Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Enrollment, Intervention, and Phenotype Data Collection
2.2. Data Analyses
3. Results
3.1. Data Collection
3.2. Cohort Demographic Characteristics
3.3. Baseline Gut Microbiome and Genetic Factors Are Associated with Mental Health Improvement after Dietary Intervention
3.4. At Baseline, Psychiatric Disorders’ Genetic Scores Are Associated with Anxiety or Depression, Whereas Microbial Metabolic Pathways Associate with Sleep Problems
3.5. Multi-Omics Models Are Better Correlated with Mental Health Improvement Than Demographics Models Alone
3.6. Medication and Recreational Drug Use Do Not Confound Microbiome Associations with Mental Health
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeRubeis, R.J.; Siegle, G.J.; Hollon, S.D. Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 2008, 9, 788–796. [Google Scholar] [CrossRef]
- Giuntella, O.; Hyde, K.; Saccardo, S.; Sadoff, S. Lifestyle and mental health disruptions during COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2016632118. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Lam, S.U.; Simonsson, O.; Torous, J.; Sun, S. Mobile phone-based interventions for mental health: A systematic meta-review of 14 meta-analyses of randomized controlled trials. PLoS Digit. Health 2022, 1, e0000002. [Google Scholar] [CrossRef]
- Miao, B.Y.; Arneson, D.; Wang, M.; Butte, A.J. Open challenges in developing digital therapeutics in the United States. PLoS Digit. Health 2022, 1, e0000008. [Google Scholar] [CrossRef]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [Google Scholar] [CrossRef] [Green Version]
- McGuffin, P. A Hospital-Based Twin Register of the Heritability of DSM-IV Unipolar Depression. Arch. Gen. Psychiatry 1996, 53, 129. [Google Scholar] [CrossRef]
- Plomin, R.; Owen, M.J.; McGuffin, P. The Genetic Basis of Complex Human Behaviors. Science 1994, 264, 1733–1739. [Google Scholar] [CrossRef] [Green Version]
- Speed, M.S.; Jefsen, O.H.; Børglum, A.D.; Speed, D.; Østergaard, S.D. Investigating the association between body fat and depression via Mendelian randomization. Transl. Psychiatry 2019, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyrrell, J.; Mulugeta, A.; Wood, A.R.; Zhou, A.; Beaumont, R.N.; Tuke, M.A.; Jones, S.E.; Ruth, K.S.; Yaghootkar, H.; Sharp, S.; et al. Using genetics to understand the causal influence of higher BMI on depression. Int. J. Epidemiol. 2019, 48, 834–848. [Google Scholar] [CrossRef]
- Millard, L.A.C.; Davies, N.M.; Tilling, K.; Gaunt, T.R.; Davey Smith, G. Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet. 2019, 15, e1007951. [Google Scholar] [CrossRef] [Green Version]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef]
- Hu, Z.; Li, M.; Yao, L.; Wang, Y.; Wang, E.; Yuan, J.; Wang, F.; Yang, K.; Bian, Z.; Zhong, L.L.D. The level and prevalence of depression and anxiety among patients with different subtypes of irritable bowel syndrome: A network meta-analysis. BMC Gastroenterol. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Eijsbouts, C.; Zheng, T.; Kennedy, N.A.; Bonfiglio, F.; Anderson, C.A.; Moutsianas, L.; Holliday, J.; Shi, J.; Shringarpure, S.; 23andMe Research Team. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet. 2021, 53, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Mannan, M.; Mamun, A.; Doi, S.; Clavarino, A. Is there a bi-directional relationship between depression and obesity among adult men and women? Systematic review and bias-adjusted meta analysis. Asian J. Psychiatry 2016, 21, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Järbrink-Sehgal, E.; Andreasson, A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol. 2020, 62, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- García-Santisteban, I.; Cilleros-Portet, A.; Moyua-Ormazabal, E.; Kurilshikov, A.; Zhernakova, A.; Garcia-Etxebarria, K.; Fernandez-Jimenez, N.; Bilbao, J.R. A Two-Sample Mendelian Randomization Analysis Investigates Associations Between Gut Microbiota and Celiac Disease. Nutrients 2020, 12, 1420. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tong, X.; Zou, Y.; Lin, X.; Zhao, H.; Tian, L.; Jie, Z.; Wang, Q.; Zhang, Z.; Lu, H.; et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 2022, 54, 52–61. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Morres, I.D.; Hatzigeorgiadis, A.; Stathi, A.; Comoutos, N.; Arpin-Cribbie, C.; Krommidas, C.; Theodorakis, Y. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress. Anxiety 2019, 36, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Jacka, F.N. Nutritional Psychiatry: Where to Next? EBioMedicine 2017, 17, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef]
- Marx, W.; Lane, M.M.; Hockey, M.; Aslam, H.; Walder, K.; Borsini, A.; Firth, F.; Pariante, C.M.; Berding, K.; Cryan, J.F.; et al. Diet and depression: Future needs to unlock the potential. Mol. Psychiatry 2022, 27, 778–780. [Google Scholar] [CrossRef]
- Cameron, A.J.; Magliano, D.J.; Dunstan, D.W.; Zimmet, P.Z.; Hesketh, K.; Peeters, A.; Shaw, J.E. A bi-directional relationship between obesity and health-related quality of life: Evidence from the longitudinal AusDiab study. Int. J. Obes. 2012, 36, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Canetti, L.; Bachar, E.; Bonne, O. Deterioration of mental health in bariatric surgery after 10 years despite successful weight loss. Eur. J. Clin. Nutr. 2016, 70, 17–22. [Google Scholar] [CrossRef]
- Jackson, S.E.; Steptoe, A.; Beeken, R.J.; Kivimaki, M.; Wardle, J. Psychological Changes following Weight Loss in Overweight and Obese Adults: A Prospective Cohort Study. PLoS ONE 2014, 9, e104552. [Google Scholar] [CrossRef] [PubMed]
- Lasikiewicz, N.; Myrissa, K.; Hoyland, A.; Lawton, C.L. Psychological benefits of weight loss following behavioural and/or dietary weight loss interventions. A systematic research review. Appetite 2014, 72, 123–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warkentin, L.M.; Das, D.; Majumdar, S.R.; Johnson, J.A.; Padwal, R.S. The effect of weight loss on health-related quality of life: Systematic review and meta-analysis of randomized trials: The effect of weight loss on health-related quality of life. Obes Rev. 2014, 15, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.L.; Fried, E.I.; Van der Does, W. The SMILES trial: Do undisclosed recruitment practices explain the remarkably large effect? BMC Med. 2018, 16, 243. [Google Scholar] [CrossRef]
- Sinha, R.; Kachru, D.; Ricchetti, R.R.; Singh-Rambiritch, S.; Muthukumar, K.M.; Singaravel, V.; Irudayanathan, C.; Reddy-Sinha, C.; Junaid, I.; Sharma, G.; et al. Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study. J. Med. Internet Res. 2021, 23, e25401. [Google Scholar] [CrossRef] [PubMed]
- Ricchetti, R.R.; Sinha, R.; Muthukumar, K.M.; Singh-Rambiritch, S.; Underwood, B.; Junaid, I.; Reddy-Sinha, C.; Kotini, J.; Irudayanathan, C. Outcomes of a Precision Digital Care Program for Obesity and Associated Comorbidities: Results in Real World Clinical Practice. Int. J. Clin. Med. Cases 2020, 3, 11. [Google Scholar]
- Kumbhare, S.V.; Francis-Lyon, P.A.; Kachru, D.; Uday, T.; Irudayanathan, C.; Muthukumar, K.M.; Ricchetti, R.R.; Singh-Rambiritch, S.; Ugalde, J.; Dulai, P.S.; et al. Digital Therapeutics Care Utilizing Genetic and Gut Microbiome Signals for the Management of Functional Gastrointestinal Disorders: Results From a Preliminary Retrospective Study. Front. Microbiol. 2022, 13, 826916. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.G.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; Sankaran, K.; Fukuyama, J.; McMurdie, P.; Holmes, S. Bioconductor Workflow for Microbiome Data Analysis: From raw reads to community analyses [version 2; peer review: 3 approved]. F1000Research 2016, 5, 1492. [Google Scholar] [CrossRef]
- Xia, Y. q2-Repeat-Rarefy: QIIME2 Plugin for Generating the Average Rarefied Table for Library Size Normalization Using Repeated Rarefaction. GitHub 2021. Available online: https://github.com/yxia0125/q2-repeat-rarefy (accessed on 10 July 2022).
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Darzi, Y.; Falony, G.; Vieira-Silva, S.; Raes, J. Towards biome-specific analysis of meta-omics data. ISME J. 2016, 10, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: New York, NY, USA, 1986; p. 416. [Google Scholar]
- Browning, B.L.; Tian, X.; Zhou, Y.; Browning, S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021, 108, 1880–1890. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Byrska-Bishop, M.; Evani, U.S.; Zhao, X.; Basile, A.O.; Abel, H.J.; Regier, A.A.; Corvelo, A.; Clarke, W.E.; Musunuri, R.; Nagulapalli, K.; et al. High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. bioRxiv 2021. [Google Scholar] [CrossRef]
- Rajan, T.; Menon, V. Psychiatric disorders and obesity: A review of association studies. J. Postgrad. Med. 2017, 63, 182. [Google Scholar] [PubMed]
- Simon, G.E.; Von Korff, M.; Saunders, K.; Miglioretti, D.L.; Crane, P.K.; van Belle, G.; Kessler, R.C. Association Between Obesity and Psychiatric Disorders in the US Adult Population. Arch. Gen. Psychiatry 2006, 63, 824. [Google Scholar] [CrossRef] [Green Version]
- Zeileis, A. Econometric Computing with HC and HAC Covariance Matrix Estimators. J. Stat. Softw. 2004, 11, 1–17. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. 2019, pp. 732–740. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WBRFVIAAAAJ&sortby=pubdate&citation_for_view=2WBRFVIAAAAJ:HeT0ZceujKMC (accessed on 6 April 2022).
- Claudy, J.G. Multiple Regression and Validity Estimation in One Sample. Appl. Psychol. Meas. 1978, 2, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int. J. Tryptophan Res. 2019, 12, 117864691985299. [Google Scholar] [CrossRef] [Green Version]
- Cathomas, F.; Guetter, K.; Seifritz, E.; Klaus, F.; Kaiser, S. Quinolinic acid is associated with cognitive deficits in schizophrenia but not major depressive disorder. Sci. Rep. 2021, 11, 9992. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Walter, M.; Gos, T.; Guillemin, G.J.; Bernstein, H.-G.; Sarnyai, Z.; Mawrin, C.; Brisch, R.; Bielau, H.; Schwabedissen, L.; et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflamm. 2011, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, M.M.; et al. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 2013, 8, e76993. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.-R.; Fu, X.-Y.; Shi, L.-G.; Jiang, Y.; Wu, J.-L.; Weng, X.-J.; Wang, Z.-P.; Lin, Z.; Liu, H.-C.; Luo, J.-C.; et al. Decreased plasma neuroactive amino acids and increased nitric oxide levels in melancholic major depressive disorder. BMC Psychiatry 2014, 14, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int. J. Mol. Sci. 2020, 21, 9234. [Google Scholar] [CrossRef]
- Gulati, K.; Rai, N.; Ray, A. Nitric Oxide and Anxiety. Vitam. Horm. 2017, 103, 169–192. [Google Scholar]
- Gautier-Sauvigné, S.; Colas, D.; Parmantier, P.; Clement, P.; Gharib, A.; Sarda, N.; Cespuglio, R. Nitric oxide and sleep. Sleep Med. Rev. 2005, 9, 101–113. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell 2019, 6, 454–481. [Google Scholar] [CrossRef]
- Singh, V.; Yeoh, B.S.; Vijay-Kumar, M. Feed your gut with caution! Transl. Cancer Res. 2016, 5, S507–S513. [Google Scholar] [CrossRef]
- Radjabzadeh, D.; Bosch, J.; Uitterlinden, A.; Zwinderman, K.; Ikram, M.A.; van Meurs, J.; Luik, A.; Nieuwdorp, M.; Lok, A.; van Duijn, C.; et al. Gut Microbiome-Wide Association Study of Depression. Research Square. 2021. Available online: https://www.researchsquare.com/article/rs-570388/v1 (accessed on 6 April 2022). [CrossRef]
- Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; Yu, L.; Zhou, J.; Guo, A.; Li, Z.; et al. Effects of Probiotics on Depressive or Anxiety Variables in Healthy Participants Under Stress Conditions or With a Depressive or Anxiety Diagnosis: A Meta-Analysis of Randomized Controlled Trials. Front. Neurol. 2020, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry 2017, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, E.; Tsuji, H.; Asahara, T.; Takahashi, T.; Teraishi, T.; Yoshida, S.; Ota, M.; Koga, N.; Hattori, K.; Kunugi, H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016, 202, 254–257. [Google Scholar] [CrossRef]
- Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [Google Scholar] [CrossRef]
- Jiang, H.; Pan, L.; Zhang, X.; Zhang, Z.; Zhou, Y.; Ruan, B. Altered gut bacterial–fungal interkingdom networks in patients with current depressive episode. Brain Behav. 2020, 10, e01677. [Google Scholar] [CrossRef]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.-C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and Major Depression. Front. Psychiatry 2019, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shao, L.; Mou, Y.; Zhang, Y.; Ping, Y. Sleep, circadian rhythm and gut microbiota: Alterations in Alzheimer’s disease and their potential links in the pathogenesis. Gut Microbes 2021, 13, 1957407. [Google Scholar] [CrossRef]
- Jehan, S.; Zizi, F.; Pandi-Perumal, S.R.; Wall, S.; Auguste, E.; Myers, A.K.; Jean-Louis, G.; McFarlane, S.I. Obstructive Sleep Apnea and Obesity: Implications for Public Health. Sleep Med. Disord. Int. J. 2017, 1, 00019. [Google Scholar]
- Cox, R.C.; Olatunji, B.O. Sleep in the anxiety-related disorders: A meta-analysis of subjective and objective research. Sleep Med. Rev. 2020, 51, 101282. [Google Scholar] [CrossRef]
- Rezaeitalab, F.; Moharrari, F.; Saberi, S.; Asadpour, H.; Rezaeetalab, F. The correlation of anxiety and depression with obstructive sleep apnea syndrome. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 205–210. [Google Scholar]
- Khandelwal, D.; Dutta, D.; Chittawar, S.; Kalra, S. Sleep disorders in type 2 diabetes. Indian J. Endocrinol. Metab. 2017, 21, 758. [Google Scholar]
- Vézina-Im, L.-A.; Morin, C.M.; Desroches, S. Sleep, Diet and Physical Activity Among Adults Living With Type 1 and Type 2 Diabetes. Can. J. Diabetes 2021, 45, 659–665. [Google Scholar] [CrossRef]
- Duncan, M.J.; Fenton, S.; Brown, W.J.; Collins, C.E.; Glozier, N.; Kolt, G.S.; Holliday, E.G.; Morgan, P.J.; Murawski, B.; Plotnikoff, R.C.; et al. Efficacy of a Multi-component m-Health Weight-loss Intervention in Overweight and Obese Adults: A Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, E6200. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; de Leeuw, C.A.; Benjamins, J.S.; Muñoz-Manchado, A.B.; Nagel, M.; et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 2019, 51, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. ELife 2018, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
- 23andMe Research Team; Howard, D.M.; Adams, M.J.; Shirali, M.; Clarke, T.-K.; Marioni, R.E.; Davies, G.; Coleman, J.R.I.; Alloza, C.; Shen, X.; et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 2018, 9, 1470. [Google Scholar] [CrossRef] [Green Version]
- Kranzler, H.R.; Zhou, H.; Kember, R.L.; Vickers Smith, R.; Justice, A.C.; Damrauer, S.; Tsao, P.S.; Klarin, D.; Baras, A.; Reid, J.; et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 2019, 10, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonte, C.; Reider, C.; Fulgoni, V.; Mitmesser, S. Analysis of NHANES 2005–2016 Data Showed Significant Association Between Micro and Macronutrient Intake and Various Sleep Variables (P06-103-19). Curr. Dev. Nutr. 2019, 3, nzz031.P06-103-19. [Google Scholar] [CrossRef] [Green Version]
- Lichstein, K.L.; Payne, K.L.; Soeffing, J.P.; Heith Durrence, H.; Taylor, D.J.; Riedel, B.W.; Bush, A.J. Vitamins and sleep: An exploratory study. Sleep Med. 2007, 9, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Liu, Z.; Yao, N.; Zhang, X.; Ge, Q. The independent association between vitamin B12 and insomnia in Chinese patients with type 2 diabetes mellitus: A cross-sectional study. Nutr. Diabetes 2022, 12, 3. [Google Scholar] [CrossRef]
- Urrila, A.S.; Hakkarainen, A.; Castaneda, A.; Paunio, T.; Marttunen, M.; Lundbom, N. Frontal Cortex Myo-Inositol Is Associated with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study. Neuropsychobiology 2017, 75, 21–31. [Google Scholar] [CrossRef] [Green Version]
- 23andMe Research Team, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MDD Working Group of the Psychiatric Genomics Consortium; Cai, N.; Revez, J.A.; Adams, M.J.; Andlauer, T.F.M.; Breen, G.; Byrne, E.M.; Clarke, T.-K.; Forstner, A.J.; Grabe, H.J.; et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 2020, 52, 437–447. [Google Scholar]
- Skelton, M.; Rayner, C.; Purves, K.L.; Coleman, J.R.I.; Gaspar, H.A.; Glanville, K.P.; Hunjan, A.K.; Hübel, C.; Breen, G.; Eley, T.C. Self-reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2021, 186, 389–398. [Google Scholar] [CrossRef] [PubMed]
- American College of Gastroenterology. Digestive Health Tips—American College of Gastroenterology. 2021. Available online: https://gi.org/topics/digestive-health-tips/ (accessed on 6 April 2022).
- International Foundation for Gastrointestinal Disorders. About GI Motility—About GI Motility. 2021. Available online: https://aboutgimotility.org/learn-about-gi-motility/ (accessed on 6 April 2022).
- Davies, M.; Nowotka, M.; Papadatos, G.; Dedman, N.; Gaulton, A.; Atkinson, F.; Bellis, L.; Overington, J.P. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015, 43, W612–W620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illumina. Illumina Documentation: 16S Metagenomic Sequencing Library; Preparation, Part # 15044223 Rev. B. 2013. Available online: https://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 6 April 2022).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.; Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Research 2021, 10, 33. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Goodrich, J.; gnomAD Production Team. Using the gnomAD Ancestry Principal Components Analysis Loadings and Random Forest Classifier on Your Dataset. Using GnomAD Ancestry Princ Compon Anal Load Random For Classif Your Dataset. 2021. Available online: https://gnomad.broadinstitute.org/news/2021-09-using-the-gnomad-ancestry-principal-components-analysis-loadings-and-random-forest-classifier-on-your-dataset/ (accessed on 15 January 2022).
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 20 June–3 July 2010; pp. 92–96. [Google Scholar]
- Raju, N.S.; Bilgic, R.; Edwards, J.E.; Fleer, P.F. Methodology Review: Estimation of Population Validity and Cross-Validity, and the Use of Equal Weights in Prediction. Appl. Psychol. Meas. 1997, 21, 291–305. [Google Scholar] [CrossRef]
Variable | N Samples | Beta * | Beta Se | p-Value | FDR |
---|---|---|---|---|---|
Genetics | |||||
IBS | 135 | 0.248 | 0.0788 | 0.0016 | 0.015 |
BMI | 135 | −0.218 | 0.0704 | 0.0018 | 0.015 |
OSA | 135 | −0.232 | 0.0869 | 0.0075 | 0.04 |
Microbial Taxa | |||||
Dorea | 118 | 0.250 | 0.081 | 0.0017 | 0.071 |
Ruminococcaceae UBA1819 | 76 | 0.305 | 0.102 | 0.0028 | 0.071 |
Ruminococcaceae DTU089 | 64 | −0.385 | 0.133 | 0.0039 | 0.071 |
Prevotella | 51 | −0.128 | 0.045 | 0.0043 | 0.071 |
Oscillospiraceae UCG003 | 65 | 0.418 | 0.148 | 0.0048 | 0.071 |
Eubacterium ventriosum group | 97 | 0.238 | 0.0931 | 0.011 | 0.13 |
Adlercreutzia | 77 | −0.469 | 0.190 | 0.014 | 0.15 |
Microbial Functions | |||||
MGB004: Kynurenine synthesis | 135 | 0.383 | 0.131 | 0.0033 | 0.14 |
Variable | N Samples | Beta * | Beta Se | p-Value | FDR |
---|---|---|---|---|---|
Genetics | |||||
OSA | 135 | −0.235 | 0.088 | 0.0075 | 0.12 |
AUD | 135 | −0.218 | 0.096 | 0.023 | 0.14 |
Height | 135 | 0.168 | 0.076 | 0.027 | 0.14 |
Microbial Taxa | |||||
Clostridium innocuum group | 52 | 0.183 | 0.060 | 0.0022 | 0.132 |
Oscillospiraceae UCG003 | 68 | 0.283 | 0.0991 | 0.0043 | 0.132 |
Anaerostipes | 132 | 0.202 | 0.0751 | 0.0071 | 0.132 |
Eubacterium ventriosum group | 98 | 0.196 | 0.0746 | 0.0086 | 0.132 |
Lactobacillus | 70 | −0.189 | 0.0751 | 0.011 | 0.132 |
Negativibacillus | 71 | 0.279 | 0.114 | 0.014 | 0.132 |
Prevotella | 52 | −0.116 | 0.0475 | 0.015 | 0.132 |
Oscillibacter | 125 | 0.178 | 0.0732 | 0.015 | 0.132 |
Actinomyces | 70 | −0.508 | 0.211 | 0.016 | 0.132 |
Microbial Functions | |||||
MGB053: Butyrate synthesis II | 135 | 0.849 | 0.260 | 0.0011 | 0.043 |
MGB015: p-Cresol synthesis | 135 | 0.972 | 0.341 | 0.0044 | 0.078 |
MGB026: Nitric oxide synthesis II (nitrite reductase) | 92 | −0.167 | 0.0607 | 0.0058 | 0.078 |
MGB027: Nitric oxide degradation I (NO dioxygenase) | 135 | −0.171 | 0.0666 | 0.0099 | 0.098 |
Variable | N Samples | Beta * | Beta Se | p-Value | FDR |
---|---|---|---|---|---|
Genetics | |||||
T2D | 154 | 0.125 | 0.050 | 0.013 | 0.15 |
T1D | 154 | −0.148 | 0.063 | 0.018 | 0.15 |
Microbial Taxa | |||||
Butyricimonas | 68 | 0.319 | 0.086 | 2.2 × 10−4 | 0.018 |
Roseburia | 144 | −0.143 | 0.043 | 7.5 × 10−4 | 0.0291 |
Microbial Functions | |||||
MGB026: Nitric oxide synthesis II (nitrite reductase) | 108 | −0.185 | 0.0418 | 9 × 10−6 | 3.8 × 10−4 |
Variable | N Samples | Beta * | Beta Se | p-Value | FDR |
---|---|---|---|---|---|
Genetics | |||||
AUD | 328 | 0.361 | 0.139 | 0.0096 | 0.13 |
MDD | 328 | 0.309 | 0.129 | 0.016 | 0.13 |
Variable | N Samples | Beta * | Beta Se | p-Value | FDR |
---|---|---|---|---|---|
Microbial Functions | |||||
MGB040: Menaquinone synthesis (vitamin K2) I | 328 | 0.863 | 0.298 | 0.0038 | 0.092 |
MGB038: Inositol degradation | 328 | −0.484 | 0.170 | 0.0044 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedroso, I.; Kumbhare, S.V.; Joshi, B.; Saravanan, S.K.; Mongad, D.S.; Singh-Rambiritch, S.; Uday, T.; Muthukumar, K.M.; Irudayanathan, C.; Reddy-Sinha, C.; et al. Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures. J. Pers. Med. 2022, 12, 1237. https://doi.org/10.3390/jpm12081237
Pedroso I, Kumbhare SV, Joshi B, Saravanan SK, Mongad DS, Singh-Rambiritch S, Uday T, Muthukumar KM, Irudayanathan C, Reddy-Sinha C, et al. Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures. Journal of Personalized Medicine. 2022; 12(8):1237. https://doi.org/10.3390/jpm12081237
Chicago/Turabian StylePedroso, Inti, Shreyas Vivek Kumbhare, Bharat Joshi, Santosh K. Saravanan, Dattatray Suresh Mongad, Simitha Singh-Rambiritch, Tejaswini Uday, Karthik Marimuthu Muthukumar, Carmel Irudayanathan, Chandana Reddy-Sinha, and et al. 2022. "Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures" Journal of Personalized Medicine 12, no. 8: 1237. https://doi.org/10.3390/jpm12081237
APA StylePedroso, I., Kumbhare, S. V., Joshi, B., Saravanan, S. K., Mongad, D. S., Singh-Rambiritch, S., Uday, T., Muthukumar, K. M., Irudayanathan, C., Reddy-Sinha, C., Dulai, P. S., Sinha, R., & Almonacid, D. E. (2022). Mental Health Symptom Reduction Using Digital Therapeutics Care Informed by Genomic SNPs and Gut Microbiome Signatures. Journal of Personalized Medicine, 12(8), 1237. https://doi.org/10.3390/jpm12081237