Effects of Auditory Training on Speech Recognition in Children with Single-Sided Deafness and Cochlea Implants Using a Direct Streaming Device: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Audiologic Tests
2.2. Subjective Questionnaire
2.3. Equipment
2.4. Statistics
3. Results
3.1. Subject Demographics
3.2. Word Recognition Score (WRS)
3.3. Tiptoi Tasks
3.4. SSQ P
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Deafness and Hearing Loss. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 27 October 2022).
- Dhanasingh, A.; Hochmair, I. CI in single-sided deafness. Acta Otolaryngol. 2021, 141, 82–105. [Google Scholar] [CrossRef]
- Chapman, D.; Stampfel, C.C.; Bodurtha, J.N.; Dodson, K.M.; Pandya, A.; Lynch, K.B.; Kirby, R.S. Impact of co-occurring birth defects on the timing of newborn hearing screening and diagnosis. Am. J. Audiol. 2011, 20, 132–139. [Google Scholar] [CrossRef]
- Dalzell, L.; Orlando, M.; MacDonald, M.; Berg, A.; Bradley, M.; Cacace, A.; Campbell, D.; DeCristofaro, J.; Gravel, J.; Greenberg, E.; et al. The New York State universal newborn hearing screening demonstration project: Ages of hearing loss identification, hearing aid fitting, and enrollment in early intervention. Ear Hear. 2000, 21, 118–130. [Google Scholar] [CrossRef]
- Van de Heyning, P.; Távora-Vieira, D.; Mertens, G.; Van Rompaey, V.; Rajan, G.P.; Müller, J.; Hempel, J.M.; Leander, D.; Polterauer, D.; Marx, M.; et al. Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper. Audiol. Neurootol. 2016, 21, 391–398. [Google Scholar] [CrossRef]
- Van de Heyning, P.; Vermeire, K.; Diebl, M.; Nopp, P.; Anderson, I.; De Ridder, D. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann. Otol. Rhinol. Laryngol. 2008, 117, 645–652. [Google Scholar] [CrossRef]
- Stelzig, Y.; Jacob, R.; Mueller, J. Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: A case series. J. Med. Case Rep. 2011, 5, 343. [Google Scholar] [CrossRef][Green Version]
- United States Food and Drug Administration. FDA Approval. 2019. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf/P000025S104B.pdf (accessed on 21 November 2022).
- Cushing, S.; Gordon, K.; Sokolov, M.; Papaioannou, V.; Polonenko, M.; Papsin, B. Etiology and therapy indication for cochlear implantation in children with single-sided deafness: Retrospective analysis. HNO 2019, 67, 750–759. [Google Scholar] [CrossRef]
- Van de Heyning, P.; Gavilán, J.; Godey, B.; Hagen, R.; Hagr, A.; Kameswaran, M.; Li, Y.; Manoj, M.; Mlynski, R.; O’driscoll, M.; et al. Worldwide Variation in Cochlear Implant Candidacy. J. Int. Adv. Otol. 2022, 18, 196–202. [Google Scholar] [CrossRef]
- Tavora-Vieira, D.; De Ceulaer, G.; Govaerts, P.; Rajan, G. Cochlear implantation improves localization ability in patients with unilateral deafness. Ear Hear. 2015, 36, e93–e98. [Google Scholar] [CrossRef]
- Tavora-Vieira, D.; Marino, R. Re-training the deaf ear: Auditory training for adult cochlear implant users with singlesided deafness. Cochlear Implant. Int. 2019, 20, 231–236. [Google Scholar] [CrossRef]
- Bernstein, J.; Schuchman, G.; Rivera, A. Head Shadow and Binaural Squelch for Unilaterally Deaf Cochlear Implantees. Otol. Neurotol. 2017, 38, e195–e202. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Al-Qurayshi, Z.; Zhu, V.; Liu, A.; Dunn, C.; Gantz, B.J.; Hansen, M.R. Long-term audiologic outcomes after cochlear implantation for single-sided deafness. Laryngoscope 2020, 130, 1805–1811. [Google Scholar] [CrossRef]
- Zeitler, D.; Dorman, M.; Natale, S.; Loiselle, L.; Yost, W.; Gifford, R. Sound Source Localization and Speech Understanding in Complex Listening Environments by Single-sided Deaf Listeners After Cochlear Implantation. Otol. Neurotol. 2015, 36, 1467–1471. [Google Scholar] [CrossRef]
- Boothroyd, A. Characteristics of listening environments: Benefits of binaural hearing and implications for bilateral management. Int. J. Audiol. 2006, 45, 12–19. [Google Scholar] [CrossRef]
- Grothe, B.; Pecka, M.; McAlpine, D. Mechanisms of sound localization in mammals. Physiol. Rev. 2010, 90, 983–1012. [Google Scholar] [CrossRef]
- Benchetrit, L.; Ronner, E.; Anne, S.; Cohen, M. Cochlear Implantation in Children With Single-Sided Deafness: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 58–69. [Google Scholar] [CrossRef]
- Oh, S.; Mavrommatis, M.A.; Fan, C.J.; DiRisio, A.C.; Villavisanis, D.F.; Berson, E.R.; Schwam, Z.G.; Wanna, G.B.; Cosetti, M.K. Cochlear Implantation in Adults With Single-Sided Deafness: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2022, 168, 131–142. [Google Scholar] [CrossRef]
- Dorman, M.; Natale, S.; Butts, A.; Zeitler, D.; Carlson, M. The Sound Quality of Cochlear Implants: Studies with Single-sided Deaf Patients. Otol. Neurotol. 2017, 38, e268–e273. [Google Scholar] [CrossRef]
- Plant, G.; Bernstein, C.; Levitt, H. Optimizing Performance in Adult Cochlear Implant Users through Clinician Directed Auditory Training. Semin. Hear. 2015, 36, 296–310. [Google Scholar] [CrossRef]
- Bogar-Sendelbach, E. Richtig Üben!—Richtig Verstehen! Available online: https://www.ci-audiotherapie-bogar-sendelbach.de/ (accessed on 22 November 2022).
- MED-EL, Medical Electronics. AudioLink. Available online: https://www.medel.com/hearing-solutions/accessories/connectivity/audiolink (accessed on 27 February 2022).
- Aschendorff, A.; Arndt, S.; Kröger, S.; Wesarg, T.; Ketterer, M.C.; Kirchem, P.; Pixner, S.; Hassepaß, F.; Beck, R. Quality of cochlear implant rehabilitation under COVID-19 conditions. German version. HNO 2020, 68, 847–853. [Google Scholar] [CrossRef]
- Hagr, A.; Garadat, S.N.; Hassan, S.M.; Malki, K.; Al Ohali, Y.; Al Ghamdi, N.; Al Nafjan, A.; Al Masaad, A.; Al Hamid, S. The Effect of the Arabic Computer Rehabilitation Program “Rannan” on Sound Detection and Discrimination in Children with Cochlear Implants. J. Am. Acad. Audiol. 2016, 27, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, H.; Lin, Y.; Fu, Q. Effects of computer-assisted speech training on Mandarin-speaking hearing-impaired children. Audiol. Neurootol. 2007, 12, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Levitt, H.; Oden, C.; Simon, H.; Noack, C.; Lotze, A. Entertainment overcomes barriers of auditory training. Hear. J. 2011, 64, 40–42. [Google Scholar] [CrossRef]
- Schumann, A.; Serman, M.; Gefeller, O.; Hoppe, U. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners. Int. J. Audiol. 2015, 54, 190–198. [Google Scholar] [CrossRef]
- Gabriel, P.; Chilla, R.; Kiese, C.; Kabas, M.; Bänsch, D. The Göttingen audiometric speech test for children. II. Speech audiometry of the pre-school child with a monosyllabic picture-test. HNO 1976, 24, 342–346. [Google Scholar]
- Ptok, M. Subjective audiometric procedures in children. HNO 2014, 62, 694–701. [Google Scholar] [CrossRef]
- Hoth, S. The Freiburg speech intelligibility test- A pillar of speech audiometry in German-speaking countries. HNO 2016, 64, 540–548. [Google Scholar] [CrossRef]
- Galvin, K.; Noble, W. Adaptation of the speech, spatial, and qualities of hearing scale for use with children, parents, and teachers. Cochlear Implant. Int. 2013, 14, 135–141. [Google Scholar] [CrossRef]
- Gargula, S.; Simon, F.; Célérier, C.; Couloigner, V.; Leboulanger, N.; Loundon, N.; Denoyelle, F. French adaptation and validation of the Speech, Spatial and Qualities of Hearing scale for Parents (SSQ-P) and for Children (SSQ-Ch). Int. J. Audiol. 2023, 62, 738–746. [Google Scholar] [CrossRef]
- Gatehouse, S.; Noble, W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef]
- Killan, C.; Baxter, P.; Killan, E. Face and content validity analysis of the Speech, Spatial and Qualities of Hearing Scale for Parents (SSQ-P) when used in a clinical service without interviews or week-long observation periods. Int. J. Pediatr. Otorhinolaryngol. 2020, 133, 109964. [Google Scholar] [CrossRef]
- Akeroyd, M.; Guy, F.; Harrison, D.; Suller, S. A factor analysis of the SSQ (Speech, Spatial, and Qualities of Hearing Scale). Int. J. Audiol. 2014, 53, 101–114. [Google Scholar] [CrossRef]
- May, B.J.; Bowditch, S.; Liu, Y.; Eisen, M.; Niparko, J.K. Mitigation of informational masking in individuals with single-sided deafness by integrated bone conduction hearing aids. Ear Hear. 2014, 35, 41–48. [Google Scholar] [CrossRef]
Test Procedure Baseline and Follow Up |
---|
Audiologic tests |
Göttingen Children Speech Test @65dBHL |
Göttingen Children Speech Test @80dBHL |
Göttingen Children Speech Test Streaming via AudioLink |
Tiptoi Exercises Via AudioLink
|
Subjective questionnaire |
SSQ P- Speech, Spatial, and Quality of Hearing Questionnaire for Parents |
Patient ID | Implanted Ear | Gender | Age at Surgery (Years) | Age at Training (Years) | Daily Wearing Time BL (h) | Daily Wearing Time F/U (h) | Daily Training Time (Mean in min) |
---|---|---|---|---|---|---|---|
01 | left | male | 5.67 | 8.08 | 7 | 12 | 17.86 |
02 | right | male | 6 | 7.58 | 12 | 12 | 7.32 |
03 | right | male | 4.92 | 8.42 | 7.5 | 8 | 11.07 |
04 | right | male | 2.92 | 8.75 | 6.5 | 12.5 | 5.71 |
05 | right | male | 8.33 | 11.75 | 12 | 13 | 8.21 |
06 | left | female | 5.75 | 9.08 | 10 | 10 | 5.18 |
07 | left | female | 2.42 | 10.33 | 7 | 8.5 | 5.54 |
08 | right | female | 8 | 8.42 | 10 | 10 | 9.11 |
09 | right | female | 7.12 | 7.67 | 12 | 12 | 14.11 |
10 | left | female | 9 | 9.25 | 12 | 14 | 15.36 |
11 | left | male | 6.75 | 7.83 | 6 | 7 | 10.36 |
12 | right | female | 7.5 | 8.5 | 11 | 12 | 9.29 |
Mean | 6.1 | 8.88 | 9.42 | 10.92 | 9.93 | ||
SD | 2.11 | 1.17 | 2.44 | 2.31 | 3.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muck, S.; Magele, A.; Wirthner, B.; Schoerg, P.; Sprinzl, G.M. Effects of Auditory Training on Speech Recognition in Children with Single-Sided Deafness and Cochlea Implants Using a Direct Streaming Device: A Pilot Study. J. Pers. Med. 2023, 13, 1688. https://doi.org/10.3390/jpm13121688
Muck S, Magele A, Wirthner B, Schoerg P, Sprinzl GM. Effects of Auditory Training on Speech Recognition in Children with Single-Sided Deafness and Cochlea Implants Using a Direct Streaming Device: A Pilot Study. Journal of Personalized Medicine. 2023; 13(12):1688. https://doi.org/10.3390/jpm13121688
Chicago/Turabian StyleMuck, Stefanie, Astrid Magele, Bianca Wirthner, Philipp Schoerg, and Georg Mathias Sprinzl. 2023. "Effects of Auditory Training on Speech Recognition in Children with Single-Sided Deafness and Cochlea Implants Using a Direct Streaming Device: A Pilot Study" Journal of Personalized Medicine 13, no. 12: 1688. https://doi.org/10.3390/jpm13121688
APA StyleMuck, S., Magele, A., Wirthner, B., Schoerg, P., & Sprinzl, G. M. (2023). Effects of Auditory Training on Speech Recognition in Children with Single-Sided Deafness and Cochlea Implants Using a Direct Streaming Device: A Pilot Study. Journal of Personalized Medicine, 13(12), 1688. https://doi.org/10.3390/jpm13121688