Analysis of the Comorbid Course of Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Statistical Analysis of Data
2.4. Ethical Approval
3. Results
3.1. Clinical Characteristics of Patients
3.2. Survival Analysis and Evaluation of Prognostic Factors
3.3. Analysis of Comorbidities in COPD
4. Discussion
Study Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, N.; Malhotra, N.; Ish, P. GOLD 2021 Guidelines for COPD-What’s New and Why. Adv. Respir. Med. 2021, 89, 344–346. [Google Scholar] [CrossRef]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Ahmadian Heris, J.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.-A.; et al. Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, D.W.; Park, E.C.; Shin, C.S.; Rhee, C.K.; Kang, Y.A.; Kim, Y.S. Mortality of Patients with Chronic Obstructive Pulmonary Disease: A Nationwide Populationbased Cohort Study. Korean J. Intern. Med. 2019, 34, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Barrecheguren, M.; Miravitlles, M. COPD Heterogeneity: Implications for Management. Multidiscip. Respir. Med. 2016, 11, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, D.M.; Kiri, V.A. Changing the Burden of COPD Mortality. Int. J. Chron. Obstruct. Pulmon. Dis. 2006, 1, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Vanfleteren, L.E.G.W.; Spruit, M.A.; Groenen, M.; Gaffron, S.; van Empel, V.P.M.; Bruijnzeel, P.L.B.; Rutten, E.P.A.; Op ’t Roodt, J.; Wouters, E.F.M.; Franssen, F.M.E. Clusters of Comorbidities Based on Validated Objective Measurements and Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care. Med. 2013, 187, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Terzikhan, N.; Lahousse, L.; Verhamme, K.M.C.; Franco, O.H.; Ikram, A.M.; Stricker, B.H.; Brusselle, G.G. COPD Is Associated with an Increased Risk of Peripheral Artery Disease and Mortality. ERJ Open Res. 2018, 4, 00086–02018. [Google Scholar] [CrossRef]
- Morgan, A.D.; Zakeri, R.; Quint, J.K. Defining the Relationship between COPD and CVD: What Are the Implications for Clinical Practice? Ther. Adv. Respir. Dis. 2018, 12, 1753465817750524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakeryaev, A.B.; Vinogradov, R.A.; Sukhoruchkin, P.V.; Butayev, S.R.; Bakhishev, T.E.; Derbilov, A.I.; Urakov, E.R.; Baryshev, A.G.; Porkhanov, V.A. Predictors of Long-Term Complications of Femoropopliteal Bypass with Autovenous Graft. RMBH 2022, 30, 213–222. [Google Scholar] [CrossRef]
- Aday, A.W.; Matsushita, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef]
- Brusselle, G.; Bracke, K.; De Pauw, M. Peripheral Artery Disease in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care. Med. 2017, 195, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Horváth, L.; Németh, N.; Fehér, G.; Kívés, Z.; Endrei, D.; Boncz, I. Epidemiology of Peripheral Artery Disease: Narrative Review. Life 2022, 12, 1041. [Google Scholar] [CrossRef] [PubMed]
- Burgel, P.-R.; Paillasseur, J.-L.; Caillaud, D.; Tillie-Leblond, I.; Chanez, P.; Escamilla, R.; Court-Fortune, I.; Perez, T.; Carré, P.; Roche, N.; et al. Clinical COPD Phenotypes: A Novel Approach Using Principal Component and Cluster Analyses. Eur. Respir. J. 2010, 36, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuleta, I.; Farrag, T.; Busse, L.; Pizarro, C.; Schaefer, C.; Pingel, S.; Nickenig, G.; Skowasch, D.; Schahab, N. High Prevalence of COPD in Atherosclerosis Patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 3047–3053. [Google Scholar] [CrossRef] [Green Version]
- Kotlyarov, S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2021, 22, 3334. [Google Scholar] [CrossRef]
- Miller, J.; Edwards, L.D.; Agustí, A.; Bakke, P.; Calverley, P.M.A.; Celli, B.; Coxson, H.O.; Crim, C.; Lomas, D.A.; Miller, B.E.; et al. Comorbidity, Systemic Inflammation and Outcomes in the ECLIPSE Cohort. Respir. Med. 2013, 107, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Sinden, N.J.; Stockley, R.A. Systemic Inflammation and Comorbidity in COPD: A Result of “overspill” of Inflammatory Mediators from the Lungs? Review of the Evidence. Thorax 2010, 65, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Kotlyarov, S. The Role of Multidimensional Indices for Mortality Prediction in Chronic Obstructive Pulmonary Disease. Diagnostics 2023, 13, 1344. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Almagro, P.; Soriano, J.B.; Cabrera, F.J.; Boixeda, R.; Alonso-Ortiz, M.B.; Barreiro, B.; Diez-Manglano, J.; Murio, C.; Heredia, J.L. Short- and Medium-Term Prognosis in Patients Hospitalized for COPD Exacerbation: The CODEX Index. CHEST 2014, 145, 972–980. [Google Scholar] [CrossRef]
- Silverman, E.K. Exacerbations in Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2007, 4, 586–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler-Cataluña, J.J.; Martínez-García, M.A.; Sánchez, L.S.; Tordera, M.P.; Sánchez, P.R. Severe Exacerbations and BODE Index: Two Independent Risk Factors for Death in Male COPD Patients. Respir. Med. 2009, 103, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Mannino, D.M. COPD: Epidemiology, Prevalence, Morbidity and Mortality, and Disease Heterogeneity. Chest 2002, 121, 121S–126S. [Google Scholar] [CrossRef] [Green Version]
- Laniado-Laborín, R. Smoking and Chronic Obstructive Pulmonary Disease (COPD). Parallel Epidemics of the 21st Century. Int. J. Environ. Res. Public. Health 2009, 6, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.P.; Kim, Y.; Harrington, K.F.; Hokanson, J.E.; Lutz, S.M.; Cho, M.H.; DeMeo, D.L.; Wells, J.M.; Make, B.J.; Rennard, S.I.; et al. Smoking Duration Alone Provides Stronger Risk Estimates of Chronic Obstructive Pulmonary Disease than Pack-Years. Thorax 2018, 73, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Kotlyarov, S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int. J. Mol. Sci. 2022, 23, 9770. [Google Scholar] [CrossRef]
- Matsunaga, K.; Harada, M.; Suizu, J.; Oishi, K.; Asami-Noyama, M.; Hirano, T. Comorbid Conditions in Chronic Obstructive Pulmonary Disease: Potential Therapeutic Targets for Unmet Needs. J. Clin. Med. 2020, 9, 3078. [Google Scholar] [CrossRef]
- Raherison, C.; Ouaalaya, E.-H.; Bernady, A.; Casteigt, J.; Nocent-Eijnani, C.; Falque, L.; Le Guillou, F.; Nguyen, L.; Ozier, A.; Molimard, M. Comorbidities and COPD Severity in a Clinic-Based Cohort. BMC Pulm. Med. 2018, 18, 117. [Google Scholar] [CrossRef] [Green Version]
- Eroglu, S.A.; Gunen, H.; Yakar, H.I.; Yildiz, E.; Kavas, M.; Duman, D. Influence of Comorbidities in Long-Term Survival of Chronic Obstructive Pulmonary Disease Patients. J. Thorac. Dis. 2019, 11, 1379–1386. [Google Scholar] [CrossRef]
- Aursulesei Onofrei, V.; Ceasovschih, A.; Anghel, R.C.; Roca, M.; Marcu, D.T.M.; Adam, C.A.; Mitu, O.; Cumpat, C.; Mitu, F.; Crisan, A.; et al. Subendocardial Viability Ratio Predictive Value for Cardiovascular Risk in Hypertensive Patients. Medicina 2022, 59, 24. [Google Scholar] [CrossRef]
- Ceasovschih, A.; Sorodoc, V.; Onofrei Aursulesei, V.; Tesloianu, D.; Tuchilus, C.; Anisie, E.; Petris, A.; Statescu, C.; Jaba, E.; Stoica, A.; et al. Biomarker Utility for Peripheral Artery Disease Diagnosis in Real Clinical Practice: A Prospective Study. Diagnostics 2020, 10, 723. [Google Scholar] [CrossRef]
- Ji, Z.; Hernández-Vázquez, J.; Domínguez-Zabaleta, I.M.; Xia, Z.; Bellón-Cano, J.M.; Gallo-González, V.; Ali-García, I.; Matesanz-Ruiz, C.; López-de-Andrés, A.; Jiménez-García, R.; et al. Influence of Comorbidities on the Survival of COPD Patients According to Phenotypes. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 2759–2767. [Google Scholar] [CrossRef]
- Marott, J.L.; Ingebrigtsen, T.S.; Çolak, Y.; Vestbo, J.; Lange, P. Lung Function Trajectories Leading to Chronic Obstructive Pulmonary Disease as Predictors of Exacerbations and Mortality. Am. J. Respir. Crit. Care. Med. 2020, 202, 210–218. [Google Scholar] [CrossRef]
- Bailey, K.L. The Importance of the Assessment of Pulmonary Function in COPD. Med. Clin. N. Am. 2012, 96, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.K.; Park, H.Y.; Jeong, B.-H.; Koh, W.-J.; Lim, S.Y. Relationship Between Forced Vital Capacity and Framingham Cardiovascular Risk Score Beyond the Presence of Metabolic Syndrome. Medicine 2015, 94, e2089. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Xiao, L.; Guo, Y.; Ma, J.; Zhou, M.; Shi, T.; Tan, A.; Yuan, J.; Chen, W. Association of Lung Function with Cardiovascular Risk: A Cohort Study. Respir. Res. 2018, 19, 214. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Tang, C.; Li, S.; Ma, W.; Zhai, X.; Liu, K.; Sheerah, H.A.; Cao, J. Association of Lung Function with the Risk of Cardiovascular Diseases and All-Cause Mortality in Patients with Diabetes: Results from NHANES III 1988–1994. Front. Cardiovasc. Med. 2022, 9, 976817. [Google Scholar] [CrossRef]
- Bikov, A.; Lange, P.; Anderson, J.A.; Brook, R.D.; Calverley, P.M.A.; Celli, B.R.; Cowans, N.J.; Crim, C.; Dixon, I.J.; Martinez, F.J.; et al. FEV1 Is a Stronger Mortality Predictor than FVC in Patients with Moderate COPD and with an Increased Risk for Cardiovascular Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 1135–1142. [Google Scholar] [CrossRef]
- Tantucci, C.; Modina, D. Lung Function Decline in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2012, 7, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Laviolette, L.; Laveneziana, P. ERS Research Seminar Faculty Dyspnoea: A Multidimensional and Multidisciplinary Approach. Eur. Respir. J. 2014, 43, 1750–1762. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Izumi, T.; Tsukino, M.; Oga, T. Dyspnea Is a Better Predictor of 5-Year Survival Than Airway Obstruction in Patients With COPD. Chest 2002, 121, 1434–1440. [Google Scholar] [CrossRef] [Green Version]
- Corlateanu, A.; Plahotniuc, A.; Corlateanu, O.; Botnaru, V.; Bikov, A.; Mathioudakis, A.G.; Covantev, S.; Siafakas, N. Multidimensional Indices in the Assessment of Chronic Obstructive Pulmonary Disease. Respir. Med. 2021, 185, 106519. [Google Scholar] [CrossRef]
- Flattet, Y.; Garin, N.; Serratrice, J.; Perrier, A.; Stirnemann, J.; Carballo, S. Determining Prognosis in Acute Exacerbation of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, G.; Seemungal, T.; Bhowmik, A.; Wedzicha, J. Relationship between Exacerbation Frequency and Lung Function Decline in Chronic Obstructive Pulmonary Disease. Thorax 2002, 57, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Domenech, A.; Muñoz-Montiel, A.; García-Casares, N.; Rioja, J.; Ruiz-Esteban, P.; Castaño, P.G.-; Pardell, M.J.P.; Olveira, C.; Valdivielso, P.; Sánchez-Chaparro, M.Á. High Risk of Subclinical Atherosclerosis in COPD Exacerbator Phenotype. Respir. Med. 2018, 141, 165–171. [Google Scholar] [CrossRef]
- Goto, T.; Shimada, Y.J.; Faridi, M.K.; Camargo, C.A.; Hasegawa, K. Incidence of Acute Cardiovascular Event After Acute Exacerbation of COPD. J. Gen. Intern. Med. 2018, 33, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Rothnie, K.J.; Yan, R.; Smeeth, L.; Quint, J.K. Risk of Myocardial Infarction (MI) and Death Following MI in People with Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. BMJ Open 2015, 5, e007824. [Google Scholar] [CrossRef]
- Hoiseth, A.D.; Neukamm, A.; Karlsson, B.D.; Omland, T.; Brekke, P.H.; Soyseth, V. Elevated High-Sensitivity Cardiac Troponin T Is Associated with Increased Mortality after Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Thorax 2011, 66, 775. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Data at the Time of Study Initiation |
---|---|
Age | 60.02, 95% CI [58.68, 61.34] |
Smoking | 100% (170) |
Pack-year index | 37.72, 95% CI [36.41, 39.03] |
Working in an air polluted environment | 19.41% (33) |
Body mass index (BMI) | 26.6, 95% CI [26.13, 27.07] |
FEV1 (% pred) | 72.05, 95% CI [69.94, 74.17] |
Dyspnea, mMRC | 1.45, 95% CI [1.27, 1.62] |
Diseases | n = 170 |
---|---|
Arterial hypertension, abs (%) | 110 (64.7%) |
Coronary artery disease (CAD), abs (%) | 92 (54.11%) |
Myocardial infarction (MI), abs (%) | 11 (6.47%) |
Chronic heart failure (CHF), abs (%) | 73 (42.94%) |
Acute cerebrovascular accident, abs (%) | 10 (5.88%) |
PAD, abs (%) | 15 (8.82%) |
Diabetes mellitus type 2, abs (%) | 18 (10.58%) |
Gastric and duodenal ulcer, abs (%) | 17 (10%) |
Liver and biliary tract diseases, abs (%) | 16 (9.41%) |
Diseases of the genitourinary system, abs (%) | 19 (11.17%) |
Parameter | Group with ASCVD (n = 92) | Group without ASCVD (n = 78) | p |
---|---|---|---|
Age | 67.64, 95% CI [66.1, 69.18] | 54.73, 95% CI [53.11, 56.36] | <0.001 |
GOLD 1 2 3 | 32 (34.78%) 50 (54.35%) 10 (10.87%) | 21 (26.92%) 54 (69.23%) 3 (3.85%) | <0.001 |
FEV1 (% pred) | 60.75, 95% CI [57.03, 64.47] | 64.78, 95% CI [61.45, 68.11] | <0.001 |
Pack-year index | 39.84, 95% CI [38.14, 41.53] | 34.94, 95% CI [33.16, 36.71] | <0.001 |
Dyspnea, mMRC | 1.89, 95% CI [1.62, 2.16] | 1.17, 95% CI [0.93, 1.4] | <0.001 |
Duration of cough, years | 18.71, 95% CI [17.2, 20.21] | 12.06, 95% CI [11.09, 13.04] | <0.001 |
Duration of sputum production, years | 14.11, 95% CI [12.77, 15.45] | 8.85, 95% CI [7.72, 9.99] | <0.001 |
5-year survival rate | 79 (85.86%) | 74 (94.87%) | <0.001 |
10-year survival rate | 29 (31.52%) | 53 (67.94%) | <0.001 |
15-year survival rate | 12 (13.04%) | 39 (50%) | <0.001 |
Parameter | Group with ASCVD (n = 92) | Group without ASCVD (n = 78) | p |
---|---|---|---|
BODE index | 3.39, 95% CI [2.78, 4] | 1.42, 95% CI [1.02, 1.83] | <0.001 |
eBODE index | 4.67, 95% CI [3.99, 5.36] | 2.49, 95% CI [2.06, 2.92] | <0.001 |
BODEX index | 3.45, 95% CI [2.98, 3.91] | 2.28, 95% CI [1.98, 2.58] | <0.001 |
CODEX index | 4.45, 95% CI [3.94, 4.95] | 2.41, 95% CI [2.08, 2.74] | <0.001 |
CCI | 6.15, 95% CI [5.81, 6.49] | 3.62, 95% CI [3.4, 3.83] | <0.001 |
Factor | b | SE | Wald | p | Exp(b) | 95% CI for Exp(b) |
---|---|---|---|---|---|---|
Rapid decline in FEV1 | 1.0082 | 0.2062 | 23.8973 | <0.0001 | 2.7407 | 1.8294–4.1061 |
ASCVD history | 0.6170 | 0.2096 | 8.6667 | 0.0032 | 1.8533 | 1.2290–2.7948 |
Exacerbations ≥ 2 | 0.9219 | 0.2088 | 19.4918 | <0.0001 | 2.5142 | 1.6697–3.7857 |
Pack-years ≥ 30 | 0.7230 | 0.2417 | 8.9456 | 0.0028 | 2.0606 | 1.2830–3.3094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyarov, S. Analysis of the Comorbid Course of Chronic Obstructive Pulmonary Disease. J. Pers. Med. 2023, 13, 1179. https://doi.org/10.3390/jpm13071179
Kotlyarov S. Analysis of the Comorbid Course of Chronic Obstructive Pulmonary Disease. Journal of Personalized Medicine. 2023; 13(7):1179. https://doi.org/10.3390/jpm13071179
Chicago/Turabian StyleKotlyarov, Stanislav. 2023. "Analysis of the Comorbid Course of Chronic Obstructive Pulmonary Disease" Journal of Personalized Medicine 13, no. 7: 1179. https://doi.org/10.3390/jpm13071179
APA StyleKotlyarov, S. (2023). Analysis of the Comorbid Course of Chronic Obstructive Pulmonary Disease. Journal of Personalized Medicine, 13(7), 1179. https://doi.org/10.3390/jpm13071179