Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee; Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S125–S143. [Google Scholar]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; EMPEROR-Reduced Trial Investigators. EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Wheeler, D.C.; Stefánsson, B.V.; Jongs, N.; Postmus, D.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Held, C.; Hou, F.F.; et al. DAPA-CKD Trial Committees and Investigators. Effect of Dapagliflozin on Clinical Outcomes in Patients with Chronic Kidney Disease, With and Without Cardiovascular Disease. Circulation 2021, 143, 438–448. [Google Scholar] [CrossRef]
- Lytvyn, Y.; Bjornstad, P.; Udell, J.A.; Lovshin, J.A.; Cherney, D.Z.I. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation 2017, 136, 1643–1658. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef]
- Shigiyama, F.; Kumashiro, N.; Miyagi, M.; Ikehara, K.; Kanda, E.; Uchino, H.; Hirose, T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol. 2017, 16, 84. [Google Scholar] [CrossRef]
- Jensen, J.; Omar, M.; Kistorp, C.; Tuxen, C.; Gustafsson, I.; Køber, L.; Gustafsson, F.; Faber, J.; Malik, M.E.; Fosbøl, E.L.; et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): A prespecified substudy of a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2021, 9, 106–116. [Google Scholar] [CrossRef]
- Griffin, M.; Rao, V.S.; Ivey-Miranda, J.; Fleming, J.; Mahoney, D.; Maulion, C.; Suda, N.; Siwakoti, K.; Ahmad, T.; Jacoby, D.; et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation 2020, 142, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Van Bommel, E.J.; Smits, M.M.; Ruiter, D.; Muskiet, M.H.; Kramer, M.H.; Nieuwdorp, M.; Touw, D.J.; Heerspink, H.J.; Joles, J.A.; van Raalte, D.H. Effects of dapagliflozin and gliclazide on the cardiorenal axis in people with type 2 diabetes. J. Hypertens. 2020, 38, 1811–1819. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Har, R.; Fagan, N.; Johansen, O.E.; Woerle, H.J.; von Eynatten, M.; Broedl, U.C. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol. 2014, 13, 28. [Google Scholar] [CrossRef]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Mita, T.; Yoshii, H.; Shiraiwa, T.; Yasuda, T.; Okada, Y.; Torimoto, K.; Umayahara, Y.; Kaneto, H.; Osonoi, T.; et al. UTOPIA study investigators. Tofogliflozin does not delay progression of carotid atherosclerosis in patients with type 2 diabetes: A prospective, randomized, open-label, parallel-group comparative study. Cardiovasc. Diabetol. 2020, 19, 110. [Google Scholar] [CrossRef]
- Sakai, T.; Miura, S. Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Vascular Endothelial and Diastolic Function in Heart Failure with Preserved Ejection Fraction–Novel Prospective Cohort Study. Circ. Rep. 2019, 1, 286–295. [Google Scholar] [CrossRef]
- Sharif, S.; Visseren, F.L.J.; Spiering, W.; de Jong, P.A.; Bots, M.L.; Westerink, J. SMART study group. Arterial stiffness as a risk factor for cardiovascular events and all-cause mortality in people with Type 2 diabetes. Diabet Med. 2019, 36, 1125–1132. [Google Scholar] [CrossRef]
- Caro, J.; Migliaccio-Walle, K.; Ishak, K.J.; Proskorovsky, I. The morbidity and mortality following a diagnosis of peripheral arterial disease: Long-term follow-up of a large database. BMC Cardiovasc.Disord. 2005, 5, 14. [Google Scholar] [CrossRef]
- Novo, S.; Carità, P.; Corrado, E.; Muratori, I.; Pernice, C.; Tantillo, R.; Novo, G. Preclinical carotid atherosclerosis enhances the global cardiovascular risk and increases the rate of cerebro- and cardiovascular events in a five-year follow-up. Atherosclerosis 2010, 211, 287–290. [Google Scholar] [CrossRef]
- Kourtidou, C.; Rafailidis, V.; Varouktsi, G.; Kanakis, E.; Liakopoulos, V.; Vyzantiadis, T.A.; Stangou, M.; Marinaki, S.; Tziomalos, K. Evaluation of Subclinical Vascular Disease in Diabetic Kidney Disease: A Tool for Personalization of Management of a High-Risk Population. J. Pers. Med. 2022, 12, 1139. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, I.I.I.A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. American Heart Association Council on Hypertension. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement from the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [PubMed]
- European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery Trial: Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet 1991, 337, 1235–1243. [Google Scholar] [CrossRef]
- De Groot, E.; Van Leuven, S.I.; Duivenvoorden, R.; Meuwese, M.C.; Akdim, F.; Bots, M.L.; Kastelein, J.J. Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.M.; Nambi, V.; Naqvi, T.Z.; Feinstein, S.B.; Kim, E.S.; Park, M.M.; Becher, H.; Sillesen, H. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020, 33, 917–933. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, S.S.; Kim, I.J.; Kim, J.H.; Kim, B.H.; Kim, M.K.; Lee, S.H.; Lee, C.W.; Kim, M.C.; Ahn, J.H.; et al. Relationship between Cardiovascular disease and Brachial-ankle Pulse Wave Velocity (baPWV) in Patients with Type 2 Diabetes (REBOUND) Study Group. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: The REBOUND study. Cardiovasc. Diabetol. 2020, 19, 143. [Google Scholar]
- Cardoso, C.R.L.; Leite, N.C.; Salles, G.F. Prognostic impact of changes in aortic tiffness for cardiovascular and mortality outcomes in individuals with type 2 diabetes: The Rio de Janeiro cohort study. Cardiovasc. Diabetol. 2022, 21, 76. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Sardu, C.; Trotta, M.C.; Scisciola, L.; Turriziani, F.; Ferraraccio, F.; Panarese, I.; Petrella, L.; Fanelli, M.; Modugno, P.; et al. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment. Mol. Metab. 2021, 54, 101337. [Google Scholar] [CrossRef]
- Lin, C.; Zhu, X.; Cai, X.; Yang, W.; Lv, F.; Nie, L.; Ji, L. SGLT2 inhibitors and lower limb complications: An updated meta-analysis. Cardiovasc. Diabetol. 2021, 20, 91. [Google Scholar] [CrossRef] [PubMed]
- Dicembrini, I.; Tomberli, B.; Nreu, B.; Baldereschi, G.I.; Fanelli, F.; Mannucci, E.; Monami, M. Peripheral artery disease and amputations with Sodium-Glucose co-Transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2019, 153, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Wiviott, S.D.; Zelniker, T.A.; Mosenzon, O.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Goodrich, E.L.; De Mendonca Furtado, R.H.; Wilding, J.P.; et al. Dapagliflozin and Cardiac, Kidney, and Limb Outcomes in Patients with and Without Peripheral Artery Disease in DECLARE-TIMI 58. Circulation 2020, 142, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mazer, C.D.; Al-Omran, M.; Inzucchi, S.E.; Fitchett, D.; Hehnke, U.; George, J.T.; Zinman, B. Cardiovascular Outcomes and Safety of Empagliflozin in Patients with Type 2 Diabetes Mellitus and Peripheral Artery Disease: A Subanalysis of EMPA-REG OUTCOME. Circulation 2018, 137, 405–407. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | p | |
---|---|---|---|
(n = 15) | (n = 25) | ||
Age (years) | 68.9 ± 7.3 | 73.2 ± 9.6 | NS |
Males (%) | 73.3 | 68.0 | NS |
Systolic blood pressure (mmHg) | 138.1 ± 14.2 | 142.8 ± 14.6 | NS |
Diastolic blood pressure (mmHg) | 81.9 ± 10.5 | 81.7 ± 14.7 | NS |
Heart rate | 70.6 ± 10.6 | 74.7 ± 9.9 | NS |
Hypertension (%) | 86.7 | 88.0 | NS |
Hypertension duration (years) | 15.9 ± 8.3 | 17.5 ± 6.5 | NS |
Type 2 diabetes mellitus duration (years) | 12.6 ± 9.1 | 13.3 ± 7.1 | NS |
Smoking (current/past, %) | 20.0/40.0 | 12.0/40.0 | NS |
Package-years | 57.5 ± 37.1 | 37.7 ± 22.7 | NS |
Alcohol intake (units/week) | 0.8 ± 1.4 | 0.7 ± 1.6 | NS |
Atrial fibrillation (%) | 13.3 | 32.0 | NS |
Family history of cardiovascular disease (%) | 6.7 | 32.0 | NS |
Coronary heart disease (%) | 40.0 | 40.0 | NS |
Prior ischemic stroke (%) | 0.0 | 4.0 | NS |
Heart failure (%) | 13.3 | 20.0 | NS |
Weight (kg) | 80.7 ± 10.4 | 84.6 ± 19.2 | NS |
Body mass index (kg/m2) | 28.1 ± 3.4 | 29.4 ± 5.7 | NS |
Waist circumference (cm) | 102.8 ± 7.9 | 107.4 ± 13.2 | NS |
Total cholesterol (mg/dL) | 112.7 ± 21.9 | 134.3 ± 55.5 | NS |
Low-density lipoprotein cholesterol (mg/dL) | 43.1 ± 19.1 | 67.8 ± 46.9 | <0.05 |
High-density lipoprotein cholesterol (mg/dL) | 42.1 ± 11.4 | 41.9 ± 19.1 | NS |
Triglycerides (mg/dL) | 136.6 ± 48.8 | 147.7 ± 77.4 | NS |
HbA1c (%) | 7.1 ± 0.7 | 7.4 ± 1.5 | NS |
Chronic kidney disease (%) | 33.3 | 52.0 | NS |
Estimated glomerular filtration rate (mL/min/1.73m2) | 72.3 ± 25.4 | 59.7 ± 28.5 | NS |
Urinary albumin/creatinine ratio (mg/g) | 94.3 ± 127.4 | 181.9 ± 415.3 | NS |
Lipid-lowering treatment (%) | 100.0 | 100.0 | NS |
Antihypertensive treatment (%) | 86.7 | 88.0 | NS |
Antidiabetic treatment (%) | |||
Metformin | 93.3 | 92.0 | NS |
Dipeptidyl peptidase-4 inhibitors | 33.3 | 48.0 | NS |
Insulin | 20.0 | 24.0 | NS |
Other | 13.3 | 12.0 | NS |
Cases | Controls | p | |
---|---|---|---|
(n = 15) | (n = 25) | ||
Ankle-brachial index (left) | 1.17 ± 0.21 | 1.03 ± 0.26 | NS |
Ankle-brachial index (right) | 1.09 ± 0.21 | 1.06 ± 0.26 | NS |
Augmentation index (%) | 21.9 ± 11.3 | 29.7 ± 12.0 | <0.05 |
Augmentation index @75 (%) | 21.3 ± 10.9 | 32.6 ± 11.3 | <0.005 |
Pulse wave velocity (m/sec) | 7.2 ± 4.7 | 8.6 ± 5.3 | NS |
Central systolic blood pressure (mmHg) | 125.9 ± 11.8 | 128.9 ± 10.3 | NS |
Central diastolic blood pressure (mmHg) | 79.4 ± 11.6 | 78.8 ± 13.1 | NS |
Central mean blood pressure (mmHg) | 99.9 ± 11.4 | 100.9 ± 11.9 | NS |
Central pulse pressure (mmHg) | 46.5 ± 15.3 | 48.6 ± 12.4 | NS |
Carotid stenosis (left)(%) | 31.7 ± 18.2 | 29.7 ± 14.9 | NS |
Carotid intima-media thickness (left)(cm) | 0.07 ± 0.02 | 0.09 ± 0.02 | NS |
Maximal plaque thickness (left)(cm) | 0.20 ± 0.14 | 0.22 ± 0.10 | NS |
Carotid stenosis (right)(%) | 21.5 ± 18.1 | 31.5 ± 17.9 | NS |
Carotid intima-media thickness (right)(cm) | 0.08 ± 0.02 | 0.09 ± 0.03 | NS |
Maximal plaque thickness (right)(cm) | 0.23 ± 0.29 | 0.23 ± 0.11 | NS |
Carotid intima-media thickness ≥ 0.1 cm on either side (%) | 33.3 | 60.0 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourtidou, C.; Rafailidis, V.; Varouktsi, G.; Kanakis, E.; Liakopoulos, V.; Vyzantiadis, T.-A.; Savopoulos, C.; Marinaki, S.; Stangou, M.; Tziomalos, K. Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage. J. Pers. Med. 2023, 13, 536. https://doi.org/10.3390/jpm13030536
Kourtidou C, Rafailidis V, Varouktsi G, Kanakis E, Liakopoulos V, Vyzantiadis T-A, Savopoulos C, Marinaki S, Stangou M, Tziomalos K. Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage. Journal of Personalized Medicine. 2023; 13(3):536. https://doi.org/10.3390/jpm13030536
Chicago/Turabian StyleKourtidou, Christodoula, Vasileios Rafailidis, Garyfallia Varouktsi, Efthimios Kanakis, Vassilios Liakopoulos, Timoleon-Achilleas Vyzantiadis, Christos Savopoulos, Smaragdi Marinaki, Maria Stangou, and Konstantinos Tziomalos. 2023. "Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage" Journal of Personalized Medicine 13, no. 3: 536. https://doi.org/10.3390/jpm13030536
APA StyleKourtidou, C., Rafailidis, V., Varouktsi, G., Kanakis, E., Liakopoulos, V., Vyzantiadis, T.-A., Savopoulos, C., Marinaki, S., Stangou, M., & Tziomalos, K. (2023). Effects of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Vascular Damage. Journal of Personalized Medicine, 13(3), 536. https://doi.org/10.3390/jpm13030536