Association between Regional Body Muscle Mass and Non-Alcoholic Fatty Liver Disease: An Observational Study Using Data from the REACTION Study
Abstract
:1. Introduction
2. Methods and Patients
2.1. Participants
2.2. Data Collection
2.3. Assessment of Muscle Mass and Muscle Strengh
2.4. Assessment of NAFLD and Its Severity
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Study Population
3.2. Association between the Relative Muscle Mass of Each Region and the Risk of NAFLD
3.3. Association between Each Regional Relative Muscle Mass and the Severity of NAFLD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NAFLD | Non-alcoholic fatty liver disease |
BIA | Bioelectrical impedance analysis |
BMI | Body mass index |
TG | Triglycerides |
TC | Total cholesterol |
LDL-C | Low-density lipoprotein cholesterol |
HDL-C | High-density lipoprotein-cholesterol |
ALT | Alanine aminotransferase |
HOMA-IR | Homeostasis model assessment of insulin resistance |
WC | Waist circumference |
AST | Aspartate aminotransferase |
GGT | Gamma glutamyl transpeptidase |
References
- Sanyal, A.J. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-alcoholic fatty liver disease: A multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef]
- Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front. Med. 2021, 8, 615978. [Google Scholar] [CrossRef]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Foerster, F.; Gairing, S.J.; Muller, L.; Galle, P.R. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J. Hepatol. 2022, 76, 446–457. [Google Scholar] [CrossRef]
- Lee, H.J.; Chang, J.S.; Ahn, J.H.; Kim, M.Y.; Park, K.S.; Ahn, Y.S.; Koh, S.B. Association Between Low Muscle Mass and Non-alcoholic Fatty Liver Disease Diagnosed Using Ultrasonography, Magnetic Resonance Imaging Derived Proton Density Fat Fraction, and Comprehensive NAFLD Score in Korea. J. Prev. Med. Public Health 2021, 54, 412–421. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jung, K.S.; Kim, S.U.; Yoon, H.J.; Yun, Y.J.; Lee, B.W.; Kang, E.S.; Han, K.H.; Lee, H.C.; Cha, B.S. Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008-2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Kwon, Y.; Jeong, S.J. Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents. J. Clin. Med. 2020, 9, 3355. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Gray, S.R.; Forrest, E.; Welsh, P.; Sattar, N.; Celis-Morales, C.; Ho, F.K.; Pell, J.P. Associations of muscle mass and grip strength with severe NAFLD: A prospective study of 333,295 UK Biobank participants. J. Hepatol. 2022, 76, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, S.E.; Lee, Y.B.; Jun, J.E.; Ahn, J.; Bae, J.C.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Lee, M.K.; et al. Relationship Between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study. Hepatology 2018, 68, 1755–1768. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, H.S.; Cho, A.R.; Lee, Y.J.; Kwon, Y.J. Relationship between muscle mass index and LDL cholesterol target levels: Analysis of two studies of the Korean population. Atherosclerosis 2021, 325, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Kim, D.; Joo, S.K.; Kim, J.H.; Chang, M.S.; Kim, B.G.; Lee, K.L.; Kim, W. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J. Hepatol. 2017, 66, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Stephens, N.A.; Gray, C.; MacDonald, A.J.; Tan, B.H.; Gallagher, I.J.; Skipworth, R.J.; Ross, J.A.; Fearon, K.C.; Greig, C.A. Sexual dimorphism modulates the impact of cancer cachexia on lower limb muscle mass and function. Clin. Nutr. 2012, 31, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Olsen, D.B.; Sacchetti, M.; Dela, F.; Ploug, T.; Saltin, B. Glucose clearance is higher in arm than leg muscle in type 2 diabetes. J. Physio.l 2005, 565 (Pt 2), 555–562. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, B.L.; Frederiksen, P. Thigh circumference and risk of heart disease and premature death: Prospective cohort study. BMJ 2009, 339, b3292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacchetti, M.; Olsen, D.B.; Saltin, B.; van Hall, G. Heterogeneity in limb fatty acid kinetics in type 2 diabetes. Diabetologia 2005, 48, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, H.J.; Kim, Y.S.; Park, S.C.; Harris, R.; Kim, C.K. Caveolin, GLUT4 and insulin receptor protein content in human arm and leg muscles. Eur. J. Appl. Physiol. 2009, 106, 173–179. [Google Scholar] [CrossRef]
- Gejl, K.D.; Hvid, L.G.; Andersson, E.P.; Jensen, R.; Holmberg, H.C.; Ortenblad, N. Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers. Front. Physiol. 2021, 12, 682943. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.Y. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010-2011. Technol. Health Care 2016, 24, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Kuk, J.L.; Ardern, C.I. Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care 2009, 32, 2297–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zheng, D.; Liu, J.; Fang, L.; Li, Q. Skeletal muscle mass to visceral fat area ratio is an important determinant associated with type 2 diabetes and metabolic syndrome. Diabetes Metab. Syndr. Obes. 2019, 12, 1399–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Paredez, B.; Torres-Ibarra, L.; Gonzalez-Morales, R.; Barrientos-Gutierrez, T.; Hernandez-Lopez, R.; Ramirez, P.; Leon-Maldonado, L.; Velazquez-Cruz, R.; Denova-Gutierrez, E.; Salmeron, J. Cumulative soft drink consumption is associated with insulin resistance in Mexican adults. Am. J. Clin. Nutr. 2020, 112, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Hou, L.; Lin, X.; Qin, D.; Wang, H.; Hai, S.; Cao, L.; Dong, B. Prevalence and Risk Factors Governing the Loss of Muscle Function in Elderly Sarcopenia Patients: A longitudinal Study in China with 4 Years of Follow-Up. J. Nutr. Health Aging 2020, 24, 518–524. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef]
- Xu, J.; Dai, L.; Zhang, Y.; Wang, A.; Li, H.; Wang, Y.; Meng, X.; Wu, S.; Wang, Y. Severity of Nonalcoholic Fatty Liver Disease and Risk of Future Ischemic Stroke Events. Stroke 2021, 52, 103–110. [Google Scholar] [CrossRef]
- Rigor, J.; Vasconcelos, R.; Lopes, R.; Moreira, T.; Barata, P.; Martins-Mendes, D. Associations between muscle mass, strength, and performance and non-alcoholic fatty liver disease. Minerva Gastroenterol. 2022. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.F.; Yang, T.; Ma, W.J.; Zhao, T.; Li, D. Skeletal muscle mass indexes and nonalcoholic fatty liver disease in Chinese elders. Asia Pac. J. Clin. Nutr. 2021, 30, 446–456. [Google Scholar] [CrossRef]
- Seko, T.; Akasaka, H.; Koyama, M.; Himuro, N.; Saitoh, S.; Miura, T.; Mori, M.; Ohnishi, H. Lower limb muscle mass is associated with insulin resistance more than lower limb muscle strength in non-diabetic older adults. Geriatr. Gerontol. Int. 2019, 19, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.C.; Wu, L.W.; Chen, W.L.; Liaw, F.Y.; Chang, Y.W.; Kao, T.W. Nonalcoholic fatty liver disease and sarcopenia in a Western population (NHANES III): The importance of sarcopenia definition. Clin. Nutr. 2019, 38, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.K.; Kang, H.Y.; Park, B.; Yang, J.I.; Kim, J.S. The Association between Nonalcoholic Fatty Liver Disease and CT-Measured Skeletal Muscle Mass. J. Clin. Med. 2018, 7, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, K.; Satake, S.; Matsui, Y.; Arai, H. Quantifying Muscle Mass by Adjusting for Body Mass Index Is the Best for Discriminating Low Strength and Function in Japanese Older Outpatients. J. Nutr. Health Aging 2021, 25, 501–506. [Google Scholar] [CrossRef]
- Kinoshita, K.; Satake, S.; Matsui, Y.; Arai, H. Association between Sarcopenia and Fall Risk According to the Muscle Mass Adjustment Method in Japanese Older Outpatients. J. Nutr. Health Aging 2021, 25, 762–766. [Google Scholar] [CrossRef]
- Bahat, G.; Tufan, A.; Kilic, C.; Ozturk, S.; Akpinar, T.S.; Kose, M.; Erten, N.; Karan, M.A.; Cruz-Jentoft, A.J. Cut-off points for weight and body mass index adjusted bioimpedance analysis measurements of muscle mass. Aging Clin. Exp. Res. 2019, 31, 935–942. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Kahn, S.E. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhong, S.; Qu, H.; Xie, Y.; Cao, Z.; Li, Q.; Yang, P.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; et al. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice. Sci. Rep. 2015, 5, 10222. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Tsujimoto, T.; Kim, B.; Uchida, F.; Suzuki, H.; Iizumi, S.; Isobe, T.; Sakae, T.; Tanaka, K.; Shoda, J. Weight-loss-independent benefits of exercise on liver steatosis and stiffness in Japanese men with NAFLD. JHEP Rep. Innov. Hepatol. 2021, 3, 100253. [Google Scholar] [CrossRef] [PubMed]
- Batatinha, H.A.; Lima, E.A.; Teixeira, A.A.; Souza, C.O.; Biondo, L.A.; Silveira, L.S.; Lira, F.S.; Rosa Neto, J.C. Association Between Aerobic Exercise and Rosiglitazone Avoided the NAFLD and Liver Inflammation Exacerbated in PPAR-α Knockout Mice. J. Cell. Physiol. 2017, 232, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, S.; Raschke, S.; Knebel, B.; Scheler, M.; Irmler, M.; Passlack, W.; Muller, S.; Hanisch, F.G.; Franz, T.; Li, X.; et al. Secretome profiling of primary human skeletal muscle cells. Biochim. Et Biophys. Acta 2014, 1844, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.; Lee, J. Sarcopenia and blood myokine levels as prognostic biomarkers in patients with liver cirrhosis or hepatocellular carcinoma. Clin. Mol. Hepatol. 2020, 26, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ro, H.J.; Chung, S.G.; Kang, S.H.; Seo, K.M.; Kim, D.K. Low Skeletal Muscle Mass in the Lower Limbs Is Independently Associated to Knee Osteoarthritis. PLoS One 2016, 11, e0166385. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Non-NAFLD (n = 2216) | NAFLD | p | |
---|---|---|---|---|
Mild (n = 743) | Moderate/Severe (n = 202) | |||
Age (years) | 53.89 ± 12.65 | 53.59 ± 11.17 | 54.67 ± 11.19 | 0.534 |
Sex, male, n (%) | 834 (37.6%) | 167 (22.5%) | 57 (28.2%) | 0.000 |
WC (cm) | 86.66 ± 9.70 | 93.92 ± 9.18 † | 101.34 ± 9.25 ‡ | 0.000 |
BMI (kg/m2) | 24.29 ± 3.14 | 27.44 ± 3.10 † | 30.41 ± 3.71 ‡ | 0.000 |
Smoking (n, %) | 367 (16.7%) | 56 (7.5%) | 21 (10.4%) | 0.000 |
Enough exercise (n, %) | 555 (25%) | 172 (23.1%) | 43 (21.3%) | 0.311 |
Diabetes (n, %) | 523 (23.6%) | 277 (37.3%) † | 105 (52.0%) ‡ | 0.000 |
Hypertension (n, %) | 512 (23.2%) | 209 (28.1%) † | 85 (42.1%) ‡ | 0.000 |
HOMA-IR (>2.5) (n, %) | 546 (26.5%) | 350 (51.5%) † | 137 (73.3%) ‡ | 0.000 |
TG (mmol/L) | 1.02 (0.77, 1.47) | 1.48 (1.03, 2.10) | 1.81 (1.28, 2.82) | 0.000 |
TC (mmol/L) | 5.29 ± 1.06 | 5.39 ± 1.03 | 5.42 ± 1.10 | 0.021 |
LDL (mmol/L) | 3.02 ± 0.86 | 3.13 ± 0.81 | 3.09 ± 0.90 | 0.012 |
HDL (mmol/L) | 1.43 ± 0.34 | 1.28 ± 0.28 | 1.18 ± 0.28 | 0.000 |
ALT (IU/L) | 15.0 (11, 20) | 17 (13, 24) | 23 (17, 32.75) | 0.000 |
AST (IU/L) | 20.0 (17, 24) | 20 (17, 24) | 22.2 (19, 27.8) | 0.156 |
GGT (IU/L) | 19.0 (15, 27) | 23 (18, 31) | 31.5 (23, 45) | 0.000 |
Lower limb muscle mass | 0.558 ± 0.114 | 0.496 ± 0.097 † | 0.475 ± 0.096 ‡ | 0.000 |
Upper limb muscle mass | 0.202 ± 0.044 | 0.187 ± 0.039 † | 0.186 ± 0.040 | 0.000 |
Extremities muscle mass | 0.761 ± 0.153 | 0.684 ± 0.132 † | 0.661 ± 0.132 | 0.000 |
Trunk muscle mass | 0.860 ± 0.141 | 0.786 ± 0.126 † | 0.758 ± 0.132 ‡ | 0.000 |
Variables (per 1 SD) | Age and Sex-Adjusted | Multivariate † | ||
---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | |
Lower limb muscle mass | 0.51 (0.38–0.66) | 0.000 | 0.60 (0.43–0.84) | 0.003 |
Upper limb muscle mass | 0.72 (0.55–0.94) | 0.015 | 0.61 (0.44–0.84) | 0.003 |
Extremities muscle mass | 0.53 (0.40–0.70) | 0.000 | 0.58 (0.42–0.81) | 0.002 |
Trunk muscle mass | 0.48 (0.37–0.64) | 0.000 | 0.52 (0.37–0.71) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Ma, S.; Fang, L.; Zhao, M.; Yuan, Z.; Cheng, Y.; Zhao, J.; Fan, X.; Guo, Q.; Wu, Z. Association between Regional Body Muscle Mass and Non-Alcoholic Fatty Liver Disease: An Observational Study Using Data from the REACTION Study. J. Pers. Med. 2023, 13, 209. https://doi.org/10.3390/jpm13020209
Du J, Ma S, Fang L, Zhao M, Yuan Z, Cheng Y, Zhao J, Fan X, Guo Q, Wu Z. Association between Regional Body Muscle Mass and Non-Alcoholic Fatty Liver Disease: An Observational Study Using Data from the REACTION Study. Journal of Personalized Medicine. 2023; 13(2):209. https://doi.org/10.3390/jpm13020209
Chicago/Turabian StyleDu, Jing, Shizhan Ma, Li Fang, Meng Zhao, Zhongshang Yuan, Yiping Cheng, Jiajun Zhao, Xiude Fan, Qingling Guo, and Zhongming Wu. 2023. "Association between Regional Body Muscle Mass and Non-Alcoholic Fatty Liver Disease: An Observational Study Using Data from the REACTION Study" Journal of Personalized Medicine 13, no. 2: 209. https://doi.org/10.3390/jpm13020209
APA StyleDu, J., Ma, S., Fang, L., Zhao, M., Yuan, Z., Cheng, Y., Zhao, J., Fan, X., Guo, Q., & Wu, Z. (2023). Association between Regional Body Muscle Mass and Non-Alcoholic Fatty Liver Disease: An Observational Study Using Data from the REACTION Study. Journal of Personalized Medicine, 13(2), 209. https://doi.org/10.3390/jpm13020209