Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014–2022
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of animal models in biomedical research: A review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Seed, T.M. How necessary are animal models for modern drug discovery? Expert Opin. Drug Discov. 2021, 16, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Byrne, J.M.; Waack, U.; Weinstein, E.A.; Joshi, A.; Shurland, S.M.; Iarikov, D.; Bulitta, J.B.; Diep, B.A.; Guina, T.; Hope, W.W.; et al. FDA Public Workshop Summary: Advancing Animal Models for Antibacterial Drug Development. Antimicrob. Agents Chemother. 2020, 65, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Microbiology Data for Systemic Antibacterial Drugs—Development, Analysis, and Presentation Guidance for Industry; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/microbiological-data-systemic-antibacterial-drug-products-development-analysis-and-presentation (accessed on 27 September 2023).
- Food and Drug Administration. Antibacterial Therapies for Patients with an Unmet Medical Need for the Treatment of Serious Bacterial Diseases Questions and Answers (Revision 1) Guidance for Industry; Food and Drug Administration: Silver Spring, MD, USA, 2022. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/antibacterial-therapies-patients-unmet-medical-need-treatment-serious-bacterial-diseases-questions (accessed on 27 September 2023).
- Yedle, R.; Reniguntla, M.K.; Puttaswamy, R.; Puttarangappa, P.; Hiremath, S.; Nanjundappa, M.; Jayaraman, R. Neutropenic Rat Thigh Infection Model for Evaluation of the Pharmacokinetics/Pharmacodynamics of Anti-Infectives. Microbiol. Spectr. 2023, 11, e0013323. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.R.; Lepak, A.J. In vivo infection models in the pre-clinical pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Curr. Opin. Pharmacol. 2017, 36, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Bulitta, J.B.; Hope, W.W.; Eakin, A.E.; Guina, T.; Tam, V.H.; Louie, A.; Drusano, G.L.; Hoover, J.L. Generating Robust and Informative Nonclinical In Vitro and In Vivo Bacterial Infection Model Efficacy Data to Support Translation to Humans. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Sou, T.; Hansen, J.; Liepinsh, E.; Backlund, M.; Ercan, O.; Grinberga, S.; Cao, S.; Giachou, P.; Petersson, A.; Tomczak, M.; et al. Model-Informed Drug Development for Antimicrobials: Translational PK and PK/PD Modeling to Predict an Efficacious Human Dose for Apramycin. Clin. Pharmacol. Ther. 2021, 109, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Rayner, C.R.; Smith, P.F.; Andes, D.; Andrews, K.; Derendorf, H.; Friberg, L.E.; Hanna, D.; Lepak, A.; Mills, E.; Polasek, T.M.; et al. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin. Pharmacol. Ther. 2021, 109, 867–891. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Population Pharmacokinetics Guidance for Industry; Food and Drug Administration: Silver Spring, MD, USA, 2022. Available online: https://www.fda.gov/media/128793/download (accessed on 8 November 2023).
- Turnidge, J.; Paterson, D.L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Pasipanodya, J.; Gumbo, T. An oracle: Antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob. Agents Chemother. 2011, 55, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ängeby, K.; Giske, C.G.; Juréen, P.; Schön, T.; Pasipanodya, J.G.; Gumbo, T. Wild-type MIC distributions must be considered to set clinically meaningful susceptibility testing breakpoints for all bacterial pathogens, including mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2011, 55, 4492–4493. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.L.; Loutit, J.; Tumbarello, M.; Wunderink, R.; Felton, T.; Daikos, G.; Fusaro, K.; White, D.; Zhang, S.; Dudley, M.N. Carbapenem-Resistant Enterobacteriaceae Infections: Results from a Retrospective Series and Implications for the Design of Prospective Clinical Trials. Open Forum Infect. Dis. 2017, 4, ofx063. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Ceftazidime-Avibactam Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206494orig1s000cllinpharmr.pdf (accessed on 11 July 2023).
- Food and Drug Administration. Meropenem-Vaborbactam Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/209776Orig1s000ClinPharmR.pdf (accessed on 12 July 2023).
- Selig, D.J.; Kress, A.T.; Nadeau, R.J.; DeLuca, J.P. Beta-Lactam Probability of Target Attainment Success: Cefepime as a Case Study. Antibiotics 2023, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and Addressing CLSI Breakpoint Revisions: A Primer for Clinical Laboratories. J. Clin. Microbiol. 2019, 57, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Eravacycline Multi-Discipline Review; Food and Drug Administration: Silver Spring, MD, USA, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211109Orig1s000MultidisciplineR.pdf (accessed on 12 July 2023).
- Food and Drug Administration. Dalbavancin Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/021883Orig1s000ClinPharmR.pdf (accessed on 11 July 2023).
- Food and Drug Administration. Oritavancin Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206334Orig1s000ClinPharmR.pdf (accessed on 11 July 2023).
- Food and Drug Administration. Tedizolid Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205435Orig1s000ClinPharmR.pdf (accessed on 11 July 2023).
- Food and Drug Administration. Delafloxacin Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208610Orig1s000,208611Orig1s000ClinPharmR.pdf (accessed on 12 July 2023).
- Food and Drug Administration. Omadacycline Multi-Discipline Review; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209816Orig1s000,209817Orig1s000MultidisciplineR.pdf (accessed on 12 July 2023).
- Food and Drug Administration. Plazomicin Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210303Orig1s000ClinPharmR.pdf (accessed on 13 July 2023).
- Food and Drug Administration. Cefiderocol Multi-Discipline Review; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/209445Orig1s000MultidisciplineR.pdf (accessed on 13 July 2023).
- Food and Drug Administration. Lefamulin Multi-Discipline Review; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211672Orig1s000,%20211673Orig1s000MultidisciplineR.pdf (accessed on 13 July 2023).
- Food and Drug Administration. Ceftolozane-Tazobactam Clinical Pharmacology and Biopharmaceutics Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206829Orig1s000ClinPharmR.pdf (accessed on 12 July 2023).
- Food and Drug Administration. Imipenem-Relebactam Multi-Discipline Review; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212819Orig1s000MultidisciplineR.pdf (accessed on 13 July 2023).
- Drwiega, E.N.; Rodvold, K.A. Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update. Clin. Pharmacokinet. 2022, 61, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.A.; Mortin, L.I.; VanPraagh, A.D.G.; Li, T.; Alder, J. Inhibition of daptomycin by pulmonary surfactant: In vitro modeling and clinical impact. J. Infect. Dis. 2005, 191, 2149–2152. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M.W.; Puttagunta, S.; Sprenger, C.R.; Rubino, C.; Van Wart, S.; Baldassarre, J. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob. Agents Chemother. 2015, 59, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for Industry Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment; Food and Drug Administration: Silver Spring, MD, USA, 2013. Available online: https://www.fda.gov/files/drugs/published/Acute-Bacterial-Skin-and-Skin-Structure-Infections---Developing-Drugs-for-Treatment.pdf (accessed on 14 November 2023).
- Food and Drug Administration. Dalbavancin Medical Review(s); Food and Drug Administration: Silver Spring, MD, USA, 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/021883Orig1s000MedR.pdf (accessed on 14 November 2023).
Antibiotic | Year Approved | Labeled Indication(s) | Neutropenic Thigh | Pneumonia | Preclinical Target to Support Breakpoint | Clinical Target to Support Breakpoint |
---|---|---|---|---|---|---|
Ceftolozane-Tazobactam [29] | 2014, 2019 additional approval for HABP/VABP | cIAI, cUTI, HABP/VABP | %T > MIC Ceftolozane P. aeruginosa Static: 24% 1-log kill: 31.5% 2-log kill: 52.2% | Neutropenic thigh 40%T > MIC | Clinical cure rates at various MICs. | |
Dalbavancin [21] | 2014 | ABSSSI | fAUC24/MIC: Static: 265 2-log kill: 332 Protein bound: 93% | Neutropenic thigh fAUC24/MIC static and 2-log kill | AUCavg/MIC of 13,396 where AUCavg is the mean AUC from day 1 and day 8 of treatment. Corresponds to 20% reduction in baseline area by day 4. | |
Oritavancin [22] | 2014 | ABSSSI | AUC72/MIC: Static: 3941 1-log kill: 4581 | Neutropenic thigh AUC72/MIC stasis and 1-log kill | Comparison of AUC72/MIC for early clinical endpoint, 20% reduction in lesion by day 3 and at post-treatment evaluation. | |
Tedizolid [23] | 2014 | ABSSSI | Static AUC24/MIC Neutropenic: 250 Non-neutropenic: 15 | Non-neutropenic thigh model bacteriostasis | Flat exposure-response relationship, where higher exposure was not associated with higher clinical response rates, limited the utility of clinical PKPD breakpoint determination. | |
Ceftazidime-Avibactam [16] | 2015 | cIAI, cUTI | Avibactam %fT > 1 mg/L Static: 40.2% 1-log kill: 50.3% Protein bound: 5.7–8.2% 50% fT > CAZ-AVI MIC | Avibactam %fT > 1 mg/L Static: 20.2% 1-log kill: 24% | Neutropenic thigh 1-log kill | Exposure-response analyses of individual exposures and microbiologic outcomes in Phase II cIAI and cUTI patients revealed that almost all CAZ %fT > MIC and AVI %fT > 0.5 mg/L values were close to 100% and unfavorable microbiologic outcomes (i.e., treatment failure) were relatively infrequent; thus, formal exposure-response modeling was not feasible. |
Delafloxacin [24] | 2017 | ABSSSI | fAUC24/MIC Stasis: 9.3 1-log kill: 14.3 | Neutropenic thigh, stasis and 1-log kill | Due to the limited number of clinical isolates for E coli and P. aeruginosa in Phase 3 clinical studies, clinical evidence appears insufficient to determine the breakpoints for E. coli and P. aeruginosa. | |
Meropenem-Vaborbactam [17] | 2017 | cUTI | %fT > MIC Static: 30% 1-log kill: 35% 2-log kill: 45% | Neutropenic thigh 1-log kill and 2-log kill | The rate of overall success in each group was >90%. Therefore, the analysis of outcomes for enterobacteriaceae demonstrated no obvious cutoff in MIC that discriminated between successes and failures. | |
Omadacycline [25] | 2018 | CABP, ABSSSI | AUC24/MIC 1-log kill: 33.3 S. pneumo 64.1 E. coli | Neutropenic 1-log kill 13.6 S. pneumo | Neutropenic thigh 1-log kill used to support ABSSSI, Neutropenic pneumonia 1-log kill used to support CABP | No targets derived from clinical data; however, success rates at higher MICs supported breakpoint decision in conjunction with non-clinical PKPD. |
Plazomicin [26] | 2018 | cUTI, cIAI | AUC24/MIC Enterobacteriaceae Static: 24 1-log kill: 73 K. Pneumo Static: 30 1-log kill: 95 | AUC24/MIC Enterobacteriaceae Static: 1.6 1-log kill: 6 K. Pneumo Static: 3.6 1-log kill: 9.5 | Neutropenic thigh, stasis and 1-log kill | No exposure response was identified for cIAI or cUTI based on clinical data. |
Cefiderocol [27] | 2019 | cUTI, HABP, VABP | %fT > MIC Static: 63.9% 1-log kill: 75.6% | %fT > MIC Static: 57.5% 1-log kill: 66.9% | Neutropenic thigh 1-log kill | Exposure response confirmed trend of efficacy in patients achieving 75% fT > MIC. |
Imipenem-Relebactam [30] | 2019 | cUTI/cIAI | AUC24/MIC Relebactam Stasis: 4.8 1-log kill: 7.5 | Neutropenic thigh, stasis and 1-log kill | Clinical PKPD targets were limited by insufficient data in the clinical trials. | |
Lefamulin [28] | 2019 | CABP | fAUC24/MIC Plasma 1-log kill: 2.97 2-log kill: 6.96 ELF 1-log kill: 30.4 2-log kill: 71.2 | Plasma Neutropenic lung 1-log kill | Stratifying outcomes by MIC supported the breakpoint decision. Limited data at higher MICs. |
Antibiotic | Bacterial Species | Epidemiologic Cutoff (µg/mL) | Nonclinical PK/PD Cutoff (µg/mL) | Clinical Cutoff (µg/mL) | Overall Proposed Breakpoint (µg/mL) | Do FDA and Applicant Breakpoints Agree? |
---|---|---|---|---|---|---|
Ceftolozane-Tazobactam [29] | Enterobacteriaceae | 2 | 4 1 | 4 | 2 | Not available |
Ceftolozane-Tazobactam [29] | P. aeruginosa | 4 | 4 | 1 2 | 4 | Not available |
Dalbavancin 3 [21] | S. aureus | 0.06 | 0.12–0.25 | 0.06 | 0.06 or 0.125 | No (FDA lower) |
Oritavancin 3 [22] | S. aureus | 0.12–0.25 | 0.12 | 0.06 | 0.12 | Yes |
Ceftazidime-Avibactam [16] | P. aeruginosa | 4–8 | 8 | Not available | 8 | Not available |
Tedizolid 3 [23] | P. aeruginosa | 0.25–1 | 0.5 | Not available | 0.5 | Yes |
Delafloxacin [24] | S. aureus | 0.25 | 0.25 | Not available | 0.25 | Not available |
Delafloxacin [24] | E. coli | 4 | 0.25 | Not available | 0.25 | Yes |
Delafloxacin [24] | P. aeruginosa | >4 | 0.5 | Not available | 0.5 | Yes |
Meropenem-Vaborbactam [17] | P. aeruginosa | 8 | 8 | Not available | 8 | Yes |
Meropenem-Vaborbactam [17] | Enterobacteriaceae | 8 | 8 | Not available | 8 | Yes |
Omadacycline [25] | Enterobacteriaceae | >4 | 8 | 4 | 8 | Not available |
Omadacycline [25] | S. aureus | 0.5 | 1 | 0.5 | 1 | Not available |
Plazomicin [26] | Enterobacteriaceae | 2–4 | 1 | Not available | 1 | Not available |
Cefiderocol [27] | Enterobacteriaceae | 4 | 4 | Not available | 2 | Not available |
Cefiderocol [27] | P. aeruginosa | 2 | 4 | Not available | 1 | Not available |
Imipenem-Relebactam [30] | Enterobacteriaceae | 2 | 4 | 2 | 1 | Yes |
Imipenem-Relebactam [30] | P. aeruginosa | 0.5 | 4 | 4 | 2 | Yes |
Lefamulin [28] | S. pneumoniae | 0.25 | 0.5 | Not available | 0.5 | No |
Lefamulin [28] | S. aureus (MSSA 4) | 0.12 | 0.25 | Not available | 0.25 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selig, D.; Caridha, D.; Evans, M.; Kress, A.; Lanteri, C.; Ressner, R.; DeLuca, J. Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014–2022. J. Pers. Med. 2024, 14, 111. https://doi.org/10.3390/jpm14010111
Selig D, Caridha D, Evans M, Kress A, Lanteri C, Ressner R, DeLuca J. Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014–2022. Journal of Personalized Medicine. 2024; 14(1):111. https://doi.org/10.3390/jpm14010111
Chicago/Turabian StyleSelig, Daniel, Diana Caridha, Martin Evans, Adrian Kress, Charlotte Lanteri, Roseanne Ressner, and Jesse DeLuca. 2024. "Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014–2022" Journal of Personalized Medicine 14, no. 1: 111. https://doi.org/10.3390/jpm14010111
APA StyleSelig, D., Caridha, D., Evans, M., Kress, A., Lanteri, C., Ressner, R., & DeLuca, J. (2024). Animal Models in Regulatory Breakpoint Determination: Review of New Drug Applications of Approved Antibiotics from 2014–2022. Journal of Personalized Medicine, 14(1), 111. https://doi.org/10.3390/jpm14010111