Parkinson’s Disease and Photobiomodulation: Potential for Treatment
Abstract
:1. Introduction
2. Diagnosis
3. Neurodegeneration
4. The Microbiome–Gut–Brain Axis Connection
5. Symptoms
6. Potential Causes
7. Pharmacological Treatment
8. Photobiomodulation as a Potential Treatment for Parkinson’s Disease
8.1. In Vitro Experiments
8.2. In Vivo Transcranial Experiments
8.3. In Vivo Remote Experiments
8.4. Clinical Trials
8.5. PBM Penetration to the Substantia Nigra and Remote PBM Treatment
Study | Animal Model | Design | PBM Parameters | Outcomes |
---|---|---|---|---|
TRANSCRANIAL PBM | ||||
Shaw et al., 2010 [131] | Mouse; BALB/c males; MPTP model. | Saline (n = 20)/saline + PBM (n = 20)/MPTP (n = 20)/MPTP + PBM (n = 20). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Four treatments over 30 h (after MPTP). | Reduced neuronal loss; Increased TH+ cell numbers in SNc. |
Shaw et al., 2012 [140] | Mouse; BALB/c males; MPTP model. | Saline (n = 24)/saline + PBM (n = 24)/MPTP (n = 24)/MPTP + PBM (n = 24). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Four treatments over 30 h (after MPTP). | Reduced c-FOS expression in both acute and chronic models. |
Peoples et al., 2012 [138] | Mouse; BALB/c males; MPTP model. | Saline (n = 21)/saline + PBM (n = 19)/MPTP (n = 22)/MPTP + PBM (n = 18). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Ten treatments after each MPTP injection OR Ten treatments after 3 weeks. | Increased TH+ cell numbers in SNc for both simultaneous PBM treatment and post-treatment. |
Peoples et al., 2012 [139] | Mouse; BALB/c males; MPTP model. | Saline (n = 21)/saline + PBM (n = 19)/MPTP (n = 22)/MPTP + PBM (n = 18). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Four treatments 4 days after MPTP (simultaneous treatment model) OR Ten treatments over 3 weeks (post-treatment model). | Increased TH+ cell numbers in the retina for both simultaneous PBM treatment and post-treatment. |
Moro et al., 2013 [137] | Mouse; BALB/c males + C57BL/6; MPTP model. | Saline (n = 10 + 10)/saline + PBM (n = 10 + 10)/MPTP (n = 10 + 10)/MPTP + PBM (n = 10 + 10). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Two PBM treatments immediately after and 6 h after each MPTP injection over 30 h (total of four PBM treatments). | ncreased TH+ cells in SNc and improved locomotion for albino (BALB) mice but not for black (C57BL) mice—due to reduced penetration of 670 nm. |
Purushothuman et al., 2013 [141] | Mouse; K3 transgenic (overexpression of tau protein). | Wild type (n = 5)/K3 (n = 5)/K3 + PBM (n = 5). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; One PBM treatment per day, 5 days per week for 4 weeks (total of 20 PBM treatments). | Increased TH+ cells in SNc; decreased oxidative stress markers. |
Johnstone et al., 2014 [152] | Mouse; BALB/c males; MPTP model (50, 75 and 100 mg/kg). | 50 mg/kg MPTP (n = 36)/75 mg/kg MPTP (n = 8)/100 mg/kg MPTP (n = 9)/50 mg/kg MPTP + transcranial PBM (n = 12)/75 mg/kg MPTP + transcranial PBM (n = 8)/100 mg/kg MPTP + transcranial PBM (n = 19)/50 mg/kg MPTP + remote PBM (n = 11)/75 mg/kg MPTP + remote PBM (n = 8)/100 mg/kg MPTP + remote PBM (n = 9). | 670 nm LED; Transcranial OR remote; 40 mW/cm2 for 90 s; Two PBM treatments immediately after and 6 h after each MPTP injection (total of four PBM treatments for 50 mg/kg, six for 75 mg/kg and eight for 100 mg/kg MPTP). | Increased TH+ cells in 50 mg/kg MPTP treatment (not 75 or 100 mg/kg); Transcranial treatment appeared superior to remote treatment. |
Oueslati et al., 2015 [27] | Rat; Transgenic overexpression of α-synuclein. | Sham (n = 9)/low PBM (n = 7)/high PBM (n = 7). | 808 nm laser; Transcranial; (Two spots); 2.5 J and 5 J; Daily for 28 days. | Reduced neuronal loss; Reduced motor impairment; Improvements lasted for 6 weeks after treatment was discontinued. |
Reinhart et al., 2015 [136] | Mouse; BALB/c males; MPTP model. | Saline (n = 11)/saline + PBM (n = 11)/MPTP (n = 11)/MPTP + PBM (n = 11). | 810 nm LED; Transcranial; 1.6 mW for 90 s; Four treatments over 30 h (after MPTP). | Increased TH+ cells in SNc; Improved locomotion after each PBM treatment. |
El Massri et al., 2016 [135] | Mouse; BALB/c males; MPTP model. | Saline (n = 20)/saline + PBM (n = 30)/MPTP (n = 30)/MPTP + PBM (n = 40). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Immediately after and 6 h after two MPTP injections (four PBM treatments) OR Immediately after and 6 h after four MPTP injections, separated by 7 days (eight PBM treatments) OR Two PBM treatments per day for 8 or 12 days (sixteen PBM treatments). | Increase in TH+ cells in 8 PBM treatment group and 16 PBM treatment group and after 7 days in the 4 PBM treatment group but not after 2 days; 2 J/cm2 was not effective, while 4 J/cm2 was effective for an increased MPTP dose (100 mg/kg). |
Ribeiro et al., 2016 [149] | Rat; Wistar; 6OHDA model. | 6OHDA (n = 20)/6OHDA + LED (n = 20)/6OHDA + laser (n = 20). | 672 nm LED; Right cervical region over carotid artery; 70 mW for 57 s; daily for 7 days; OR 630 nm laser; Right cervical region over carotid artery; 45 mW for 88 s; Daily for 7 days. | Increased IL-2, IL-10 and interferon with a laser; Increased IFN-α with LEDs; Decreased TNF-α with LEDs and a laser; Motor condition improved significantly with a laser but not LEDs. |
Reinhart et al., 2016 [134] | Mouse; BALB/c males; MPTP model. | Saline (n = 9)/saline + PBM (n = 11)/MPTP (n = 9)/MPTP + pre MPTP injection PBM (n = 9)/MPTP + simultaneous MPTP injection PBM (n = 9)/MPTP + post MPTP injection PBM (n = 9)/MPTP + pre + simultaneous MPTP injection PBM (n = 9)/MPTP + post + simultaneous MPTP injection PBM (n = 9)/MPTP + pre + post + simultaneous MPTP injection PBM (n = 9). | 670 nm LED; Transcranial; 40 mW/cm2 for 90 s; Two PBM treatments per day; Pre, post and simultaneous MPTP injection had four PBM treatments; pre + simultaneous and post + simultaneous MPTP injection had eight PBM treatments; pre + post + simultaneous MPTP injection had twelve PBM treatments. | Increased TH+ cells in all groups; Locomotion improved in all groups. |
San Miguel 2019 [133] | Mouse; C56BL/6 (head shaved); MPTP model. | Saline (n = 8)/MPTP (n = 6)/MPTP + PBM (n = 6). | 675 LED; Transcranial; 50 mW/cm2 for 3 min daily for 7 days. | Reduced vascular leakage in SNc and the caudate putamen complex. |
O’Brien and Austin 2019 [150] | Rat; Sprague–Dawley male; Supranigral LPS injection. | Vehicle sham/LPS sham/LPS + PBM. | 670 nm LED array; Transcranial; 4 J/cm2 twice daily for 6 days. | |
INTRACRANIAL PBM | ||||
Moro et al., 2014 [183] | Mouse; BALB/c males; MPTP model. | Saline (n = 5)/saline + continuous PBM (n = 5)/ saline + pulsed PBM (n = 5)/MPTP + continuous PBM (n = 5)/MPTP + pulsed PBM (n = 5). | 670 nm LED; Implanted intracranially; 1.5 mW/cm2 (pulsed) for 90 s per day for 4 days; 14.5 mW/cm2 (continuous) for 6 days continuously. | Pulsed group showed increased TH+ cells in SNc; Continuous group showed non-significant increase in TH+ cells in SNc. |
Moro et al., 2016 [146] | Monkey (macaque); Adult male; MPTP model. | Control (n = 3)/MPTP (n = 5)/MPTP + PBM (n = 7). | 670 nm laser; Implanted intracranially; 10 mW on for 5 s/off for 30 s; Continuous for 25 days. | Increased TH+ cells but no increased effect of increased dose compared to Darlot et al. [147]. |
Reinhart et al., 2016 [142] | Rat; Wistar; 6OHDA model. | Saline (n = 8)/6OHDA (n = 15)/6OHDA + PBM (pulsed) (n = 16)/6OHDA + PBM (continuous) (n = 13)/6OHDA + PBM (continuous low dose) (n = 9). | 670 nm LED Implanted intracranially; 1.6 mW for 90 s twice daily for 23 days OR 1.6 mW continuously for 23 days OR 0.333 mW continuously for 23 days. | Increased TH+ cells for pulsed group but not continuous groups; Decreased rotational behaviour for pulsed and high-dose continuous groups but not for low-dose continuous group. |
Darlot et al., 2016 [147] | Monkey (macaque); Adult male; MPTP model. | Control (n = 5)/1.5 mg/kg MPTP (n = 6)/2.1 mg/kg MPTP (n = 5)/1.5 mg/kg MPTP + PBM (n = 5)/21.1 mg/kg MPTP + PBM (n = 4). | 670 nm laser; Implanted intracranially; 10 mW on for 5 s/off for 30 s; Continuous for 5 days (1.5 mg/kg MPTP) OR Continuous for 7 days (2.1 mg/kg MPTP). | Increased TH+ cells; Increased striatal TH+ terminals for lower MPTP group; Improved clinical scores; Improved locomotion. |
El Massri et al., 2016 [145] Further results of study from Darlot et al., 2016 [147] | Monkey (macaque); Adult male; MPTP model. | Control (n = 5)/1.5 mg/kg MPTP (n = 6)/2.1 mg/kg MPTP (n = 5)/1.5 mg/kg MPTP + PBM (n = 5)/21.1 mg/kg MPTP + PBM (n = 4). | 670 nm laser; Implanted intracranially; 10 mW on for 5 s/off for 30 s; Continuous for 5 days (1.5 mg/kg MPTP) OR Continuous for 7 days (2.1 mg/kg MPTP). | Reduced MPTP-induced astrogliosis in the SNc and striatum. |
El Massri et al., 2017 [144] Further results from studies of Moro et al. [183], Reinhart et al., 2016 [142] and Darlot et al., 2016 [147] | Mouse; BABL/c. + Rat; Wistar. + Monkey (macaque). All MPTP models. | Mouse: Saline (n = 5)/saline + continuous PBM (n = 5)/saline + pulsed PBM (n = 5)/MPTP + continuous PBM (n = 5)/MPTP + pulsed PBM (n = 5). Rat: Saline (n = 8)/6OHDA (n = 15)/6OHDA + PBM (pulsed) (n = 16)/6OHDA + PBM (continuous) (n = 13)/6OHDA + PBM (continuous + low dose) (n = 9). Monkey: control (n = 5)/1.5 mg/kg MPTP (n = 6)/2.1 mg/kg MPTP (n = 5)/1.5 mg/kg MPTP + PBM (n = 5)/21.1 mg/kg MPTP + PBM (n = 4). | 670 nm LED; Implanted intracranially; Mouse: 1.5 mW/cm2 (pulsed) for 90 s per day for 4 days; 14.5 mW/cm2 (continuous) for 6 days continuously. Rat: 1.6 mW for 90 s twice daily for 23 days OR 1.6 mW continuously for 23 days OR 0.333 mW continuously for 23 days. Monkey: 10 mW on for 5 s/off for 30 s; Continuous for 5 days (1.5 mg/kg MPTP) OR continuous for 7 days (2.1 mg/kg MPTP). | Increase in TH+ cells in the striatum of monkeys but not mice or rats; Increase in glial cell-derived neurotrophic factor (GDNF) in monkeys. |
El Massri et al., 2018 [184] | Monkey (macaque); Adult male; MPTP model. | Control (n = 3)/control + PBM (n = 3)/MPTP (n = 3)/MPTP + PBM (n = 3). | 670 nm laser; Implanted intracranially; 10 mW on for 5 s/off for 60 s; Continuous for 5 days. | No effect on encephalopsin expression in striatum. |
REMOTE PBM | ||||
Stone et al., 2013 [157] | Mouse; BALB/c males; MPTP model. | Saline (n = 5)/saline + PBM (n = 5)/MPTP (n = 5)/MPTP + PBM (n = 5). | 670 nm LED; Remote (body with head shieled); 40 mW/cm2 for 90 s; Twp PBM treatments immediately after and 6 h after each MPTP injection over 30 h (total of four PBM treatments). | Increased TH+ cells in SNc. |
Wattanathorn and Sutalangka 2014 [148] | Rat; Wistar; 6OHDA model. | Control (n = 12)/6OHDA (n = 12)/6OHDA sham (n = 12)/6OHDA + PBM (n = 12). | 405 nm laser; Laser acupuncture point HT7; 100 mW for 10 min; Once daily for 14 days. | Improved memory; increased cells at CA3 of the hippocampus; decreased markers of oxidative stress. |
Johnstone et al., 2014 [152] | Mouse; BALB/c males; MPTP model (50, 75 and 100 mg/kg). | 50 mg/kg MPTP (n = 36)/75 mg/kg MPTP (n = 8)/100 mg/kg MPTP (n = 9)/50 mg/kg MPTP + transcranial PBM (n = 12)/75 mg/kg MPTP + transcranial PBM (n = 8)/100 mg/kg MPTP + transcranial PBM (n = 19)/50 mg/kg MPTP + remote PBM (n = 11)/75 mg/kg MPTP + remote PBM (n = 8)/100 mg/kg MPTP + remote PBM (n = 9). | 670 nm LED; Transcranial OR remote; 40 mW/cm2 for 90 s; Two PBM treatments immediately after and 6 h after each MPTP injection (total of four PBM treatments for 50 mg/kg, six for 75 mg/kg and eight for 100 mg/kg MPTP). | Increased TH+ cells in 50 mg/kg MPTP treatment (not 75 or 100 mg/kg); Transcranial treatment appeared superior to remote treatment. |
Kim et al., 2018 [158] | Mouse; C57BL/6 males; MPTP model. | saline (n = 10)/MPTP sham (n = 10)/MPTP + remote ischemic conditioning (leg) (n = 10)/MPTP + PBM (n = 10)/MPTP + remote ischemic conditioning + PBM (n = 10). | 670 nm LED; Remote (dorsum); 50 mW/cm2 for 3 min; Pre-conditioned prior to MPTP injection. | Increased TH+ cells with remote ischemic conditioning and remote PBM; no additional benefit from combining treatments. |
Ganeshan et al., 2019 [132] | Mouse; BABL/c males; MPTP model. | Saline (n = 10)/MPTP (n = 10)/MPTP + PBM 2 days pretreatment (n = 10)/ MPTP + PBM 5 days pre-treatment (n = 10)/MPTP + PBM 10 days pre-treatment (n = 10). | 670 nm LED; Remote (dorsum + hind limbs); 50 mW/cm2 for 90 s for 2, 5 or 10 days prior to MTPT injection. | Decreased Fos+ in the caudate putamen complex for all pre-treatment groups; Increased TH+ cells and upregulated cell signalling, cell migration, oxidative stress response and blood–brain barrier modulation in 10-day pre-treatment group only. |
Gordon et al., 2023 [143] | Mouse; C56BL/6 (head, abdomen and hind legs shaved). + Monkey (macaque); Adult male. All MPTP models. | Mouse: Control (n = 10)/MPTP (n = 10)/MPTP + PBM (head) (n = 10)/MPTP + PBM (abdomen) (n = 10)/MPTP + PBM (legs) (n = 10). Monkey: head (n = 1)/abdomen (n = 1)/hind legs (n = 1). | Mouse: 656 nm LED; Transcranial and remote (abdomen + hind legs); 50 mW/cm2 for 180 s; After MPTP injection, daily for 21 days. Monkey: 670 nm LED; Transcranial and remote (abdomen + lower legs); 50 mW/cm2 for 180 s; Immediately after and 4 h after MPTP injection over 5 days (10 treatments). | Mouse: No difference in mobility; Increased TH+ cells in SNc in all groups. Monkey (single individual): Lower clinical score for abdomen and leg treatment. |
WHOLE ANIMAL PBM | ||||
Vos et al., 2013 [151] | Drosophila; pink1 null mutants; park null mutants; Rotenone toxin. | Variable numbers of mutant pink1 flies/pink1 controls/mutant park flies/park controls. | 808 nm laser; Whole animal; 25 mW/cm2 for 100 s; Single dose. | Increased flight times; reduced mitochondrial defects and function; increased mitochondrial (complex IV) respiration. |
Study | Participants | Design | PBM Parameters | Outcomes |
---|---|---|---|---|
TRANSCRANIAL | ||||
Santos et al., 2019 [169] | Idiopathic Parkinson’s disease; H & Y stage 1–2; No severe dyskinesis; 20 males; 15 females. | RCT; Sham (low dose) (n = 18)/PBM (n = 17). | 670 nm LED; Transcranial; 60 mW/cm2 for 60 s alternating between left and right temples with 30 s rest between six treatments; Twice per week for 9 weeks (18 treatments); “sham” received 5 s treatment. | Improved fast rhythm 10-metre walk test; No other significant improvements. |
Hamilton et al., 2019 [170] | Idiopathic Parkinson’s disease. | Case studies of three patients; No placebo group. | home-made PBM devices; Transcranial. 670 nm + 850 nm or 810 nm LED strips; 30 min once per day OR 20 min twice per day. | A variety of self-reported improvements including motor (gait, tremor, fine motor skills and writing) and non-motor (sleeping, swallowing, sense of smell, speech, self-esteem and social interactions). |
Hamilton et al., 2019 [171] | Idiopathic Parkinson’s disease. | Case studies of six patients (two repeated from previous report) [170]; No placebo group. | Variety of PBM devices; Transcranial + intranasal. Home-made device with 670 nm + 850 nm or 810 nm; 20 min or 30 min, once or twice per day OR Manufactured device with 670 nm + 810 nm LEDs; 20 min once or twice daily OR Intranasal device 660 nm; 20 min per day; Ongoing treatment up to 24 months. | A variety of self-reported improvements including motor (gait, tremor, rigidity, fine motor skills and writing) and non-motor (sleeping, swallowing, sweating, sense of smell, speech, self-esteem, social interactions and constipation). |
Berman and Nichols 2019 [172] | NR | Case study; Two participants; No placebo group. | 1068 nm LED; Transcranial; 2.6 mW/cm2 for 5 min; Twice daily for 28 days. | Improved clock drawing. |
Tamae et al., 2020 [173] | Idiopathic Parkinson’s disease; Ages 30 to 80 years; H & Y stage 1.5–2; Muscle pain and stiffness. | Parallel group trial; Vacuum therapy (n = 6)/PBM (n = 6)/vacuum therapy + PBM (n = 6); No placebo group. | 670 nm + 808 nm laser; Cervical to lumbar spine + dorsal trunk + forearms and palm; Power NR; time applied NR; Two PBM treatments per week for 3 weeks (six treatments). | Combined vacuum and PBM gave more pain relief (VAS) than either single treatment. |
Liebert et al., 2019 [174] | Idiopathic Parkinson’s disease; Seven females; five males; Aged between 60 and 80 years. | Waitlist design; Immediate treatment (n = 6)/waitlist (n = 6); No placebo group. | 904 nm laser; Abdominal; 30 mW/cm2 for 60 s on 9 points of abdomen + 1 point of neck; PLUS 810 nm LED; Transcranial; 100 mW/cm2 and 75 mW/cm2 for 20 min; PLUS 810 nm LED; Intranasal; 25 mW/cm2 for 25 min; All 3 times per week for 4 weeks, then 2 times per week for 4 weeks then 1 time per week for 4 weeks, then 3 times per week for up to 1 year. | Improvements in a range of motor (including gait, balance and fine motor skills) and cognitive outcome measures at both 12 weeks and 1 year; Measurable Hawthorne effect, with outcome measures further improved on treatment. |
Bullock-Saxton et al., 2019 [176] | Idiopathic Parkinson’s disease. | RCT; Placebo (n = 10)/PBM (n = 10). | 904 nm laser; Transcranial; 60 mW for 33 s; PLUS Intraoral; 60 mW for 33 s; Three PBM treatments per week for 4 weeks; 4 weeks no treatment; One PBM treatment per week for 4 weeks. | No significant changes but indications of positive effects for fine motor skills and dynamic balance. |
Hong et al., 2021 [177] | Idiopathic Parkinson’s disease; 8 females; 12 males; Aged 30 to 80 years; H & Y stage 2–3. | Case series (n = 18); Combined therapy (PBM + h2 water); No placebo group. | 940 nm LED; Neck; 6 mW/cm2 for 30 min for 5 consecutive days. | Improved UPDRS scores. |
Liebert et al., 2022 [188] | Idiopathic Parkinson’s disease; Seven males; Aged between 60 and 80 years. | Case series (n = 7); No placebo group. | 904 nm laser; Abdominal; 30 mW/cm2 for 120 s on 9 points of abdomen + 1 point of neck; For 12 weeks. | Improvements in a range of motor (including gait, balance and fine motor skills) and cognitive outcome measures at both 12 weeks and 1 year. |
Bicknell et al., 2022 [189] Further results of Liebert et al.’s study [174] | Idiopathic Parkinson’s disease; Seven females; five males; Aged between 60 and 80 years. | Waitlist design; Immediate treatment (n = 6)/waitlist (n = 6); No placebo group. | 904 nm laser; Abdominal; 30 mW/cm2 for 60 s on 9 points of abdomen + 1 point of neck; PLUS 810 nm LED; Transcranial; 100 mW/cm2 and 75 mW/cm2 for 20 min; PLUS 810 nm LED; Intranasal; 25 mW/cm2 for 25 min; All 3 times per week for 4 weeks, then 2 times per week for 4 weeks, then 1 time per week for 4 weeks, then 3 times per week for up to 1 year. | Changes to the microbiome following PBM. |
Peci et al., 2023 [178] | Idiopathic Parkinson’s disease; 13 females; 25 males; Aged 60 to 75 years. | Parallel group trial; Physiotherapy (n = 26)/physiotherapy + PBM (n = 12); No placebo group. | 810 nm LED array (256); Transcranial; 24 mW/cm2 for 18 min, twice per week for 4 weeks. | Combination of PBM and physiotherapy superior to physiotherapy alone for motor UPDRS scores. |
Liebert et al., 2023 [175] 3-year follow-up of Liebert et al.’s 2019 study [174] | Idiopathic Parkinson’s disease; Seven females; five males; Aged between 60 and 80 years. | Waitlist design; PBM treatment (n = 6)/no treatment (n = 2); No placebo group. | 904 nm laser; Abdominal; 30 mW/cm2 for 60 s on 9 points of abdomen + 1 point of neck; PLUS A variety of transcranial PBM devices. | Mobility and cognition outcomes continued to improve up to 2 years and did not decline at 3 years if PBM was maintained; no outcome measure declined to below pre-treatment (3 years previous) if PBM had continued. |
Herkes et al., 2023 [180] | Idiopathic Parkinson’s disease; 20 females; 20 males; Aged 60 to 80 years. | Parallel randomised feasibility trial; Placebo (n = 20)/PBM (n = 20). | 635 nm + 810 nm LED (20 + 20); Transcranial; 27 mW (635 nm) for 12 min then 52 mW (810 nm) for 12 min; Once per day, 6 days per week for 12 weeks; Placebo group switched to PBM after 12 weeks. | Safe and feasible treatment; No significant difference for MDS-UPDRS-III scores between groups at 12 weeks; Placebo group continued to improve after PBM treatment. |
McGee et al., 2023 [181] Further results of Herkes et al.’s study [180] | Idiopathic Parkinson’s disease; 20 females; 20 males; Aged 60 to 80 years. | Parallel randomised feasibility trial; Placebo (n = 20)/PBM (n = 20). | 635 nm + 810 nm LED (20 + 20); Transcranial; 27 mW (635 nm) for 12 min then 52 mW (810 nm) for 12 min; once per day, 6 days per week for 12 weeks; Placebo group switched to PBM after 12 weeks. | Responders to PBM treatment showed improvements in all sub-scores of MDS-UPDRS-III scores (facial expression, upper limb, lower limb, gait and tremors) after 12 weeks, while placebo responders showed improvements in only lower limb sub-score. |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dorsey, E.R.; Zafar, M.; Lettenberger, S.E.; Pawlik, M.E.; Kinel, D.; Frissen, M.; Schneider, R.B.; Kieburtz, K.; Tanner, C.M.; De Miranda, B.R.; et al. Trichloroethylene: An Invisible Cause of Parkinson’s Disease? J. Park. Dis. 2023, 13, 203–218. [Google Scholar] [CrossRef]
- Rocca, W.A. The burden of Parkinson’s disease: A worldwide perspective. Lancet Neurol. 2018, 17, 928–929. [Google Scholar] [CrossRef]
- Beauchamp, L.C.; Finkelstein, D.I.; Bush, A.I.; Evans, A.H.; Barnham, K.J. Parkinsonism as a Third Wave of the COVID-19 Pandemic? J. Park. Dis. 2020, 10, 1343–1353. [Google Scholar] [CrossRef]
- Victorino, D.B.; Guimarães-Marques, M.; Nejm, M.; Scorza, F.A.; Scorza, C.A. COVID-19 and Parkinson’s Disease: Are We Dealing with Short-term Impacts or Something Worse? J. Park. Dis. 2020, 10, 899. [Google Scholar] [CrossRef]
- Cilia, R.; Bonvegna, S.; Straccia, G.; Andreasi, N.G.; Elia, A.E.; Romito, L.M.; Devigili, G.; Cereda, E.; Eleopra, R. Effects of COVID-19 on Parkinson’s Disease Clinical Features: A Community-Based Case-Control Study. Mov. Disord. 2020, 35, 1287–1292. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. Npj Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef]
- Merello, M.; Nouzeilles, M.I.; Arce, G.P.; Leiguarda, R. Accuracy of acute levodopa challenge for clinical prediction of sustained long-term levodopa response as a major criterion for idiopathic Parkinson’s disease diagnosis. Mov. Disord. 2002, 17, 795–798. [Google Scholar]
- Jiji, G.W.; Rajesh, A.; Lakshmi, M.M. Diagnosis of Parkinson’s disease using EEG and fMRI. Multimed. Tools Appl. 2023, 82, 14915–14928. [Google Scholar] [CrossRef]
- Maitin, A.M.; Romero Muñoz, J.P.; García-Tejedor, Á.J. Survey of machine learning techniques in the analysis of EEG signals for Parkinson’s disease: A systematic review. Appl. Sci. 2022, 12, 6967. [Google Scholar] [CrossRef]
- Khachnaoui, H.; Mabrouk, R.; Khlifa, N. Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson’s disease: A review. IET Image Process. 2020, 14, 4013–4026. [Google Scholar]
- Hsu, S.-Y.; Yeh, L.-R.; Chen, T.-B.; Du, W.-C.; Huang, Y.-H.; Twan, W.-H.; Lin, M.-C.; Hsu, Y.-H.; Wu, Y.-C.; Chen, H.-Y. Classification of the multiple stages of Parkinson’s Disease by a deep convolution neural network based on 99mTc-TRODAT-1 SPECT images. Molecules 2020, 25, 4792. [Google Scholar] [CrossRef]
- Ayaz, Z.; Naz, S.; Khan, N.H.; Razzak, I.; Imran, M. Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Comput. Appl. 2023, 35, 14499–14534. [Google Scholar] [CrossRef]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Li, T.; Le, W. Biomarkers for Parkinson’s Disease: How Good Are They? Neurosci. Bull. 2020, 36, 183–194. [Google Scholar] [CrossRef]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.-E.; Farris, C.M.; Ma, Y.; Urenia, P.A.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T.; et al. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: A cross-sectional study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- Beauchamp, L.C.; Dore, V.; Villemagne, V.L.; Xu, S.; Finkelstein, D.; Barnham, K.J.; Rowe, C. Utilizing 18F-AV-133 VMAT2 PET Imaging to Monitor Progressive Nigrostriatal Degeneration in Parkinson’s Disease. Neurology 2023, 101, e2314–e2324. [Google Scholar] [CrossRef]
- Haehner, A.; Masala, C.; Walter, S.; Reichmann, H.; Hummel, T. Incidence of Parkinson’s disease in a large patient cohort with idiopathic smell and taste loss. J. Neurol. 2019, 266, 339–345. [Google Scholar]
- Fullard, M.E.; Morley, J.F.; Duda, J.E. Olfactory Dysfunction as an Early Biomarker in Parkinson’s Disease. Neurosci. Bull. 2017, 33, 515–525. [Google Scholar] [CrossRef]
- Halliday, G.M.; McCann, H. The progression of pathology in Parkinson’s disease. Ann. N. Y. Acad. Sci. 2010, 1184, 188–195. [Google Scholar] [CrossRef]
- Gao, X.-Y.; Yang, T.; Gu, Y.; Sun, X.-H. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front. Aging Neurosci. 2022, 14, 885500. [Google Scholar] [CrossRef]
- Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016, 139, 216–231. [Google Scholar]
- Tresse, E.; Marturia-Navarro, J.; Sew, W.Q.G.; Cisquella-Serra, M.; Jaberi, E.; Riera-Ponsati, L.; Fauerby, N.; Hu, E.; Kretz, O.; Aznar, S. Mitochondrial DNA damage triggers spread of Parkinson’s disease-like pathology. Mol. Psychiatry 2023, in press.
- Beilina, A.; Cookson, M.R. Genes associated with Parkinson’s disease: Regulation of autophagy and beyond. J. Neurochem. 2016, 139, 91–107. [Google Scholar]
- Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects, Stoker, T.B., Greenland, J.C., Eds.; Exon Publications: Brisbane, Australia, 2018; pp. 3–26. [Google Scholar] [CrossRef]
- Cheng, H.C.; Ulane, C.M.; Burke, R.E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef]
- Snead, D.; Eliezer, D. Alpha-synuclein function and dysfunction on cellular membranes. Exp. Neurobiol. 2014, 23, 292–313. [Google Scholar] [CrossRef]
- Oueslati, A.; Lovisa, B.; Perrin, J.; Wagnieres, G.; van den Bergh, H.; Tardy, Y.; Lashuel, H.A. Photobiomodulation suppresses alpha-synuclein-induced toxicity in an AAV-based rat genetic model of Parkinson’s disease. PLoS ONE 2015, 10, e0140880. [Google Scholar]
- Jellinger, K.A. Synuclein deposition and non-motor symptoms in Parkinson disease. J. Neurol. Sci. 2011, 310, 107–111. [Google Scholar] [CrossRef]
- Ho, M.S. Microglia in Parkinson’s Disease. In Neuroglia in Neurodegenerative Diseases; Verkhratsky, A., Ho, M.S., Zorec, R., Parpura, V., Eds.; Springer Singapore: Singapore, 2019; pp. 335–353. [Google Scholar]
- Çınar, E.; Tel, B.C.; Şahin, G. Neuroinflammation in Parkinson’s Disease and its Treatment Opportunities. Balk. Med. J. 2022, 39, 318–333. [Google Scholar] [CrossRef]
- Pajares, M.; Rojo, A.I.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells 2020, 9, 1687. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, W.; Liu, L.; Wang, X.; Ding, C.; Tian, Z.; Zhou, R. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015, 160, 62–73. [Google Scholar] [CrossRef]
- Alrouji, M.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Saad, H.M.; Batiha, G.E.-S. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson’s disease: Beneficial or detrimental effects. Inflammopharmacology 2023, 31, 673–688. [Google Scholar] [CrossRef]
- Bicknell, B.; Liebert, A.; Borody, T.; Herkes, G.; McLachlan, C.; Kiat, H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int. J. Mol. Sci. 2023, 24, 9577. [Google Scholar]
- Cirstea, M.S.; Yu, A.C.; Golz, E.; Sundvick, K.; Kliger, D.; Radisavljevic, N.; Foulger, L.H.; Mackenzie, M.; Huan, T.; Finlay, B.B. Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson’s Disease. Mov. Disord. 2020, 35, 1208–1217. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, C.-C.; Chiang, H.-L.; Liou, J.-M.; Chang, C.-M.; Lu, T.-P.; Chuang, E.Y.; Tai, Y.-C.; Cheng, C.; Lin, H.-Y. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 2019, 16, 129. [Google Scholar]
- Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 2017, 32, 739–749. [Google Scholar] [CrossRef]
- Wallen, Z.D.; Appah, M.; Dean, M.N.; Sesler, C.L.; Factor, S.A.; Molho, E.; Zabetian, C.P.; Standaert, D.G.; Payami, H. Characterizing dysbiosis of gut microbiome in PD: Evidence for overabundance of opportunistic pathogens. Npj Park. Dis. 2020, 6, 11. [Google Scholar] [CrossRef]
- Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef]
- Toh, T.S.; Chong, C.W.; Lim, S.-Y.; Bowman, J.; Cirstea, M.; Lin, C.-H.; Chen, C.-C.; Appel-Cresswell, S.; Finlay, B.B.; Tan, A.H. Gut microbiome in Parkinson’s disease: New insights from meta-analysis. Park. Relat. Disord. 2022, 94, 1–9. [Google Scholar]
- Romano, S.; Savva, G.M.; Bedarf, J.R.; Charles, I.G.; Hildebrand, F.; Narbad, A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. Npj Park. Dis. 2021, 7, 27. [Google Scholar]
- Baldini, F.; Hertel, J.; Sandt, E.; Thinnes, C.C.; Neuberger-Castillo, L.; Pavelka, L.; Betsou, F.; Krüger, R.; Thiele, I.; Consortium, N.-P. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 2020, 18, 62. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Hu, Y.; Lu, L.; Zheng, C.; Fan, Y.; Wu, B.; Zou, T.; Luo, X.; Zhang, X.; et al. Gut bacterial profiles in Parkinson’s disease: A systematic review. CNS Neurosci. Ther. 2023, 29, 140–157. [Google Scholar] [CrossRef]
- Kaye, J.; Gage, H.; Kimber, A.; Storey, L.; Trend, P. Excess burden of constipation in Parkinson’s disease: A pilot study. Mov. Disord. Off. J. Mov. Disord. Soc. 2006, 21, 1270–1273. [Google Scholar]
- Berg, D.; Postuma, R.B.; Adler, C.H.; Bloem, B.R.; Chan, P.; Dubois, B.; Gasser, T.; Goetz, C.G.; Halliday, G.; Joseph, L. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2015, 30, 1600–1611. [Google Scholar] [CrossRef]
- Adams-Carr, K.L.; Bestwick, J.P.; Shribman, S.; Lees, A.; Schrag, A.; Noyce, A.J. Constipation preceding Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 710–716. [Google Scholar] [CrossRef]
- Knudsen, K.; Krogh, K.; Østergaard, K.; Borghammer, P. Constipation in Parkinson’s disease: Subjective symptoms, objective markers, and new perspectives. Mov. Disord. 2017, 32, 94–105. [Google Scholar]
- Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Chang, J.; Rudi, K.; Paulin, L.; Hertzberg, V.; Auvinen, P.; Tansey, M.G.; Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 2021, 16, 6. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, S.-H.; Kam, T.-I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 2019, 103, 627–641.e627. [Google Scholar]
- Barbut, D.; Stolzenberg, E.; Zasloff, M. Gastrointestinal Immunity and Alpha-Synuclein. J. Park. Dis. 2019, 9, S313–S322. [Google Scholar]
- Uemura, N.; Yagi, H.; Uemura, M.T.; Hatanaka, Y.; Yamakado, H.; Takahashi, R. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol. Neurodegener. 2018, 13, 21. [Google Scholar]
- Skjærbæk, C.; Knudsen, K.; Horsager, J.; Borghammer, P. Gastrointestinal Dysfunction in Parkinson’s Disease. J. Clin. Med. 2021, 10, 493. [Google Scholar] [CrossRef]
- Shannon, K.M.; Keshavarzian, A.; Dodiya, H.B.; Jakate, S.; Kordower, J.H. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov. Disord. 2012, 27, 716–719. [Google Scholar] [PubMed]
- Chen, S.-J.; Lin, C.-H. Gut microenvironmental changes as a potential trigger in Parkinson’s disease through the gut–brain axis. J. Biomed. Sci. 2022, 29, 54. [Google Scholar] [CrossRef]
- Liu, B.; Fang, F.; Pedersen, N.L.; Tillander, A.; Ludvigsson, J.F.; Ekbom, A.; Svenningsson, P.; Chen, H.; Wirdefeldt, K. Vagotomy and Parkinson disease: A Swedish register–based matched-cohort study. Neurology 2017, 88, 1996–2002. [Google Scholar]
- Horsager, J.; Andersen, K.B.; Knudsen, K.; Skjærbæk, C.; Fedorova, T.D.; Okkels, N.; Schaeffer, E.; Bonkat, S.K.; Geday, J.; Otto, M. Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study. Brain 2020, 143, 3077–3088. [Google Scholar] [PubMed]
- Borghammer, P.; Van Den Berge, N. Brain-first versus gut-first Parkinson’s disease: A hypothesis. J. Park. Dis. 2019, 9, S281–S295. [Google Scholar]
- Villumsen, M.; Aznar, S.; Pakkenberg, B.; Jess, T.; Brudek, T. Inflammatory bowel disease increases the risk of Parkinson’s disease: A Danish nationwide cohort study 1977–2014. Gut 2019, 68, 18–24. [Google Scholar]
- Li, H.-x.; Zhang, C.; Zhang, K.; Liu, Y.-z.; Peng, X.-x.; Zong, Q. Inflammatory bowel disease and risk of Parkinson’s disease: Evidence from a meta-analysis of 14 studies involving more than 13.4 million individuals. Front. Med. 2023, 10, 1137366. [Google Scholar] [CrossRef]
- Fu, P.; Gao, M.; Yung, K.K.L. Association of intestinal disorders with Parkinson’s disease and Alzheimer’s disease: A systematic review and meta-analysis. ACS Chem. Neurosci. 2019, 11, 395–405. [Google Scholar] [CrossRef]
- Liu, B.; Sjölander, A.; Pedersen, N.L.; Ludvigsson, J.F.; Chen, H.; Fang, F.; Wirdefeldt, K. Irritable bowel syndrome and Parkinson’s disease risk: Register-based studies. Npj Park. Dis. 2021, 7, 5. [Google Scholar]
- Ternák, G.; Kuti, D.; Kovács, K.J. Dysbiosis in Parkinson’s disease might be triggered by certain antibiotics. Med. Hypotheses 2020, 137, 109564. [Google Scholar]
- Mertsalmi, T.H.; Pekkonen, E.; Scheperjans, F. Antibiotic exposure and risk of Parkinson’s disease in Finland: A nationwide case-control study. Mov. Disord. 2020, 35, 431–442. [Google Scholar] [CrossRef]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016, 167, 1469–1480.e1412. [Google Scholar] [PubMed]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.-M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson disease subtypes—key to understanding heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T. Update on the genetics of Parkinson’s disease. Mov. Disord. 2007, 22, S343–S350. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef]
- Pang, S.Y.-Y.; Ho, P.W.-L.; Liu, H.-F.; Leung, C.-T.; Li, L.; Chang, E.E.S.; Ramsden, D.B.; Ho, S.-L. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 2019, 8, 23. [Google Scholar] [CrossRef]
- Marras, C.; Canning, C.G.; Goldman, S.M. Environment, lifestyle, and Parkinson’s disease: Implications for prevention in the next decade. Mov. Disord. 2019, 34, 801–811. [Google Scholar] [CrossRef]
- Darweesh, S.K.; Vermeulen, R.; Bloem, B.R.; Peters, S. Exposure to Pesticides Predicts Prodromal Feature of Parkinson’s Disease: Public Health Implications. Mov. Disord. 2022, 37, 883–885. [Google Scholar]
- Lawana, V.; Cannon, J.R. Rotenone neurotoxicity: Relevance to Parkinson’s disease. In Advances in Neurotoxicology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 4, pp. 209–254. [Google Scholar]
- Paul, K.C.; Ritz, B. Epidemiology meets toxicogenomics: Mining toxicologic evidence in support of an untargeted analysis of pesticides exposure and Parkinson’s disease. Environ. Int. 2022, 170, 107613. [Google Scholar]
- Tangamornsuksan, W.; Lohitnavy, O.; Sruamsiri, R.; Chaiyakunapruk, N.; Norman Scholfield, C.; Reisfeld, B.; Lohitnavy, M. Paraquat exposure and Parkinson’s disease: A systematic review and meta-analysis. Arch. Environ. Occup. Health 2019, 74, 225–238. [Google Scholar] [CrossRef]
- Raffetti, E.; Donato, F.; De Palma, G.; Leonardi, L.; Sileo, C.; Magoni, M. Polychlorinated biphenyls (PCBs) and risk of dementia and Parkinson disease: A population-based cohort study in a North Italian highly polluted area. Chemosphere 2020, 261, 127522. [Google Scholar] [CrossRef]
- Wirdefeldt, K.; Adami, H.-O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol. 2011, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Boonstra, T.A. The inadequacy of current pesticide regulations for protecting brain health: The case of glyphosate and Parkinson’s disease. Lancet Planet. Health 2023, 7, e948–e949. [Google Scholar] [PubMed]
- Peillex, C.; Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef]
- Sreepad, B.; Khan, M.; Shtutin, R.; Piedrafita-Ortiz, S.; Govindaraman, T.; Ramachandran, N.; McMillion, D.; Samimi, A.; Sandoval, D. Traumatic Brain Injury-Induced Parkinson’s Disease: An Analysis of the Potential Correlation. Berkeley Pharma Tech. J. Med. 2021, 1, 26–63. [Google Scholar] [CrossRef]
- Hughes, K.C.; Gao, X.; Kim, I.Y.; Wang, M.; Weisskopf, M.G.; Schwarzschild, M.A.; Ascherio, A. Intake of dairy foods and risk of Parkinson disease. Neurology 2017, 89, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Fu, Z.; Le, W. Chapter Two—Exercise and Parkinson’s disease. In International Review of Neurobiology; Yau, S.-Y., So, K.-F., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 147, pp. 45–74. [Google Scholar]
- Mappin-Kasirer, B.; Pan, H.; Lewington, S.; Kizza, J.; Gray, R.; Clarke, R.; Peto, R. Tobacco smoking and the risk of Parkinson disease: A 65-year follow-up of 30,000 male British doctors. Neurology 2020, 94, e2132–e2138. [Google Scholar]
- Lee, L.K.; Mhd Rodzi, N.A.R. Addressing the Neuroprotective Actions of Coffee in Parkinson’s Disease: An Emerging Nutrigenomic Analysis. Antioxidants 2022, 11, 1587. [Google Scholar] [CrossRef]
- Han, K.; Kim, B.; Lee, S.H.; Kim, M.K. A nationwide cohort study on diabetes severity and risk of Parkinson disease. Npj Park. Dis. 2023, 9, 11. [Google Scholar] [CrossRef]
- Rees, R.N.; Noyce, A.J.; Schrag, A. The prodromes of Parkinson’s disease. Eur. J. Neurosci. 2019, 49, 320–327. [Google Scholar] [CrossRef]
- Tang, H.; Lu, Y.; Okun, M.S.; Donahoo, W.T.; Ramirez-Zamora, A.; Wang, F.; Huang, Y.; Chen, W.-H.; Virnig, B.A.; Bian, J.; et al. Meta-analysis of Association between Newer Glucose-Lowering Drugs and Risk of Parkinson’s Disease. Mov. Disord. Clin. Pract. 2023, 10, 1659–1665. [Google Scholar] [CrossRef]
- Gandhi, K.R.; Saadabadi, A. Levodopa (l-dopa). In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Choi, J.; Horner, K.A. Dopamine Agonists; StatPearls Publishing: St. Petersburg, FL, USA, 2019. [Google Scholar]
- Zarzycki, M.Z.; Domitrz, I. Stimulation-induced side effects after deep brain stimulation—A systematic review. Acta Neuropsychiatr. 2020, 32, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Church, F.C. Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules 2021, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, F.; Neshasteh-Riz, A.; Ghadaksaz, A.; Fazeli, S.M.; Janzadeh, A.; Hamblin, M.R. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med. Sci. 2022, 37, 11–18. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016, 9, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.F.d.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sardana, S.; Hamblin, M.R. Role of opsins and light or heat activated transient receptor potential ion channels in the mechanisms of photobiomodulation and infrared therapy. J. Photochem. Photobiol. 2023, 13, 100160. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef]
- Glass, G.E. Photobiomodulation: The clinical applications of low-level light therapy. Aesthetic Surg. J. 2021, 41, 723–738. [Google Scholar]
- González-Muñoz, A.; Cuevas-Cervera, M.; Pérez-Montilla, J.J.; Aguilar-Núñez, D.; Hamed-Hamed, D.; Aguilar-García, M.; Pruimboom, L.; Navarro-Ledesma, S. Efficacy of Photobiomodulation Therapy in the Treatment of Pain and Inflammation: A Literature Review. Healthcare 2023, 11, 938. [Google Scholar]
- de Pauli Paglioni, M.; Araújo, A.L.D.; Arboleda, L.P.A.; Palmier, N.R.; Fonsêca, J.M.; Gomes-Silva, W.; Madrid-Troconis, C.C.; Silveira, F.M.; Martins, M.D.; Faria, K.M. Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review. Oral Oncol. 2019, 93, 21–28. [Google Scholar]
- Salehpour, F.; Cassano, P.; Rouhi, N.; Hamblin, M.R.; De Taboada, L.; Farajdokht, F.; Mahmoudi, J. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: A review of literature. Photobiomodulation Photomed. Laser Surg. 2019, 37, 581–595. [Google Scholar]
- Salehpour, F.; Khademi, M.; Hamblin, M.R. Photobiomodulation Therapy for Dementia: A Systematic Review of Pre-Clinical and Clinical Studies. J. Alzheimer’s Dis. 2021, 83, 1431–1452. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Salehpour, F. Photobiomodulation of the Brain: Shining Light on Alzheimer’s and Other Neuropathological Diseases. J. Alzheimer’s Dis. 2021, 83, 1395–1397. [Google Scholar] [CrossRef]
- Salehpour, F.; Hamblin, M.R. Photobiomodulation for Parkinson’s disease in animal models: A systematic review. Biomolecules 2020, 10, 610. [Google Scholar] [CrossRef]
- Salehpour, F.; Mahmoudi, J.; Sadigh-Eteghad, S.; Cassano, P. Photobiomodulation for depression in animal models. In Photobiomodulation in the Brain; Elsevier: Amsterdam, The Netherlands, 2019; pp. 189–205. [Google Scholar]
- Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S.H.; Hamblin, M.R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol. 2018, 55, 6601–6636. [Google Scholar] [CrossRef]
- Chan, A.S.; Lee, T.-l.; Hamblin, M.R.; Cheung, M.-c. Photobiomodulation enhances memory processing in older adults with mild cognitive impairment: A functional near-infrared spectroscopy study. J. Alzheimer’s Dis. 2021, 83, 1471–1480. [Google Scholar] [CrossRef]
- Salehpour, F.; Majdi, A.; Pazhuhi, M.; Ghasemi, F.; Khademi, M.; Pashazadeh, F.; Hamblin, M.R.; Cassano, P. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodulation Photomed. Laser Surg. 2019, 37, 635–643. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.J.; Kwon, Y.W.; Jeon, S.; Lee, S.-Y.; Kim, C.-S.; Choi, B.T.; Shin, Y.-I.; Hong, S.W.; Shin, H.K. Benefits of a Skull-Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. Adv. Sci. 2022, 9, 2104629. [Google Scholar] [CrossRef]
- Casalechi, H.L.; Dumont, A.J.L.; Ferreira, L.A.B.; de Paiva, P.R.V.; Machado, C.d.S.M.; de Carvalho, P.d.T.C.; Oliveira, C.S.; Leal-Junior, E.C.P. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: A randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med. Sci. 2020, 35, 1253–1262. [Google Scholar] [CrossRef]
- Figueiro Longo, M.G.; Tan, C.O.; Chan, S.-t.; Welt, J.; Avesta, A.; Ratai, E.; Mercaldo, N.D.; Yendiki, A.; Namati, J.; Chico-Calero, I.; et al. Effect of Transcranial Low-Level Light Therapy vs Sham Therapy Among Patients With Moderate Traumatic Brain Injury: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2017337. [Google Scholar] [CrossRef]
- Naeser, M.A.; Martin, P.I.; Ho, M.D.; Krengel, M.H.; Bogdanova, Y.; Knight, J.A.; Yee, M.K.; Zafonte, R.; Frazier, J.; Hamblin, M.R.; et al. Transcranial, Red/Near-Infrared Light-Emitting Diode Therapy to Improve Cognition in Chronic Traumatic Brain Injury. Photomed. Laser Surg. 2016, 34, 610–626. [Google Scholar] [CrossRef]
- Naeser, M.A.; Zafonte, R.; Krengel, M.H.; Martin, P.I.; Frazier, J.; Hamblin, M.R.; Knight, J.A.; Meehan, W.P., 3rd; Baker, E.H. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. J. Neurotrauma 2014, 31, 1008–1017. [Google Scholar] [CrossRef]
- Naeser, M.A.; Martin, P.I.; Ho, M.D.; Krengel, M.H.; Bogdanova, Y.; Knight, J.A.; Hamblin, M.R.; Fedoruk, A.E.; Poole, L.G.; Cheng, C.; et al. Transcranial Photobiomodulation Treatment: Significant Improvements in Four Ex-Football Players with Possible Chronic Traumatic Encephalopathy. J. Alzheimer’s Dis. Rep. 2023, 7, 77–105. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Yang, L.; Tucker, L.; Yang, B.; Zong, X.; Hamblin, M.R.; Zhang, Q. Transcranial photobiomodulation prevents PTSD-like comorbidities in rats experiencing underwater trauma. Transl. Psychiatry 2021, 11, 270. [Google Scholar]
- Schiffer, F.; Johnston, A.L.; Ravichandran, C.; Polcari, A.; Teicher, M.H.; Webb, R.H.; Hamblin, M.R. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 2009, 5, 46. [Google Scholar] [CrossRef]
- Cassano, P.; Petrie, S.R.; Mischoulon, D.; Cusin, C.; Katnani, H.; Yeung, A.; De Taboada, L.; Archibald, A.; Bui, E.; Baer, L.; et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed. Laser Surg. 2018, 36, 634–646. [Google Scholar] [CrossRef]
- Saltmarche, A.E.; Naeser, M.A.; Ho, K.F.; Hamblin, M.R.; Lim, L. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: Case series report. Photomed. Laser Surg. 2017, 35, 432–441. [Google Scholar] [CrossRef]
- Chao, L.L. Effects of Home Photobiomodulation Treatments on Cognitive and Behavioral Function, Cerebral Perfusion, and Resting-State Functional Connectivity in Patients with Dementia: A Pilot Trial. Photobiomodulation Photomed. Laser Surg. 2019, 37, 133–141. [Google Scholar] [CrossRef]
- Ceranoglu, T.A.; Hoskova, B.; Cassano, P.; Biederman, J.; Joshi, G. Efficacy of Transcranial Near-Infrared Light Treatment in ASD: Interim Analysis of an Open-Label Proof of Concept Study of a Novel Approach. In Proceedings of the 74th Annual Meeting, Chicago, IL, USA, 16–18 May 2019; pp. S153–S154. [Google Scholar]
- Ceranoglu, T.A.; Cassano, P.; Hoskova, B.; Green, A.; Dallenbach, N.; DiSalvo, M.; Biederman, J.; Joshi, G. Transcranial Photobiomodulation in Adults with High-Functioning Autism Spectrum Disorder: Positive Findings from a Proof-of-Concept Study. Photobiomodulation Photomed. Laser Surg. 2022, 40, 4–12. [Google Scholar] [CrossRef]
- Schiffer, F.; Khan, A.; Bolger, E.; Flynn, E.; Seltzer, W.P.; Teicher, M.H. An Effective and Safe Novel Treatment of Opioid Use Disorder: Unilateral Transcranial Photobiomodulation. Front. Psychiatry 2021, 12, 713686. [Google Scholar] [CrossRef]
- Cassano, P.; Caldieraro, M.A.; Norton, R.; Mischoulon, D.; Trinh, N.-H.; Nyer, M.; Dording, C.; Hamblin, M.R.; Campbell, B.; Iosifescu, D.V. Reported Side Effects, Weight and Blood Pressure, After Repeated Sessions of Transcranial Photobiomodulation. Photobiomodulation Photomed. Laser Surg. 2019, 37, 651–656. [Google Scholar]
- Cassano, P.; Norton, R.; Caldieraro, M.A.; Vahedifard, F.; Vizcaino, F.; McEachern, K.M.; Iosifescu, D. Tolerability and safety of transcranial photobiomodulation for mood and anxiety disorders. Photonics 2022, 9, 507. [Google Scholar]
- Wang, E.B.; Kaur, R.; Fierro, M.; Austin, E.; Jones, L.R.; Jagdeo, J. Chapter 5—Safety and Penetration of Light into the Brain. In Photobiomodulation in the Brain; Hamblin, M.R., Huang, Y.-Y., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 49–66. [Google Scholar]
- Liang, H.L.; Whelan, H.T.; Eells, J.T.; Wong-Riley, M.T. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone-and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 2008, 153, 963–974. [Google Scholar] [CrossRef]
- Ying, R.; Liang, H.L.; Whelan, H.T.; Eells, J.T.; Wong-Riley, M.T. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 2008, 1243, 167–173. [Google Scholar] [CrossRef]
- Whelan, H.; Desmet, K.; Buchmann, E.; Henry, M.; Wong-Riley, M.; Eells, J.; Verhoeve, J. Harnessing the cell’s own ability to repair and prevent neurodegenerative disease. SPIE Newsroom 2008, 2008, 1. [Google Scholar] [CrossRef]
- Trimmer, P.A.; Schwartz, K.M.; Borland, M.K.; De Taboada, L.; Streeter, J.; Oron, U. Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol. Neurodegener. 2009, 4, 26. [Google Scholar] [CrossRef]
- Bikmulina, P.Y.; Kosheleva, N.V.; Shpichka, A.I.; Timashev, P.S.; Yusupov, V.I.; Maximchik, P.V.; Gogvadze, V.G.; Rochev, Y.A. Photobiomodulation enhances mitochondrial respiration in an in vitro rotenone model of Parkinson’s disease. Opt. Eng. 2020, 59, 061620. [Google Scholar]
- Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Tahmasebinia, F.; Darabi, S.; Abdi, S.; Abbaszadeh, H.A.; Khoshsirat, S. The Effect of Low-Level Laser Therapy and Curcumin on the Expression of LC3, ATG10 and BAX/BCL2 Ratio in PC12 Cells Induced by 6-Hydroxide Dopamine. J. Lasers Med. Sci. 2020, 11, 299–304. [Google Scholar] [CrossRef]
- Gu, X.; Liu, L.; Shen, Q.; Xing, D. Photoactivation of ERK/CREB/VMAT2 pathway attenuates MPP+-induced neuronal injury in a cellular model of Parkinson’s disease. Cell. Signal. 2017, 37, 103–114. [Google Scholar]
- Shaw, V.E.; Spana, S.; Ashkan, K.; Benabid, A.L.; Stone, J.; Baker, G.E.; Mitrofanis, J. Neuroprotection of midbrain dopaminergic cells in MPTP-treated mice after near-infrared light treatment. J. Comp. Neurol. 2010, 518, 25–40. [Google Scholar]
- Ganeshan, V.; Skladnev, N.V.; Kim, J.Y.; Mitrofanis, J.; Stone, J.; Johnstone, D.M. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience 2019, 400, 85–97. [Google Scholar]
- San Miguel, M.; Martin, K.L.; Stone, J.; Johnstone, D.M. Photobiomodulation mitigates cerebrovascular leakage induced by the parkinsonian neurotoxin MPTP. Biomolecules 2019, 9, 564. [Google Scholar] [CrossRef]
- Reinhart, F.; El Massri, N.; Johnstone, D.M.; Stone, J.; Mitrofanis, J.; Benabid, A.-L.; Moro, C. Near-infrared light (670 nm) reduces MPTP-induced parkinsonism within a broad therapeutic time window. Exp. Brain Res. 2016, 234, 1787–1794. [Google Scholar]
- El Massri, N.; Johnstone, D.M.; Peoples, C.L.; Moro, C.; Reinhart, F.; Torres, N.; Stone, J.; Benabid, A.-L.; Mitrofanis, J. The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int. J. Neurosci. 2016, 126, 76–87. [Google Scholar]
- Reinhart, F.; El Massri, N.; Darlot, F.; Torres, N.; Johnstone, D.M.; Chabrol, C.; Costecalde, T.; Stone, J.; Mitrofanis, J.; Benabid, A.-L. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTP-treated mice. Neurosci. Res. 2015, 92, 86–90. [Google Scholar] [CrossRef]
- Moro, C.; Torres, N.; El Massri, N.; Ratel, D.; Johnstone, D.M.; Stone, J.; Mitrofanis, J.; Benabid, A.-L. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: Evidence from two mouse strains. BMC Neurosci. 2013, 14, 40. [Google Scholar] [CrossRef]
- Peoples, C.; Spana, S.; Ashkan, K.; Benabid, A.-L.; Stone, J.; Baker, G.E.; Mitrofanis, J. Photobiomodulation enhances nigral dopaminergic cell survival in a chronic MPTP mouse model of Parkinson’s disease. Park. Relat. Disord. 2012, 18, 469–476. [Google Scholar] [CrossRef]
- Peoples, C.; Shaw, V.E.; Stone, J.; Jeffery, G.; Baker, G.E.; Mitrofanis, J. Survival of dopaminergic amacrine cells after near-infrared light treatment in MPTP-treated mice. Int. Sch. Res. Not. 2012, 2012, 850150. [Google Scholar] [CrossRef]
- Shaw, V.E.; Peoples, C.; Spana, S.; Ashkan, K.; Benabid, A.-L.; Stone, J.; Baker, G.E.; Mitrofanis, J. Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-treated mice. Park. Dis. 2012, 2012, 296875. [Google Scholar] [CrossRef]
- Purushothuman, S.; Nandasena, C.; Johnstone, D.M.; Stone, J.; Mitrofanis, J. The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism. Brain Res. 2013, 1535, 61–70. [Google Scholar] [PubMed]
- Reinhart, F.; El Massri, N.; Chabrol, C.; Cretallaz, C.; Johnstone, D.M.; Torres, N.; Darlot, F.; Costecalde, T.; Stone, J.; Mitrofanis, J. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: The impact on behavior and cell survival. J. Neurosurg. 2016, 124, 1829–1841. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.C.; Martin, K.L.; Torres, N.; Benabid, A.L.; Mitrofanis, J.; Stone, J.; Moro, C.; Johnstone, D.M. Remote photobiomodulation targeted at the abdomen or legs provides effective neuroprotection against parkinsonian MPTP insult. Eur. J. Neurosci. 2023, 57, 1611–1624. [Google Scholar]
- El Massri, N.; Lemgruber, A.P.; Rowe, I.J.; Moro, C.; Torres, N.; Reinhart, F.; Chabrol, C.; Benabid, A.-L.; Mitrofanis, J. Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: Changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp. Brain Res. 2017, 235, 1861–1874. [Google Scholar]
- El Massri, N.; Moro, C.; Torres, N.; Darlot, F.; Agay, D.; Chabrol, C.; Johnstone, D.M.; Stone, J.; Benabid, A.-L.; Mitrofanis, J. Near-infrared light treatment reduces astrogliosis in MPTP-treated monkeys. Exp. Brain Res. 2016, 234, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; El Massri, N.; Darlot, F.; Torres, N.; Chabrol, C.; Agay, D.; Auboiroux, V.; Johnstone, D.M.; Stone, J.; Mitrofanis, J. Effects of a higher dose of near-infrared light on clinical signs and neuroprotection in a monkey model of Parkinson’s disease. Brain Res. 2016, 1648, 19–26. [Google Scholar]
- Darlot, F.; Moro, C.; El Massri, N.; Chabrol, C.; Johnstone, D.M.; Reinhart, F.; Agay, D.; Torres, N.; Bekha, D.; Auboiroux, V. Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann. Neurol. 2016, 79, 59–75. [Google Scholar]
- Wattanathorn, J.; Sutalangka, C. Laser acupuncture at HT7 acupoint improves cognitive deficit, neuronal loss, oxidative stress, and functions of cholinergic and dopaminergic systems in animal model of Parkinson’s disease. Evid.-Based Complement. Altern. Med. 2014, 2014, 937601. [Google Scholar]
- Ribeiro, L.G.; de Oliveira, T.B.; Rolão, M.P.P.; Gomes, J.C.; Carraro, E.; da Silva Pereira, M.C.; Salgado, A.S.I.; Suckow, P.T.; Kerppers, I.I. Effects of Light Emitting Diode and Low-intensity Light on the immunological process in a model of Parkinson’s disease. Med. Res. Arch. 2016, 4. [Google Scholar] [CrossRef]
- O’Brien, J.A.; Austin, P.J. Effect of photobiomodulation in rescuing lipopolysaccharide-induced dopaminergic cell loss in the male sprague–dawley rat. Biomolecules 2019, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.; Lovisa, B.; Geens, A.; Morais, V.A.; Wagnières, G.; Van Den Bergh, H.; Ginggen, A.; De Strooper, B.; Tardy, Y.; Verstreken, P. Near-infrared 808 nm light boosts complex IV-dependent respiration and rescues a Parkinson-related pink1 model. PLoS ONE 2013, 8, e78562. [Google Scholar]
- Johnstone, D.; El Massri, N.; Moro, C.; Spana, S.; Wang, X.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Purushothuman, S. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism–an abscopal neuroprotective effect. Neuroscience 2014, 274, 93–101. [Google Scholar] [CrossRef]
- Lima, A.A.M.; Spínola, L.G.; Baccan, G.; Correia, K.; Oliva, M.; Vasconcelos, J.F.; Soares, M.B.P.; Reis, S.R.; Medrado, A.P. Evaluation of corticosterone and IL-1β, IL-6, IL-10 and TNF-α expression after 670-nm laser photobiomodulation in rats. Lasers Med. Sci. 2014, 29, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Tuby, H.; Maltz, L.; Oron, U. Induction of Autologous Mesenchymal Stem Cells in the Bone Marrow by Low-Level Laser Therapy Has Profound Beneficial Effects on the Infarcted Rat Heart. Lasers Surg. Med. 2011, 43, 401–409. [Google Scholar]
- Liebert, A.; Bicknell, B.; Adams, R. Protein conformational modulation by photons: A mechanism for laser treatment effects. Med. Hypotheses 2014, 82, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, D.M.; Mitrofanis, J.; Stone, J. Targeting the body to protect the brain: Inducing neuroprotection with remotely-applied near infrared light. Neural Regen. Res. 2015, 10, 349–351. [Google Scholar] [CrossRef]
- Stone, J.; Johnstone, D.; Mitrofanis, J. The helmet experiment in Parkinson’s disease: An observation of the mechanism of neuroprotection by near infra-red light. In Proceedings of the 9th WALT Congress, Gold Coast, QLD, Australia, 27–30 September 2012. [Google Scholar]
- Kim, B.; Mitrofanis, J.; Stone, J.; Johnstone, D.M. Remote tissue conditioning is neuroprotective against MPTP insult in mice. IBRO Rep. 2018, 4, 14–17. [Google Scholar] [CrossRef]
- Gordon, L.C.; Johnstone, D.M. Remote photobiomodulation: An emerging strategy for neuroprotection. Neural. Regen. Res. 2019, 14, 2086. [Google Scholar]
- Bicknell, B.; Liebert, A.; Johnstone, D.; Kiat, H. Photobiomodulation of the microbiome: Implications for metabolic and inflammatory diseases. Lasers Med. Sci. 2018, 34, 317–327. [Google Scholar]
- Johnstone, D.M.; Hamilton, C.; Gordon, L.C.; Moro, C.; Torres, N.; Nicklason, F.; Stone, J.; Benabid, A.-L.; Mitrofanis, J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson’s Disease: A Comparison of Direct and Indirect Systemic Stimulations. J. Alzheimer’s Dis. 2021, 83, 1399–1413. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Rosand, J.; Cruchaga, C. A failure of forward translation? The case of neuroprotection. Vessel Plus 2021, 5, 2574-1209. [Google Scholar] [CrossRef]
- Schmidt-Pogoda, A.; Bonberg, N.; Koecke, M.H.M.; Strecker, J.K.; Wellmann, J.; Bruckmann, N.M.; Beuker, C.; Schäbitz, W.R.; Meuth, S.G.; Wiendl, H. Why most acute stroke studies are positive in animals but not in patients: A systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann. Neurol. 2020, 87, 40–51. [Google Scholar] [PubMed]
- Mari, Z.; Mestre, T.A. The disease modification conundrum in parkinson’s disease: Failures and hopes. Front. Aging Neurosci. 2022, 14, 810860. [Google Scholar]
- Salamon, A.; Zádori, D.; Szpisjak, L.; Klivényi, P.; Vécsei, L. Neuroprotection in Parkinson’s disease: Facts and hopes. J. Neural Transm. 2020, 127, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C. Progress of Photobiomodulation for Parkinson’s Disease. SOJ Complement Emerg. Med. 2022, 2, 1449. [Google Scholar] [CrossRef]
- Maloney, R.; Shanks, S.; Maloney, J. The application of low-level laser therapy for the symptomatic care of late stage Parkinson’s disease: A non-controlled, non-randomized study. In Proceedings of the American Society for Lasers in Surgery and Medicine 30th Annual Conference, Phoenix, AZ, USA, 14–18 April 2010. [Google Scholar]
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar]
- Santos, L.; del Olmo-Aguado, S.; Valenzuela, P.L.; Winge, K.; Iglesias-Soler, E.; Argüelles-Luis, J.; Álvarez-Valle, S.; Parcero-Iglesias, G.J.; Fernández-Martínez, A.; Lucia, A. Photobiomodulation in Parkinson’s disease: A randomized controlled trial. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2019, 12, 810–812. [Google Scholar] [CrossRef]
- Hamilton, C.; Hamilton, D.; Nicklason, F.; Mitrofanis, J. Transcranial photobiomodulation therapy: Observations from four movement disorder patients. In Photobiomodulation in the Brain, Caldieraro, M., Cassano, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 463–472. [Google Scholar]
- Hamilton, C.L.; El Khoury, H.; Hamilton, D.; Nicklason, F.; Mitrofanis, J. “Buckets”: Early Observations on the Use of Red and Infrared Light Helmets in Parkinson’s Disease Patients. Photobiomodulation Photomed. Laser Surg. 2019, 37, 615–622. [Google Scholar] [CrossRef]
- Berman, M.H.; Nichols, T.W. Treatment of Neurodegeneration: Integrating Photobiomodulation and Neurofeedback in Alzheimer’s Dementia and Parkinson’s: A Review. Photobiomodulation Photomed. Laser Surg. 2019, 37, 623–634. [Google Scholar] [CrossRef]
- Tamae, P.E.; Santos, A.V.d.; Simão, M.L.d.S.; Canelada, A.C.N.; Zampieri, K.R.; Santos, T.V.d.; Aquino Junior, A.E.d.; Bagnato, V.S. Can the associated use of negative pressure and laser therapy be a new and efficient treatment for Parkinson’s pain? A comparative study. J. Alzheimer’s Dis. Park. 2020, 10, 1000488. [Google Scholar]
- Liebert, A.; Bicknell, B.; Laakso, E.L.; Heller, G.; Jalilitabaei, P.; Tilley, S.; Mitrofanis, J.; Kiat, H. Improvements in clinical signs of Parkinson’s disease using photobiomodulation: A prospective proof-of-concept study. BMC Neurol. 2021, 21, 256. [Google Scholar] [CrossRef]
- Liebert, A.; Bicknell, B.; Laakso, E.-L.; Tilley, S.; Pang, V.; Heller, G.; Mitrofanis, J.; Herkes, G.; Kiat, H. Improvements in the clinical signs of Parkinson’s disease using photobiomodulation: A 3-year follow-up case series. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Bullock-Saxton, J.; Lehn, A.; Laakso, E. Exploring the effect of combined transcranial and intra-oral photobiomodulation therapy over a four-week period on physical and cognitive outcome measures for people with Parkinson’s disease: A randomized double-blind placebo-controlled pilot study. J. Alzheimer’s Dis. 2021, 83, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-T.; Hu, C.-J.; Lin, H.-Y.; Wu, D. Effects of concomitant use of hydrogen water and photobiomodulation on Parkinson disease: A pilot study. Medicine 2021, 100, e24191. [Google Scholar]
- Peci, F.; Pica, R.; Peci, S. If light could help: The use of transcranial photobiomodulation in Parkinson’s disease. A controlled clinical study. J. Neurol. Exp. Neurol. 2023, 9, 30–38. [Google Scholar] [CrossRef]
- McGee, C.; Liebert, A.; Herkes, G.; Bicknell, B.; Pang, V.; McLachlan, C.S.; Kiat, H. Protocol for randomized controlled trial to evaluate the safety and feasibility of a novel helmet to deliver transcranial light emitting diodes photobiomodulation therapy to patients with Parkinson’s disease. Front. Neurosci. 2022, 16, 945796. [Google Scholar]
- Herkes, G.; McGee, C.; Liebert, A.; Bicknell, B.; Isaac, A.; Kiat, H.; McLachlan, C. A novel transcranial photobiomodulation device to address motor signs of Parkinson’s disease: A parallel randomised feasibility study. eClinicalMedicine 2023, 66, 102338. [Google Scholar]
- McGee, C.; Liebert, A.; Bicknell, B.; Pang, V.; Isaac, V.; McLachlan, C.S.; Kiat, H.; Herkes, G. A Randomized Placebo-Controlled Study of a Transcranial Photobiomodulation Helmet in Parkinson’s Disease: Post-Hoc Analysis of Motor Outcomes. J. Clin. Med. 2023, 12, 2846. [Google Scholar] [CrossRef]
- Mitrofanis, J. Why and how does light therapy offer neuroprotection in Parkinson’s disease? Neural Regen. Res. 2017, 12, 574. [Google Scholar]
- Moro, C.; El Massri, N.; Torres, N.; Ratel, D.; De Jaeger, X.; Chabrol, C.; Perraut, F.; Bourgerette, A.; Berger, M.; Purushothuman, S.; et al. Photobiomodulation inside the brain: A novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J. Neurosurg. 2014, 120, 670–683. [Google Scholar] [CrossRef]
- El Massri, N.; Cullen, K.M.; Stefani, S.; Moro, C.; Torres, N.; Benabid, A.L.; Mitrofanis, J. Evidence for encephalopsin immunoreactivity in interneurones and striosomes of the monkey striatum. Exp. Brain Res. 2018, 236, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Torres, N.; Arvanitakis, K.; Cullen, K.; Chabrol, C.; Agay, D.; Darlot, F.; Benabid, A.-L.; Mitrofanis, J. No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Exp. Brain Res. 2017, 235, 3081–3092. [Google Scholar] [PubMed]
- Hamblin, M.R. Photobiomodulation for traumatic brain injury in mouse models. In Photobiomodulation in the Brain; Elsevier: Amsterdam, The Netherlands, 2019; pp. 155–168. [Google Scholar]
- Johnstone, D.M.; Moro, C.; Stone, J.; Benabid, A.-L.; Mitrofanis, J. Turning on lights to stop neurodegeneration: The potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 2016, 9, 500. [Google Scholar]
- Liebert, A.; Bicknell, B.; Laakso, E.-L.; Jalilitabaei, P.; Tilley, S.; Kiat, H.; Mitrofanis, J. Remote Photobiomodulation Treatment for the Clinical Signs of Parkinson’s Disease: A Case Series Conducted During COVID-19. Photobiomodulation Photomed. Laser Surg. 2022, 40, 112–122. [Google Scholar] [CrossRef]
- Bicknell, B.; Liebert, A.; McLachlan, C.S.; Kiat, H. Microbiome Changes in Humans with Parkinson’s Disease after Photobiomodulation Therapy: A Retrospective Study. J. Pers. Med. 2022, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Jinpeng, W.U.; Dong, X.; Yin, H.; Shi, X.; Siying, S.U.; Che, B.; Yingxin, L.I.; Yang, J. Gut flora-targeted photobiomodulation therapy improves senile dementia in an Aß-induced Alzheimer’s disease animal model. J. Photochem. Photobiol. B Biol. 2021, 216, 112152. [Google Scholar] [CrossRef]
- Wang, M.; Cao, J.; Amakye, W.K.; Gong, C.; Li, Q.; Ren, J. Mid infrared light treatment attenuates cognitive decline and alters the gut microbiota community in APP/PS1 mouse model. Biochem. Biophys. Res. Commun. 2020, 523, 60–65. [Google Scholar]
- Lu, Y.; Yang, J.; Dong, C.; Fu, Y.; Liu, H. Gut microbiome-mediated changes in bone metabolism upon infrared light exposure in rats. J. Photochem. Photobiol. B Biol. 2021, 217, 112156. [Google Scholar] [CrossRef]
- Min, S.H.; Kwon, J.; Do, E.-J.; Kim, S.H.; Kim, E.S.; Jeong, J.-Y.; Bae, S.M.; Kim, S.-Y.; Park, D.H. Duodenal Dual-Wavelength Photobiomodulation Improves Hyperglycemia and Hepatic Parameters with Alteration of Gut Microbiome in Type 2 Diabetes Animal Model. Cells 2022, 11, 3490. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicknell, B.; Liebert, A.; Herkes, G. Parkinson’s Disease and Photobiomodulation: Potential for Treatment. J. Pers. Med. 2024, 14, 112. https://doi.org/10.3390/jpm14010112
Bicknell B, Liebert A, Herkes G. Parkinson’s Disease and Photobiomodulation: Potential for Treatment. Journal of Personalized Medicine. 2024; 14(1):112. https://doi.org/10.3390/jpm14010112
Chicago/Turabian StyleBicknell, Brian, Ann Liebert, and Geoffrey Herkes. 2024. "Parkinson’s Disease and Photobiomodulation: Potential for Treatment" Journal of Personalized Medicine 14, no. 1: 112. https://doi.org/10.3390/jpm14010112
APA StyleBicknell, B., Liebert, A., & Herkes, G. (2024). Parkinson’s Disease and Photobiomodulation: Potential for Treatment. Journal of Personalized Medicine, 14(1), 112. https://doi.org/10.3390/jpm14010112