Correlation between Severity of Idiopathic Epiretinal Membrane and Irvine–Gass Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedure
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Henderson, B.A.; Kim, J.Y.; Ament, C.S.; Ferrufino-Ponce, Z.K.; Grabowska, A.; Cremers, S.L. Clinical pseudophakic cystoid macular edema. Risk factors for development and duration after treatment. J. Cataract. Refract Surg. 2007, 33, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.L.; Devaiah, A.K.; Warren, K.A. Incidence of postoperative cystoid macular edema by a single surgeon. Digit J. Ophthalmol. 2009, 15, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Vukicevic, M.; Gin, T.; Al-Qureshi, S. Prevalence of optical coherence tomography-diagnosed postoperative cystoid macular oedema in patients following uncomplicated phaco-emulsification cataract surgery. Clin. Exp. Ophthalmol. 2012, 40, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Schaub, F.; Adler, W.; Enders, P.; Koenig, M.C.; Koch, K.R.; Cursiefen, C.; Kirchhof, B.; Heindl, L.M. Preexisting epiretinal membrane is associated with pseudophakic cystoid macular edema. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.J.; Johnston, R.L.; Buscombe, C.; Sallam, A.B.; Mohamed, Q.; Yang, Y.C.; United Kingdom Pseudophakic Macular Edema Study Group. Risk factors and incidence of macular edema after cataract surgery: A database study of 81984 eyes. Ophthalmology 2016, 123, 316–323. [Google Scholar] [CrossRef]
- Coscas, G.; Cunha-Vaz, J.; Soubrane, G. Macular Edema: Definition and Basic Concepts. Dev. Ophthalmol. 2017, 58, 1–10. [Google Scholar] [CrossRef]
- Fong, C.S.; Mitchell, P.; Rochtchina, E.; Hong, T.; de Loryn, T.; Wang, J.J. Incidence and progression of epiretinal membranes in eyes after cataract surgery. Am. J. Ophthalmol. 2013, 156, 312–318.e1. [Google Scholar] [CrossRef]
- Zandi, S.; Tappeiner, C.; Pfister, I.B.; Despont, A.; Rieben, R.; Garweg, J.G. Vitreal cytokine profile differences between eyes with epiretinal membranes or macular holes. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6320–6326. [Google Scholar] [CrossRef]
- Hayashi, K.; Hayashi, H. Influence of phacoemulsification surgery on progression of idiopathic epiretinal membrane. Eye 2009, 23, 774–779. [Google Scholar] [CrossRef]
- Appiah, A.P.; Hirose, T. Secondary causes of premacular fibrosis. Ophthalmology 1989, 96, 389–392. [Google Scholar] [CrossRef]
- Gass, J. Macular dysfunction caused by vitreous and vitreoretinal interface abnormalities: Vitreous traction maculopathies. In Stereoscopic Atlas of Macular Diseases, 4th ed.; Mosby: St. Louis, MO, USA, 1997; pp. 910–937. [Google Scholar]
- Lo, Y.C.; Lin, K.H.; Bair, H.; Sheu, W.H.H.; Chang, C.S.; Shen, Y.C.; Hung, C.L. Epiretinal membrane detection at the ophthalmologist level using deep learning of optical coherence tomography. Sci. Rep. 2020, 10, 8424. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.A.; Waheed, N.K.; Duker, J.S. Optical coherence tomography in the preoperative and postoperative management of macular hole and epiretinal membrane. Br. J. Ophthalmol. 2014, 98 (Suppl. S2), ii20–ii23. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Park, S.J.; Cho, J.H.; Woo, S.J.; Park, K.H. Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane. Am. J. Ophthalmol. 2016, 168, 139–149. [Google Scholar] [CrossRef]
- Koo, H.C.; Rhim, W.I.; Lee, E.K. Morphologic and functional association of retinal layers beneath the epiretinal membrane with spectral-domain optical coherence tomography in eyes without photoreceptor abnormality. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Lee, M.Y.; Smiddy, W.E. Ganglion cell layer thickness and visual improvement after epiretinal membrane surgery. Retina 2016, 36, 305–310. [Google Scholar] [CrossRef]
- Lee, E.K.; Yu, H.G. Ganglion cell-inner plexiform layer thickness after epiretinal membrane surgery: A spectral-domain optical coherence tomography study. Ophthalmology 2014, 121, 1579–1587. [Google Scholar] [CrossRef]
- Govetto, A.; Lalane, R.A., 3rd; Sarraf, D.; Figueroa, M.S.; Hubschman, J.P. Insights into epiretinal membranes: Presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am. J. Ophthalmol. 2017, 175, 99–113. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, S.J.; Li, A.F.; Huang, Y.M. Visual outcomes and incidence of pseudophakic cystoid macular oedema in eyes with cataract and idiopathic epiretinal membrane after two-step sequential surgery. Eye 2022, 36, 1597–1603. [Google Scholar] [CrossRef]
- Doguizi, S.; Sekeroglu, M.A.; Ozkoyuncu, D.; Omay, A.E.; Yilmazbas, P. Clinical significance of ectopic inner foveal layers in patients with idiopathic epiretinal membranes. Eye 2018, 32, 1652–1660. [Google Scholar] [CrossRef]
- Mavi Yildiz, A.; Avci, R.; Yilmaz, S. The predictive value of ectopic inner retinal layer staging scheme for idiopathic epiretinal membrane: Surgical results at 12 months. Eye 2021, 35, 2164–2172. [Google Scholar] [CrossRef]
- Vallejo-Garcia, J.L.; Romano, M.; Pagano, L.; Montericcio, A.; Borgia, A.; Morenghi, E.; Vinciguerra, P. OCT changes of idiopathic epiretinal membrane after cataract surgery. Int. J. Retina Vitreous 2020, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.E.; Wang, Q.; Moss, S.E. The epidemiology of epiretinal membranes. Trans Am. Ophthalmol. Soc. 1994, 92, 403–425; discussion 425–430. [Google Scholar] [PubMed]
- Mitchell, P.; Smith, W.; Chey, T.; Wang, J.J.; Chang, A. Prevalence and associations of epiretinal membranes. The Blue Mountains eye study, Australia. Ophthalmology 1997, 104, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Jahn, C.E.; Minich, V.; Moldaschel, S.; Stahl, B.; Jedelhauser, P.; Kremer, G.; Kron, M. Epiretinal membranes after extracapsular cataract surgery. J. Cataract Refract Surg. 2001, 27, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, B.; Jeon, S. Risk factors for onset or progression of epiretinal membrane after cataract surgery. Sci. Rep. 2021, 11, 14808. [Google Scholar] [CrossRef]
- Benitah, N.R.; Arroyo, J.G. Pseudophakic cystoid macular edema. Int. Ophthalmol. Clin. 2010, 50, 139–153. [Google Scholar] [CrossRef]
- Orski, M.; Gawęcki, M. Current management options in Irvine–Gass syndrome: A systemized review. J. Clin. Med. 2021, 10, 4375. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.P. Emerging guidelines for use of NSAID therapy to optimize cataract surgery patient care. Curr. Med. Res. Opin. 2005, 21, 1131–1137. [Google Scholar] [CrossRef]
- Wolf, E.J.; Braunstein, A.; Shih, C.; Braunstein, R.E. Incidence of visually significant pseudophakic macular edema after uneventful phacoemulsification in patients treated with nepafenac. J. Cataract Refract Surg. 2007, 33, 1546–1549. [Google Scholar] [CrossRef]
- Hunter, A.A.; Modjtahedi, S.P.; Long, K.; Zawadzki, R.; Chin, E.K.; Caspar, J.J.; Morse, L.S.; Telander, D.G. Improving visual outcomes by preserving outer retina morphology in eyes with resolved pseudophakic cystoid macular edema. J. Cataract Refract Surg. 2014, 40, 626–631. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.K.; Wee, W.R. Additive effect of oral steroid with topical nonsteroidal anti-inflammatory drug for preventing cystoid macular edema after cataract surgery in patients with epiretinal membrane. Korean J. Ophthalmol. 2017, 31, 394–401. [Google Scholar] [CrossRef] [PubMed]
- García Gómez de Segura, M.; Martín-Arroyuelos, A.; Pinilla, I.; Araiz, J. Evaluation of macular thickness changes after uncomplicated phacoemulsification surgery in healthy subjects and diabetic patients without retinopathy by spectral domain OCT. Diagnostics 2022, 12, 3078. [Google Scholar] [CrossRef] [PubMed]
- González-Saldivar, G.; Berger, A.; Wong, D.; Juncal, V.; Chow, D.R. Ectopic inner foveal layer classification scheme predicts visual outcomes after epiretinal membrane surgery. Retina 2020, 40, 710–717. [Google Scholar] [CrossRef] [PubMed]
Total (n = 87) | |
---|---|
Sex (Female:Male) (%) | 31 (35.6):56 (64.4) |
Age, years | 73.41 ± 8.66 |
BCVA | 0.43 ± 0.23 |
Diabetes | 29 (33.3) |
ERM staging—Gass classification | |
0 | 25 (28.7) |
1 | 20 (23.0) |
2 | 42 (48.3) |
ERM staging—Govetto classification | |
1 | 39 (44.8) |
2 | 19 (21.6) |
3 | 19 (21.6) |
4 | 10 (11.5) |
CMT (μm) | 286.13 ± 69.97 |
CME | 48 (55.2) |
Preoperative | Postoperative | p-Value | |
---|---|---|---|
BCVA | 0.43 ± 0.23 | 0.61 ± 0.26 | <0.0001 |
CMT | 286 ± 70.0 | 310 ± 77.7 | <0.0001 |
PCME | 301.35 ± 69.37 | 333.40 ± 74.70 | <0.0001 |
Non-PCME | 267.38 ± 66.89 | 283.72 ± 72.12 | <0.0001 |
ERM staging—Gass classification (%) | <0.0001 | ||
0 | 25 (28.7) | 18 (20.7) | |
1 | 20 (23.0) | 18 (20.7) | |
2 | 42 (48.3) | 51 (58.6) | |
ERM staging—Govetto classification (%) | <0.0001 | ||
1 | 39 (44.8) | 33 (37.9) | |
2 | 19 (21.6) | 22 (25.3) | |
3 | 19 (21.6) | 17 (19.5) | |
4 | 10 (11.5) | 15 (17.2) |
PCME Group (n = 48) | Non-PCME Group (n = 39) | p-Value | |
---|---|---|---|
Age | 73.6 ± 7.82 | 73.4 ± 9.64 | 0.929 |
Sex (F:M) | 31:17 | 25:14 | 0.963 |
Diabetes (%) | 20 (41.7) | 9 (23.1) | 0.067 |
Preop CMT | 301 ± 10.0 | 267 ± 10.7 | 0.023 |
Preop ERM staging—Gass classification (%) | 0.002 | ||
0 | 8 (16.7) | 17 (43.6) | |
1 | 9 (18.8) | 11 (28.2) | |
2 | 31 (64.6) | 11 (28.2) | |
Preop ERM staging—Govetto classification (%) | 0.004 | ||
1 | 14 (29.2) | 25 (64.1) | |
2 | 11 (22.9) | 5 (12.8) | |
3 | 14 (29.2) | 8 (20.5) | |
4 | 9 (18.8) | 1 (2.6) |
Crude Odds Ratio | |||
---|---|---|---|
OR | 95% CI | p-Value | |
ERM staging—Gass classification | |||
0 | 1 | ||
1 | 1.74 | 0.52–5.87 | 0.373 |
2 | 5.99 | 2.02–17.74 | 0.001 |
ERM staging—Govetto classification | |||
1 | 1 | ||
2 | 3.13 | 1.05–9.27 | 0.04 |
3 | 3.93 | 1.13–13.62 | 0.031 |
4 | 16.07 | 1.84–140.35 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.H.; Kang, K.T.; Lee, Y.H.; Kim, Y.C. Correlation between Severity of Idiopathic Epiretinal Membrane and Irvine–Gass Syndrome. J. Pers. Med. 2023, 13, 1341. https://doi.org/10.3390/jpm13091341
Jeong JH, Kang KT, Lee YH, Kim YC. Correlation between Severity of Idiopathic Epiretinal Membrane and Irvine–Gass Syndrome. Journal of Personalized Medicine. 2023; 13(9):1341. https://doi.org/10.3390/jpm13091341
Chicago/Turabian StyleJeong, Jee Hyun, Kyung Tae Kang, You Hyun Lee, and Yu Cheol Kim. 2023. "Correlation between Severity of Idiopathic Epiretinal Membrane and Irvine–Gass Syndrome" Journal of Personalized Medicine 13, no. 9: 1341. https://doi.org/10.3390/jpm13091341