85 |
Comorbidities | ||
Hypertension (n) | 14 (66%) | 12 (75%) |
Diabetes mellitus (n) | 3 (14%) | 6 (37%) |
Obesity (n) | 3 (14%) | 4 (25%) |
Chronic kidney diseases n) | 1 (5%) | 1(6%) |
Chronic liver diseases (n) | 1(5%) | 1(6%) |
Number of deaths (n) | 1(5%) | 4 (25%) |
Treatment with corticosteroids | ||
Beclomethasone (mcg/day) n/% | (400–1000) 11/55% | (200–1000) 6/46% |
Fluticasone (mcg/day) n/% | (200–500) 3/15% | (1000) 3/23% |
Budesonide (mcg/day) n/% | (320–640) 4/20% | (320–1200) 4/31% |
Mometasone (mcg/day) n/% | (62.5–136) 2/10% | - |
Moderate Form | Severe Form | |||||
---|---|---|---|---|---|---|
Mean | Stdev | Range | Mean | Stdev | Range | |
ALT | 25.90 | 26.30 | 8.2–126 | 44.43 | 64.02 | 8.20–281.7 |
AST | 19.09 | 8.96 | 6.9–51.70 | 30.79 | 45.90 | 6.9–214.40 |
Urea | 35.79 | 15.47 | 15.9–80.30 | 42.76 | 19.77 | 15.4–80.30 |
Creatinine | 0.67 | 0.15 | 0.49–0.94 | 0.78 | 0.33 | 0.15–1.55 |
Glucose | 111.11 | 25.92 | 84.6–203.20 | 124.84 | 48.54 | 25.9–218.0 |
LDH | 215.09 | 74.38 | 133–456 | 290.48 | 133.62 | 74.38–560 |
CRP | 21.93 | 64.07 | 0.6–298 | 52.52 | 71.09 | 0.60–298.2 |
WBC | 8.24 | 2.19 | 5.14–12.66 | 10.70 | 5.37 | 2.19–22.69 |
RBC | 4.47 | 0.57 | 3.23–5.60 | 4.42 | 1.23 | 0.57–6.02 |
HGB | 13.03 | 1.78 | 9.9–16.30 | 12.74 | 3.49 | 1.78–17.30 |
HCT | 39.21 | 5.20 | 29.4–49.40 | 38.45 | 10.36 | 5.20–52.0 |
PLT | 282.71 | 76.51 | 122–434 | 268.34 | 121.81 | 76.51–491 |
L | 25.25 | 8.07 | 10.9–41 | 19.70 | 11.21 | 3.50–41.10 |
M | 8.35 | 3.19 | 4.7–17.6 | 7.95 | 3.88 | 2.00–17.60 |
EO | 3.17 | 3.73 | 0.1–16.60 | 3.31 | 6.12 | 0.00–23 |
N | 62.80 | 10.36 | 43.9–80.50 | 65.61 | 19.99 | 10.3–92.10 |
Rank Sum | Rank Sum | U | Z | p-Value | Valid N Severe Form | Valid N Moderate Form | |
---|---|---|---|---|---|---|---|
LDH | 391.000 | 312,000 | 81.000 | 2.652 | 0.007 | 16.00 | 21.00 |
CRP | 394.5 | 308.5 | 77.5 | 2.759 | 0.005 | 16.00 | 21.00 |
Concentration of corticosteroids | 385.5 | 317.5 | 86.5 | 2.483 | 0.011 | 16.00 | 21.00 |
LDH | CRP | Glucose | WBC | N | L | |
---|---|---|---|---|---|---|
Biological reference interval (BRI) | 100–225 U/L | 0–5 mg/L | 70–11 mg/dL | 4.0–10.0 × 103/µL | 34–69% | 20–52% |
Cases (n = 10) Post-COVID-19 infection and comorbidities (asthma) | ||||||
Relative risk moderate form/severe form = 0.36/0.63 | ||||||
Min | 167 | 0.6 | 87.9 | 5.53 | 43.9 | 4.9 |
Max | 560 | 298.2 | 188.5 | 22.69 | 92.1 | 41.1 |
Mean | 276.64 | 59.06 | 114.21 | 11.15 | 65.57 | 23.49 |
Standard deviation | 129.37 | 93.63 | 28.11 | 6.10 | 16.08 | 11.64 |
Results ˃ BRI * | 6 | 8 | 3 | 4 | 4 | 0 |
Results < BRI | 0 | 0 | 0 | 0 | 0 | 2 |
Cases (n = 15) Post-COVID-19 infection and comorbidities (asthma, hypertension) | ||||||
Relative risk moderate form/severe form = 0.41/0.53 | ||||||
Min | 133 | 0.6 | 80.9 | 5.14 | 51.5 | 10.9 |
Max | 478.5 | 66.4 | 135.5 | 12.66 | 80.5 | 40.7 |
Mean | 265.85 | 18.12 | 108.19 | 8.99 | 67.98 | 21.39 |
Standard deviation | 113.68 | 19.52 | 17.10 | 2.18 | 10.25 | 8.63 |
Results ˃ BRI | 8 | 10 | 8 | 7 | 9 | 0 |
Results < BRI | 0 | 0 | 0 | 0 | 0 | 8 |
Cases (n = 5) Post-COVID-19 infection and comorbidities (asthma, hypertension, diabetes mellitus) | ||||||
Relative risk moderate form/severe form = 0.84/1.13 | ||||||
Min. | 171.1 | 2.1 | 96.04 | 4.92 | 47 | 19.1 |
Max. | 303.7 | 38.4 | 203.2 | 8.96 | 72.8 | 28.9 |
Mean | 228.02 | 12.08 | 128.7 | 6.93 | 58.46 | 25.16 |
Standard deviation | 51.49 | 16.30 | 48.41 | 1.73 | 10.72 | 5.05 |
Results ˃ BRI | 3 | 2 | 2 | 0 | 1 | 0 |
Results < BRI | 0 | 0 | 0 | 0 | 0 | 1 |
Cases (n = 3) Post-COVID-19 infection and comorbidities (asthma, hypertension, obesity) | ||||||
Relative risk moderate form/severe form = 0.91/1.15 | ||||||
Cases | 3 | |||||
Min. | 165.1 | 0.7 | 84.6 | 6.36 | 56 | 3.5 |
Max. | 255.3 | 125.9 | 218.1 | 16.77 | 91.7 | 24 |
Mean | 211.13 | 43.66 | 139.7 | 11.82 | 71.2 | 16.93 |
Standard deviation | 45.12 | 71.24 | 69.73 | 5.22 | 18.4 | 11.63 |
Results ˃ BRI | 1 | 1 | 2 | 2 | 1 | 1 |
Results < BRI | 0 | 0 | 0 | 0 | 0 | 2 |
Cases (n = 4) Post-COVID-19 infection and comorbidities (asthma, hypertension, diabetes mellitus, obesity) | ||||||
Relative risk moderate form/severe form = 0.98/1.52 | ||||||
Min. | 123 | 0.6 | 101.6 | 5.9 | 50.3 | 16.2 |
Max. | 324 | 21.3 | 205.7 | 13.2 | 77.9 | 39 |
Mean | 211.2 | 10.42 | 140.97 | 9.95 | 62.25 | 28.05 |
Standard deviation | 100.54 | 10.17 | 44.94 | 3.79 | 11.94 | 9.61 |
Results > BRI | 2 | 2 | 3 | 2 | 1 | 0 |
Results < BRI | 0 | 0 | 0 | 0 | 0 | 1 |
Variable | Wilks’ Lambda | Partial Lambda | F(4.28) | p | R2 |
---|---|---|---|---|---|
ALT | 0.309 | 0.608 | 4.502 | 0.006 | 0.347 |
Age | 0.340 | 0.552 | 5.659 | 0.001 | 0.258 |
RBC | 0.258 | 0.729 | 2.599 | 0.057 | 0.33 |
Urea | 0.239 | 0.788 | 1.879 | 0.141 | 0.284 |
CRP | 0.233 | 0.807 | 1.668 | 0.185 | 0.226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melinte, O.E.; Robu Popa, D.; Dobrin, M.E.; Cernomaz, A.T.; Grigorescu, C.; Nemes, A.F.; Gradinaru, A.C.; Vicol, C.; Todea, D.A.; Vulturar, D.M.; et al. Assessment of Some Risk Factors and Biological Predictors in the Post COVID-19 Syndrome in Asthmatic Patients. J. Pers. Med. 2024, 14, 21. https://doi.org/10.3390/jpm14010021
Melinte OE, Robu Popa D, Dobrin ME, Cernomaz AT, Grigorescu C, Nemes AF, Gradinaru AC, Vicol C, Todea DA, Vulturar DM, et al. Assessment of Some Risk Factors and Biological Predictors in the Post COVID-19 Syndrome in Asthmatic Patients. Journal of Personalized Medicine. 2024; 14(1):21. https://doi.org/10.3390/jpm14010021
Chicago/Turabian StyleMelinte, Oana Elena, Daniela Robu Popa, Mona Elisabeta Dobrin, Andrei Tudor Cernomaz, Cristina Grigorescu, Alexandra Floriana Nemes, Adina Catinca Gradinaru, Cristina Vicol, Doina Adina Todea, Damiana Maria Vulturar, and et al. 2024. "Assessment of Some Risk Factors and Biological Predictors in the Post COVID-19 Syndrome in Asthmatic Patients" Journal of Personalized Medicine 14, no. 1: 21. https://doi.org/10.3390/jpm14010021
APA StyleMelinte, O. E., Robu Popa, D., Dobrin, M. E., Cernomaz, A. T., Grigorescu, C., Nemes, A. F., Gradinaru, A. C., Vicol, C., Todea, D. A., Vulturar, D. M., Cioroiu, I. B., & Trofor, A. C. (2024). Assessment of Some Risk Factors and Biological Predictors in the Post COVID-19 Syndrome in Asthmatic Patients. Journal of Personalized Medicine, 14(1), 21. https://doi.org/10.3390/jpm14010021