Incidental Indeterminate Renal Lesions: Distinguishing Non-Enhancing from Potential Enhancing Renal Lesions Using Iodine Quantification on Portal Venous Dual-Layer Spectral CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Study Population
2.3. Image Acquisition and Reconstruction
2.4. Contrast Material
2.5. Image Analysis
2.6. Statistical Analysis
3. Results
3.1. Subjects
3.2. Relationship between Enhancement on Multiphase CT and Iodine Concentration
3.3. Diagnostic Accuracy of Iodine Quantification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ascenti, G.; Mileto, A.; Krauss, B.; Gaeta, M.; Blandino, A.; Scribano, E.; Settineri, N.; Mazziotti, S. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: Iodine quantification versus standard enhancement measurements. Eur. Radiol. 2013, 23, 2288–2295. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Uzzo, R.G.; Allaf, M.E.; Bass, E.B.; Cadeddu, J.A.; Chang, A.; Clark, P.E.; Davis, B.J.; Derweesh, I.H.; Giambarresi, L.; et al. Renal Mass and Localized Renal Cancer: AUA Guideline. J. Urol. 2017, 198, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S.G.; Pedrosa, I.; Ellis, J.H.; Hindman, N.M.; Schieda, N.; Smith, A.D.; Remer, E.M.; Shinagare, A.B.; Curci, N.E.; Raman, S.S.; et al. Bosniak classification of cystic renal masses, version 2019: An update proposal and needs assessment. Radiology 2019, 292, 475–488. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef]
- Durieux, P.; Gevenois, P.A.; van Muylem, A.; Howarth, N.; Keyzer, C. Abdominal attenuation values on virtual and true unenhanced images obtained with third-generation dual-source dual-energy CT. Am. J. Roentgenol. 2018, 210, 1042–1058. [Google Scholar] [CrossRef]
- Lin, Y.M.; Chiou, Y.Y.; Wu, M.H.; Huang, S.S.; Shen, S.H. Attenuation values of renal parenchyma in virtual noncontrast images acquired from multiphase renal dual-energy CT: Comparison with standard noncontrast CT. Eur. J. Radiol. 2018, 101, 103–110. [Google Scholar] [CrossRef]
- Sauter, A.P.; Muenzel, D.; Dangelmaier, J.; Braren, R.; Pfeiffer, F.; Rummeny, E.J.; Noël, P.B.; Fingerle, A.A. Dual-layer spectral computed tomography: Virtual non-contrast in comparison to true non-contrast images. Eur. J. Radiol. 2018, 104, 108–114. [Google Scholar] [CrossRef]
- Nagayama, Y.; Inoue, T.; Oda, S.; Tanoue, S.; Nakaura, T.; Ikeda, O.; Yamashita, Y. Adrenal Adenomas versus Metastases: Diagnostic Performance of Dual-Energy Spectral CT Virtual Noncontrast Imaging and Iodine Maps. Radiology 2020, 296, 324–332. [Google Scholar] [CrossRef]
- Verstraeten, S.; Ansems, J.; van Ommen, W.; van der Linden, D.; Looijmans, F.; Tesselaar, E. Comparison of true non-contrast and virtual non-contrast images in the characterization of renal lesions using detector-based spectral CT. Br. J. Radiol. 2023, 96, 1149. [Google Scholar] [CrossRef]
- Meyer, M.; Nelson, R.C.; Vernuccio, F.; Gonzalez, F.; Schabel, C.; Mileto, A.; Patel, B.N.; Schoenberg, S.O.; Marin, D. Comparison of iodine quantification and conventional attenuation measurements for differentiating small, truly enhancing renal masses from high-attenuation nonenhancing renal lesions with dual-energy CT. Am. J. Roentgenol. 2019, 213, 26–37. [Google Scholar] [CrossRef]
- Patel, B.N.; Vernuccio, F.; Meyer, M.; Godwin, B.; Rosenberg, M.; Rudnick, N.; Harring, S.; Nelson, R.; Ramirez-Giraldo, J.C.; Farjat, A.; et al. Dual-energy CT material density iodine quantification for distinguishing vascular from nonvascular renal lesions: Normalization reduces intermanufacturer threshold variability. Am. J. Roentgenol. 2019, 212, 366–376. [Google Scholar] [CrossRef]
- Kaza, R.K.; Caoili, E.M.; Cohan, R.H.; Platt, J.F. Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. Am. J. Roentgenol. 2011, 197, 1375–1381. [Google Scholar] [CrossRef]
- Marin, D.; Davis, D.; Choudhury, K.R.; Patel, B.; Gupta, R.T.; Mileto, A.; Nelson, R.C. Characterization of small focal renal lesions: Diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology 2017, 284, 737–747. [Google Scholar] [CrossRef]
- Zarzour, J.G.; Milner, D.; Valentin, R.; Jackson, B.E.; Gordetsky, J.; West, J.; Rais-Bahrami, S.; Morgan, D.E. Quantitative iodine content threshold for discrimination of renal cell carcinomas using rapid kV-switching dual-energy CT. Abdom. Radiol. 2017, 42, 727–734. [Google Scholar] [CrossRef]
- Chandarana, H.; Megibow, A.J.; Cohen, B.A.; Srinivasan, R.; Kim, D.; Leidecker, C.; Macari, M. Iodine quantification with dual-energy CT: Phantom study and preliminary experience with renal masses. Am. J. Roentgenol. 2011, 196, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, B.A.; Hindman, N.; Lee, J.; Babb, J.S. Renal cyst pseudoenhancement: Influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 2007, 244, 767–775. [Google Scholar] [CrossRef]
- Patel, J.; Davenport, M.S.; Khalatbari, S.; Cohan, R.H.; Ellis, J.H.; Platt, J.F. In vivo predictors of renal cyst pseudoenhancement at 120 kVp. Am. J. Roentgenol. 2014, 202, 336–342. [Google Scholar] [CrossRef]
- Dyer, R.; DiSantis, D.J.; McClennan, B.L. Simplified imaging approach for evaluation of the solid renal mass in adults. Radiology 2008, 247, 331–343. [Google Scholar] [CrossRef]
- Bae, T.K.; Heiken, J.P.; Brink, J.A. Aortic and Hepatic Contrast Medium Enhancement at CT Part II. Effect of Reduced Cardiac Output in a Porcine Model. Radiology 1998, 207, 657–662. [Google Scholar] [CrossRef]
- Seifarth, H.; Puesken, M.; Kalafut, J.F.; Wienbeck, S.; Wessling, J.; Maintz, D.; Heindel, W.; Juergens, K.U. Introduction of an individually optimized protocol for the injection of contrast medium for coronary CT angiography. Eur. Radiol. 2009, 19, 2373–2382. [Google Scholar] [CrossRef]
- Jacobsen, M.C.; Cressman, E.N.K.; Tamm, E.P.; Baluya, D.L.; Duan, X.; Cody, D.D.; Schellingerhout, D.; Layman, R.R. Dual-energy CT: Lower limits of iodine detection and quantification. Radiology 2019, 292, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Ishigami, K.; Pakalniskis, M.G.; Leite, L.V.; Lee, D.K.; Holanda, D.G.; Rajput, M. Characterization of renal cell carcinoma, oncocytoma, and lipid-poor angiomyolipoma by unenhanced, nephrographic, and delayed phase contrast-enhanced computed tomography. Clin. Imaging 2015, 39, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Shen, S.H.; Chang, Y.H.; Chung, H.J.; Wang, J.H.; Lin, A.T.L.; Chen, K.K. Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? Am. J. Roentgenol. 2013, 201, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Dilauro, M.; Quon, M.; McInnes, M.D.F.; Vakili, M.; Chung, A.; Flood, T.A.; Schieda, N. Comparison of contrast-enhanced multiphase renal protocol CT versus MRI for diagnosis of papillary renal cell carcinoma. Am. J. Roentgenol. 2016, 206, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Israel, G.M.; Bosniak, M.A. How I do it: Evaluating renal masses. Radiology 2005, 236, 441–450. [Google Scholar] [CrossRef] [PubMed]
Unenhanced CT | Portal Venous Phase CT | |
---|---|---|
Collimation (mm) | 64 × 0.625 mm | 64 × 0.625 mm |
Tube voltage (kV) | 120 | 120 |
Tube current (mAs) | Ref: 25 Min/max: 20/none | Ref: 109 Min/max: 20/none |
Pitch | 1.15 | 1.258 |
CTDIvol (mGy) | 1.9 | 10.4 |
Gantry rotation time (s) | 0.27 | 0.27 |
Reconstruction kernel | B (IMR level 1) | B (IMR level 1) |
Slice thickness/increment (mm) | 1/1 | 1/1 |
Patients | n = 103 | ||
---|---|---|---|
Age, years, mean (SD; range) | 62 (14; 24–86) | ||
Gender, n (%) | |||
Male | 68 (66.0) | ||
Female | 35 (34.0) | ||
No. of lesions per patient, n (%) | |||
1 | 37 (35.9) | ||
2 | 13 (12.6) | ||
3 | 14 (13.6) | ||
4 | 7 (6.8) | ||
5 | 8 (7.8) | ||
6–9 | 7 (6.8) | ||
≥10 | 17 (16.5) | ||
Renal lesions | All | Non-enhancing | Enhancing |
n = 328 | n = 272 | n = 56 | |
Lesion size, mean, mm (SD) | 24.9 (17.8) | 24.2 (16.6) | 28.4 (22.9) |
10–15 mm | 123 (37.5) | 103 (37.9) | 20 (35.7) |
≥16 mm | 205 (62.5) | 169 (62.1) | 36 (64.3) |
Location, n (%) | |||
Cortical | 190 (57.9) | 149 (54.8) | 41 (73.2) |
Exofytic | 123 (37.6) | 109 (40.1) | 14 (25.0) |
Parapelvic | 15 (4.5) | 14 (5.1) | 1 (1.8) |
True unenhanced CT, n (%) | |||
0–19 HU | 177 (54.0) | 174 (64.0) | 3 (5.4) |
≥70 HU | 12 (3.7) | 12 (4.4) | 0 (0.0) |
20–69 HU | 139 (42.3) | 86 (31.6) | 53 (94.6) |
Portal venous phase CT, n (%) | |||
≤30 HU | 211 (64.3) | 210 (77.2) | 1 (1.7) |
>30 HU | 117 (35.7) | 62 (22.8) | 55 (98.3) |
All Lesions | >30 HU at Portal Venous Phase CT | |||
---|---|---|---|---|
n = 328 | n = 117 | |||
Non-enhancing lesion | Enhancing lesion a | Non-enhancing lesion | Enhancing lesion a | |
n = 272 | n = 56 | n = 62 | n = 55 | |
ΔHU on multiphase CT, median (Q1–Q3; range) | 0 (−3–4; −18–18) | 57.5 (34–82; 22–142) | 1 (−2–7; −13–18) | 59 (34–84; 22–142) |
Iodine concentration (mgI/mL), median (Q1–Q3; range) | 0.39 (0.25–0.58; 0.00–1.66) | 2.55 (1.73–3.57; 0.80–5.95) | 0.45 (0.26–0.74; 0.02–1.66) | 2.74 (1.78–3.59; 0.80–5.95 |
Threshold Iodine Concentration (mgI/mL) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|
All lesions | 0.79 a 1.19 b 1.69 c | 100 93 77 | 87 96 100 |
>30 HU at portal venous phase CT | 0.76 a 1.33 b 1.69 c | 100 91 78 | 76 92 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Star, S.; de Jong, P.A.; Kok, M. Incidental Indeterminate Renal Lesions: Distinguishing Non-Enhancing from Potential Enhancing Renal Lesions Using Iodine Quantification on Portal Venous Dual-Layer Spectral CT. J. Pers. Med. 2023, 13, 1546. https://doi.org/10.3390/jpm13111546
van der Star S, de Jong PA, Kok M. Incidental Indeterminate Renal Lesions: Distinguishing Non-Enhancing from Potential Enhancing Renal Lesions Using Iodine Quantification on Portal Venous Dual-Layer Spectral CT. Journal of Personalized Medicine. 2023; 13(11):1546. https://doi.org/10.3390/jpm13111546
Chicago/Turabian Stylevan der Star, Simone, Pim A. de Jong, and Madeleine Kok. 2023. "Incidental Indeterminate Renal Lesions: Distinguishing Non-Enhancing from Potential Enhancing Renal Lesions Using Iodine Quantification on Portal Venous Dual-Layer Spectral CT" Journal of Personalized Medicine 13, no. 11: 1546. https://doi.org/10.3390/jpm13111546
APA Stylevan der Star, S., de Jong, P. A., & Kok, M. (2023). Incidental Indeterminate Renal Lesions: Distinguishing Non-Enhancing from Potential Enhancing Renal Lesions Using Iodine Quantification on Portal Venous Dual-Layer Spectral CT. Journal of Personalized Medicine, 13(11), 1546. https://doi.org/10.3390/jpm13111546