PPARG, TMEM163, UBE2E2, and WFS1 Gene Polymorphisms Are Not Significant Risk Factors for Gestational Diabetes in the Polish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
95% CI | 95% confidence interval |
BMI | Body mass index |
GDM | Gestational diabetes mellitus |
HWE | Hardy–Weinberg equilibrium |
IADPSG | International Association of Diabetes and Pregnancy Study Groups |
IQR | Interquartile range |
OGTT | Oral glucose tolerance test |
OR | Odds ratio |
PPARG | Peroxisome proliferator-activated receptors-γ |
T2DM | Type 2 diabetes |
TMEM163 | Transmembrane Protein 163 |
UBE2E2 | Ubiquitin Conjugating Enzyme E2 E2 |
WFS1 | Wolframin ER Transmembrane Glycoprotein |
References
- Kim, C. Gestational diabetes: Risks, management, and treatment options. Int. J. Womens Health 2010, 2, 339–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol. Metab. 2018, 29, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, L.A.; McCurdy, C.E.; Hernandez, T.L.; Kirwan, J.P.; Catalano, P.M.; Friedman, J.E. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 2007, 30 (Suppl. 2), S112–S119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, S.; Pheiffer, C.; Abrahams, Y.; Rheeder, P.; Adam, S. Molecular Biomarkers for Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haythorne, E.; Rohm, M.; van de Bunt, M.; Brereton, M.F.; Tarasov, A.I.; Blacker, T.S.; Sachse, G.; Silva Dos Santos, M.; Terron Exposito, R.; Davis, S.; et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat. Commun. 2019, 10, 2474. [Google Scholar] [CrossRef]
- Kawai, V.K.; Levinson, R.T.; Adefurin, A.; Kurnik, D.; Collier, S.P.; Conway, D.; Stein, C.M. A genetic risk score that includes common type 2 diabetes risk variants is associated with gestational diabetes. Clin. Endocrinol. 2017, 87, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Kanthimathi, S.; Chidambaram, M.; Bodhini, D.; Liju, S.; Bhavatharini, A.; Uma, R.; Anjana, R.M.; Mohan, V.; Radha, V. Association of recently identified type 2 diabetes gene variants with Gestational Diabetes in Asian Indian population. Mol. Genet. Genom. 2017, 292, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Magri, C.J.; Gatt, N.; Xuereb, R.G.; Fava, S. Peroxisome proliferator-activated receptor-γ and the endothelium: Implications in cardiovascular disease. Expert Rev. Cardiovasc. Ther. 2011, 9, 1279–1294. [Google Scholar] [CrossRef]
- Sarhangi, N.; Sharifi, F.; Hashemian, L.; Hassani Doabsari, M.; Heshmatzad, K.; Rahbaran, M.; Jamaldini, S.H.; Aghaei Meybodi, H.; Hasanzad, M. PPARG (Pro12Ala) genetic variant and risk of T2DM: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12764. [Google Scholar] [CrossRef] [PubMed]
- Gacka, M.; Bednarska-Chabowska, D.; Dobosz, T.; Szymaniec, S.; Jakobsche, U.; Lebioda, A.; Adamiec, R. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma and immunological processes in patients with type 2 diabetes and insulin resistance. Przegl. Lek. 2007, 64, 393–397. [Google Scholar]
- Motavallian, A.; Andalib, S.; Vaseghi, G.; Mirmohammad-Sadeghi, H.; Amini, M. Association between PRO12ALA polymorphism of the PPAR-γ2 gene and type 2 diabetes mellitus in Iranian patients. Indian J. Hum. Genet. 2013, 19, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Vellarikkal, S.K.; Sivasubbu, S.; Roy, S.S.; Tandon, N.; Bharadwaj, D. Role of Tmem163 in zinc-regulated insulin storage of MIN6 cells: Functional exploration of an Indian type 2 diabetes GWAS associated gene. Biochem. Biophs. Res. Commun. 2020, 522, 1022–1029. [Google Scholar] [CrossRef]
- Styrpejko, D.; Cuajungco, M.P. Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines 2021, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, E.V.; Wu, Y.; Zhou, Z.; Chen, M.; Wang, T.; Tong, H.; Zhuang, T.; Sun, L.; Qiao, H. Association between UBE2E2 variant rs7612463 and type 2 diabetes mellitus in a Chinese Han population. Acta Biochim. Pol. 2015, 62, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Jiang, L.; Zhang, M.; Zheng, X.; Gu, Y.; Wang, Z.; Cai, Y.; Dai, H.; Shi, Y.; Zheng, S.; et al. Type 2 Diabetes Risk Allele UBE2E2 Is Associated with Decreased Glucose-Stimulated Insulin Release in Elderly Chinese Han Individuals. Medicine 2016, 95, e3604. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Y.; Wu, W.; Zhang, D. Association of rs734312 and rs10010131 polymorphisms in WFS1 gene with type 2 diabetes mellitus: A meta-analysis. Endocr. J. 2013, 60, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, V.; Boehm, B.O.; Darvasi, A. Identification of a missense variant in the WFS1 gene that causes a mild form of Wolfram syndrome and is associated with risk for type 2 diabetes in Ashkenazi Jewish individuals. Diabetologia 2018, 61, 2180–2188. [Google Scholar] [CrossRef] [Green Version]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Mullican, S.E.; DiSpirito, J.R.; Peed, L.C.; Lazar, M.A. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPAR γ. Proc. Natl. Acad. Sci. USA 2013, 110, 18656–18661. [Google Scholar] [CrossRef] [Green Version]
- Park, K.W.; Halperin, D.S.; Tontonoz, P. Before they were fat: Adipocyte progenitors. Cell Metab. 2008, 8, 454–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, S.M.; Furtado, J.M.; Mascarenhas, P.; Ferraz, M.E.; Ferreira, J.C.; Monteiro, M.P.; Vilanova, M.; Ferraz, F.P. Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine 2018, 60, 466–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hevener, A.L.; Olefsky, J.M.; Reichart, D.; Nguyen, M.T.; Bandyopadyhay, G.; Leung, H.Y.; Watt, M.J.; Benner, C.; Febbraio, M.A.; Nguyen, A.K.; et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Investig. 2007, 117, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, K.; Klöting, N.; Gericke, M.; Maixner, N.; Guiu-Jurado, E.; Scholz, M.; Witte, A.V.; Beyer, F.; Schwartze, J.T.; Lacher, M.; et al. The Obesity-Susceptibility Gene TMEM18 Promotes Adipogenesis through Activation of PPARG. Cell Rep. 2020, 33, 108295. [Google Scholar] [CrossRef]
- Lendvai, Á.; Deutsch, M.J.; Plösch, T.; Ensenauer, R. The peroxisome proliferator- activated receptors under epigenetic control in placental metabolism and fetal development. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E797–E810. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, M.; Mac-Marcjanek, K.; Nadel, I.; Woźniak, L.; Cypryk, K. Gestational diabetes mellitus is associated with increased leukocyte peroxisome proliferator-activated receptor γ expression. Arch. Med. Sci. 2015, 11, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cui, L.; Tam, W.H.; Ma, R.C.; Wang, C.C. Genetic variants associated with gestational diabetes mellitus: A meta-analysis and subgroup analysis. Sci. Rep. 2016, 6, 30539. [Google Scholar] [CrossRef]
- Anghebem-Oliveira, M.I.; Martins, B.R.; Alberton, D.; Ramos, E.A.S.; Picheth, G.; Rego, F.G.M. Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch. Endocrinol. Metab. 2017, 61, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, X.; Huang, Z.; Qian, J. Quantitative assessment of the influence of PPARG P12A polymorphism on gestational diabetes mellitus risk. Mol. Biol. Rep. 2013, 40, 811–817. [Google Scholar] [CrossRef]
- Mao, H.; Li, Q.; Gao, S. Meta-analysis of the relationship between common type 2 diabetes risk gene variants with gestational diabetes mellitus. PLoS ONE 2012, 7, e45882. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, R.; Chauhan, G.; Dwivedi, O.P.; Mahajan, A.; Jaiswal, A.; Kaur, I.; Bandesh, K.; Singh, T.; Mathai, B.J.; Pandey, Y.; et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 2013, 62, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Sharma, I.; Sethi, I.; Mahajan, A.; Singh, G.; Angural, A.; Bhanwer, A.J.S.; Dhar, M.K.; Singh, V.; Rai, E.; et al. Replication of newly identified type 2 diabetes susceptible loci in Northwest Indian population. Diabetes Res. Clin. Pract. 2017, 126, 160–163. [Google Scholar] [CrossRef]
- Bai, H.; Liu, H.; Suyalatu, S.; Guo, X.; Chu, S.; Chen, Y.; Lan, T.; Borjigin, B.; Orlov, Y.L.; Posukh, O.L.; et al. Association Analysis of Genetic Variants with Type 2 Diabetes in a Mongolian Population in China. J. Diabetes Res. 2015, 2015, 613236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.X.; Hu, S.M.; You, Y.P.; Yang, G.L.; Wang, W. Replication of previous genome-wide association studies of HKDC1, BACE2, SLC16A11 and TMEM163 SNPs in a gestational diabetes mellitus case-control sample from Han Chinese population. Diabetes Metab. Syndr. Obes. 2019, 12, 983–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; He, H.; Zhang, L.; Zhu, W.; Shen, H.; Yan, Y.J.; Deng, H.W. GWAS-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J. Hum. Genet. 2021, 66, 297–306. [Google Scholar] [CrossRef]
- Alharbi, K.K.; Khan, I.A.; Al-Sheikh, Y.A.; Alharbi, F.K.; Alharbi, F.K.; Al-Nbaheen, M.S. Lack of association between UBE2E2 gene polymorphism (rs7612463) and type 2 diabetes mellitus in a Saudi population. Acta Biochim. Pol. 2014, 61, 769–772. [Google Scholar] [CrossRef] [Green Version]
- Plengvidhya, N.; Chanprasert, C.; Chongjaroen, N.; Yenchitsomanus, P.T.; Homsanit, M.; Tangjittipokin, W. Impact of KCNQ1, CDKN2A/2B, CDKAL1, HHEX, MTNR1B, SLC30A8, TCF7L2, and UBE2E2 on risk of developing type 2 diabetes in Thai population. BMC Med. Genet. 2018, 19, 93. [Google Scholar] [CrossRef]
- Goto, A.; Noda, M.; Goto, M.; Yasuda, K.; Mizoue, T.; Yamaji, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Tsugane, S.; et al. Predictive performance of a genetic risk score using 11 susceptibility alleles for the incidence of Type 2 diabetes in a general Japanese population: A nested case-control study. Diabet. Med. 2018, 35, 602–611. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cheong, H.S.; Park, B.L.; Baik, S.H.; Park, S.; Kim, S.; Shin, H.D.; Kim, S.H. Putative association between UBE2E2 polymorphisms and the risk of gestational diabetes mellitus. Gynecol. Endocrinol. 2013, 29, 904–908. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, C. Differential promoter activity by nucleotide substitution at a type 2 diabetes genome-wide association study signal upstream of the wolframin gene. J. Diabetes 2016, 8, 253–259. [Google Scholar] [CrossRef]
- Fawcett, K.A.; Wheeler, E.; Morris, A.P.; Ricketts, S.L.; Hallmans, G.; Rolandsson, O.; Daly, A.; Wasson, J.; Permutt, A.; Hattersley, A.T.; et al. Detailed investigation of the role of common and low- frequency WFS1 variants in type 2 diabetes risk. Diabetes 2010, 59, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Weedon, M.N.; Fawcett, K.A.; Wasson, J.; Debenham, S.L.; Daly, A.; Lango, H.; Frayling, T.M.; Neumann, R.J.; Sherva, R.; et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 2007, 39, 951–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuman, R.J.; Wasson, J.; Atzmon, G.; Wainstein, J.; Yerushalmi, Y.; Cohen, J.; Barzilai, N.; Blech, I.; Glaser, B.; Permutt, M.A. Gene-gene interactions lead to higher risk for development of type 2 diabetes in an Ashkenazi Jewish population. PLoS ONE. 2010, 5, e9903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheurfa, N.; Brenner, G.M.; Reis, A.F.; Dubois-Laforgue, D.; Roussel, R.; Tichet, J.; Lantieri, O.; Balkau, B.; Fumeron, F.; Timsit, J.; et al. Decreased insulin secretion and increased risk of type 2 diabetes associated with allelic variations of the WFS1 gene: The Data from Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study. Diabetologia 2011, 54, 554–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavali, S.; Mahajan, A.; Tabassum, R.; Dwivedi, O.P.; Chauhan, G.; Ghosh, S.; Tandon, N.; Bharadwaj, D. Association of variants in genes involved in pancreatic β-cell development and function with type 2 diabetes in North Indians. J. Hum. Genet. 2011, 56, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franks, P.W.; Rolandsson, O.; Debenham, S.L.; Fawcett, K.A.; Payne, F.; Dina, C.; Froguel, P.; Mohlke, K.L.; Willer, C.; Olsson, T.; et al. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 2008, 51, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Edwards, T.; Signorello, L.B.; Cai, Q.; Zheng, W.; Shu, X.O.; Blot, W.J. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans. Am. J. Epidemiol. 2012, 176, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Lauenborg, J.; Grarup, N.; Damm, P.; Borch-Johnsen, K.; Jørgensen, T.; Pedersen, O.; Hansen, T. Common type 2 diabetes risk gene variants associate with gestational diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 145–150. [Google Scholar] [CrossRef] [Green Version]
Control Group | GDM | p Value^ | OR (95% CI) | p Value ^ | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | |||||
PPARG rs17036160 genotype | ||||||||
CC | 159 | 76.81% | 156 | 76.47% | 0.94 | TT + CT vs. CC | 1.02 (0.65–1.61) | 0.93 |
CT | 43 | 20.77% | 44 | 21.57% | TT vs. CT + CC | 0.81 (0.21–3.05) | 0.75 | |
TT | 5 | 2.42% | 4 | 1.96% | TT vs. CC | 0.82 (0.21–3.09) | 0.76 | |
CT vs. CC | 1.04 (0.65–1.68) | 0.86 | ||||||
TT vs. CT | 0.78 (0.20–3.11) | 0.73 | ||||||
Allele | ||||||||
C | 361 | 87.20% | 356 | 87.25% | T vs. C | 0.99 (0.66–1.50) | 0.98 | |
T | 53 | 12.80% | 52 | 12.75% | ||||
TMEM163 rs6723108 genotype | ||||||||
TT | 92 | 44.44% | 98 | 48.04% | 0.76 | GG + GT vs. TT | 0.87 (0.59–1.28) | 0.46 |
GT | 93 | 44.93% | 86 | 42.16% | GG vs. GT + TT | 0.91 (0.48–1.73) | 0.78 | |
GG | 22 | 10.63% | 20 | 9.80% | GG vs. TT | 0.85 (0.44–1.67) | 0.64 | |
GT vs. TT | 0.87 (0.58–1.31) | 0.50 | ||||||
GG vs. GT | 0.98 (0.50–1.93) | 0.96 | ||||||
Allele | ||||||||
T | 277 | 66.91% | 282 | 69.12% | G vs. T | 0.90 (0.67–1.21) | 0.50 | |
G | 137 | 33.09% | 126 | 30.88% | ||||
TMEM163 rs998451 genotype | ||||||||
GG | 94 | 45.41% | 103 | 50.49% | 0.59 | AA + GA vs. GG | 0.82 (0.55–1.20) | 0.30 |
GA | 91 | 43.96% | 81 | 39.71% | AA vs. GA + GG | 0.91 (0.48–1.73) | 0.78 | |
AA | 22 | 10.63% | 20 | 9.80% | AA vs. GG | 0.83 (0.43–1.62) | 0.58 | |
GA vs. GG | 0.81 (0.54–1.22) | 0.32 | ||||||
AA vs. GA | 1.02 (0.52–2.01) | 0.95 | ||||||
Allele | ||||||||
G | 279 | 67.39% | 287 | 70.34% | A vs. G | 0.87 (0.65–1.17) | 0.36 | |
A | 135 | 32.61% | 121 | 29.66% | ||||
UBE2E2 rs6780569 genotype | ||||||||
GG | 180 | 86.96% | 176 | 86.27% | 0.89 | AA + GA vs. GG | 1.06 (0.60–1.87) | 0.84 |
GA | 25 | 12.08% | 25 | 12.25% | AA vs. GA + GG | 1.53 (0.25–9.25) | 0.64 | |
AA | 2 | 0.97% | 3 | 1.47% | AA vs. GG | 1.53 (0.25–9.29) | 0.64 | |
GA vs. GG | 1.02 (0.57–1.85) | 0.94 | ||||||
AA vs. GA | 1.50 (0.23–9.76) | 0.67 | ||||||
Allele | ||||||||
G | 385 | 93.00% | 377 | 92.40% | A vs. G | 1.09 (0.65–1.85) | 0.74 | |
A | 29 | 7.00% | 31 | 7.60% | ||||
WFS1 rs4689388genotype | ||||||||
AA | 52 | 25.12% | 64 | 31.37% | 0.24 | GG + GA vs. AA | 0.73 (0.48–1.13) | 0.16 |
GA | 114 | 55.07% | 96 | 47.06% | GG vs. GA + AA | 1.11 (0.69–1.80) | 0.66 | |
GG | 41 | 19.81% | 44 | 21.57% | GG vs. AA | 0.87 (0.50–1.53) | 0.63 | |
GA vs. AA | 0.68 (0.69–1.20) | 0.10 | ||||||
GG vs. GA | 1.27 (0.43–1.08) | 0.35 | ||||||
Allele | ||||||||
A | 218 | 52.66% | 224 | 54.90% | G vs. A | 0.91 (0.77–2.11) | 0.52 | |
G | 196 | 47.34% | 184 | 45.10% |
Parameters | PPARG rs17036160 Genotype | |||||
---|---|---|---|---|---|---|
CC n = 154 | CT n = 44 | TT n = 4 | CC vs. CT | CC vs. TT | CT vs. TT | |
Median (IQR) | Median (IQR) | Median (IQR) | p& | |||
Fasting glucose [mg/dl] | 98.3 (93.0–105.0) | 99.0 (94.0–105.0) | 97.5 (91.5–98.5) | 0.97 | 0.34 | 0.32 |
Daily insulin requirement [unit] | 0.0 (0.0–6.5) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.10 | 0.21 | 0.39 |
Body mass before pregnancy [kg] | 65.0 (56.5–76.0) | 65.0 (58.5–73.5) | 55.5 (53.0–58.5) | 0.85 | 0.05 | 0.044 |
Body mass at birth [kg] | 77.0 (67.0–90.0) | 76.0 (68.0–84.0) | 65.5 (61.5–67.0) | 0.93 | 0.024 | 0.012 |
Body mass increase during pregnancy [kg] | 11.0 (7.0–14.0) | 11.0 (8.0–13.5) | 7.0 (7.0–10.0) | 0.93 | 0.30 | 0.20 |
BMI before pregnancy [kg/m2] | 24.2 (21.0–28.5) | 22.8 (21.4–26.3) | 20.3 (18.8–21.6) | 0.26 | 0.021 | 0.032 |
BMI at birth [kg/m2] | 28.4 (25.2–33.0) | 26.7 (25.-30.1) | 23.9 (22.0–24.6) | 0.21 | 0.010 | 0.011 |
BMI increase during pregnancy [kg/m2] | 3.8 (2.7–5.2) | 3.6 (2.8–5.0) | 2.6 (2.5–3.7) | 0.76 | 0.25 | 0.16 |
Newborn body mass [g] | 3365 (2985–3685) | 3205 (2750–3553) | 3305 (3205–3425) | 0.17 | 0.88 | 0.63 |
APGAR [0–10] | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.95 | 0.46 | 0.48 |
Parameters | TMEM163 rs6723108 Genotype | |||||
---|---|---|---|---|---|---|
TT n = 98 | GT n = 86 | GG n = 20 | TT vs. GT | TT vs. GG | GT vs. GG | |
Median (IQR) | Median (IQR) | Median (IQR) | p& | |||
Fasting glucose [mg/dl] | 98.0 (94.0–105.0) | 98.5 (92.0–105.0) | 102.5 (96.0–106.5) | 0.86 | 0.27 | 0.25 |
Daily insulin requirement [unit] | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–15.0) | 0.92 | 0.079 | 0.093 |
Body mass before pregnancy [kg] | 65.0 (56.0–76.0) | 64.0 (57.0–73.0) | 68.5 (59.0–90.0) | 0.85 | 0.17 | 0.17 |
Body mass at birth [kg] | 76.0 (67.0–90.0) | 75.0 (68.0–87.0) | 80.0 (70.0–97.5) | 0.85 | 0.15 | 0.17 |
Body mass increase during pregnancy [kg] | 11.0 (7.0–14.0) | 11.0 (8.0–14.0) | 9.5 (7.0–14.0) | 0.93 | 0.47 | 0.48 |
BMI before pregnancy [kg/m2] | 23.7 (20.7–28.3) | 23.1 (21.1–26.4) | 24.6 (21.4–31.0) | 0.61 | 0.29 | 0.22 |
BMI at birth [kg/m2] | 28.1 (25.0–32.6) | 27.6 (25.0–31.1) | 28.2 (25.4–35.6) | 0.58 | 0.32 | 0.22 |
BMI increase during pregnancy [kg/m2] | 3.9 (2.7–5.3) | 3.7 (2.7–5.1) | 3.4 (2.5–4.9) | 0.71 | 0.38 | 0.42 |
Newborn body mass [g] | 3280 (2900–3600) | 3345 (2970–3700) | 3408 (3165–3683) | 0.58 | 0.32 | 0.62 |
APGAR [0–10] | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.87 | 0.086 | 0.093 |
Parameters | TMEM163 rs998451 Genotype | |||||
---|---|---|---|---|---|---|
GG n = 103 | GA n = 81 | AA n = 20 | GG vs. GA | GG vs. AA | GA vs. AA | |
Median (IQR) | Median (IQR) | Median (IQR) | p& | |||
Fasting glucose [mg/dl] | 98.5 (94.0–106.0) | 98.0 (92.0–104.0) | 102.5 (96.0–106.5) | 0.39 | 0.37 | 0.17 |
Daily insulin requirement [unit] | 0.0 (0.0–4.0) | 0.0 (0.0–0.0) | 0.0 (0.0–15.0) | 0.60 | 0.11 | 0.060 |
Body mass before pregnancy [kg] | 65.0 (56.0–76.0) | 64.0 (57.0–72.0) | 68.5 (59.0–90.0) | 0.91 | 0.17 | 0.17 |
Body mass at birth [kg] | 76.0 (67.0–90.0) | 75.0 (67.0–85.0) | 80.0 (70.0–97.5) | 0.99 | 0.16 | 0.16 |
Body mass increase during pregnancy [kg] | 11.0 (7.0–14.0) | 11.0 (8.0–13.0) | 9.5 (7.0–14.0) | 0.97 | 0.48 | 0.47 |
BMI before pregnancy [kg/m2] | 23.7 (20.7–28.3) | 23.2 (21.1–26.2) | 24.6 (21.4–31.0) | 0.57 | 0.29 | 0.22 |
BMI at birth [kg/m2] | 28.3 (25.0–32.6) | 27.6 (25.0–30.8) | 28.2 (25.4–35.6) | 0.47 | 0.34 | 0.20 |
BMI increase during pregnancy [kg/m2] | 3.8 (2.7–5.3) | 3.8 (2.8–5.0) | 3.4 (2.5–4.9) | 0.77 | 0.40 | 0.40 |
Newborn body mass [g] | 3290 (2900–3600) | 3340 (2970–3680) | 3408 (3165–3683) | 0.68 | 0.34 | 0.60 |
APGAR [0–10] | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.78 | 0.082 | 0.10 |
Parameters | UBE2E2 rs6780569 Genotype | |||||
---|---|---|---|---|---|---|
GG n = 176 | GA n = 25 | AA n = 3 | GG vs. GA | GG vs. AA | GA vs. AA | |
Median (IQR) | Median (IQR) | Median | p& | |||
Fasting glucose [mg/dl] | 99.0 (94.0–105.0) | 97.0 (93.0–103.0) | 94.0 | 0.55 | 0.91 | 0.91 |
Daily insulin requirement [unit] | 0.0 (0.0–4.0) | 0.0 (0.0–0.0) | 0.0 | 0.22 | 0.98 | 0.62 |
Body mass before pregnancy [kg] | 65.0 (56.5–76.0) | 67.0 (59.0–70.0) | 62.0 | 0.65 | 0.44 | 0.28 |
Body mass at birth [kg] | 76.0 (67.0–89.0) | 76.0 (67.0–89.0) | 70.0 | 0.68 | 0.21 | 0.13 |
Body mass increase during pregnancy [kg] | 10.5 (7.0–14.0) | 12.0 (8.0–14.0) | 7.0 | 0.44 | 0.17 | 0.12 |
BMI before pregnancy [kg/m2] | 23.5 (20.9–27.9) | 24.7 (21.0–28.4) | 22.7 | 0.59 | 0.65 | 0.53 |
BMI at birth [kg/m2] | 27.7 (25.0–31.8) | 29.1 (25.4–33.6) | 25.2 | 0.63 | 0.29 | 0.22 |
BMI increase during pregnancy [kg/m2] | 3.7 (2.7–5.2) | 4.2 (2.7–5.3) | 3.1 | 0.50 | 0.21 | 0.17 |
Newborn body mass [g] | 3333 (2910–3690) | 3360 (3180–3530) | 3100 | 0.72 | 0.45 | 0.19 |
APGAR [0–10] | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 | 0.17 | 0.50 | 0.73 |
Parameters | WFS1 rs4689388 Genotype | |||||
---|---|---|---|---|---|---|
AA n = 64 | GA n = 96 | GG n = 44 | AA vs. GA | AA vs. GG | GA vs. GG | |
Median (IQR) | Median (IQR) | Median (IQR) | p& | |||
Fasting glucose [mg/dl] | 97.0 (92.5–104.5) | 99.0 (96.0–105.5) | 99.0 (93.0–105.5) | 0.20 | 0.49 | 0.74 |
Daily insulin requirement [unit] | 0.0 (0.0–0.0) | 0.0 (0.0–7.5) | 0.0 (0.0–0.0) | 0.36 | 0.88 | 0.42 |
Body mass before pregnancy [kg] | 65.5 (57.0–72.0) | 64.5 (56.0–77.5) | 65.5 (58.0–76.0) | 0.70 | 0.67 | 0.92 |
Body mass at birth [kg] | 78.5 (68.0–87.5) | 75.5 (67.0–89.5) | 75.5 (68.0–88.5) | 0.73 | 0.98 | 0.75 |
Body mass increase during pregnancy [kg] | 11.0 (8.0–14.0) | 10.0 (7.0–13.0) | 10.0 (7.0–14.5) | 0.14 | 0.42 | 0.78 |
BMI before pregnancy [kg/m2] | 23.8 (21.3–26.8) | 23.1 (20.6–28.4) | 24.7 (22.1–28.3) | 0.76 | 0.31 | 0.26 |
BMI at birth [kg/m2] | 27.8 (25.4–32.1) | 26.8 (24.7–32.7) | 29.3 (25.7–31.0) | 0.28 | 0.61 | 0.17 |
BMI increase during pregnancy [kg/m2] | 4.1 (3.0–5.4) | 3.6 (2.6–4.7) | 3.7 (2.5–5.3) | 0.090 | 0.53 | 0.51 |
Newborn body mass [g] | 3225 (2768–3665) | 3375 (3058–3665) | 3368 (2960–3625) | 0.20 | 0.36 | 0.86 |
APGAR [0–10] | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 10.0 (10.0–10.0) | 0.45 | 0.17 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ustianowski, P.; Malinowski, D.; Safranow, K.; Dziedziejko, V.; Tarnowski, M.; Pawlik, A. PPARG, TMEM163, UBE2E2, and WFS1 Gene Polymorphisms Are Not Significant Risk Factors for Gestational Diabetes in the Polish Population. J. Pers. Med. 2022, 12, 243. https://doi.org/10.3390/jpm12020243
Ustianowski P, Malinowski D, Safranow K, Dziedziejko V, Tarnowski M, Pawlik A. PPARG, TMEM163, UBE2E2, and WFS1 Gene Polymorphisms Are Not Significant Risk Factors for Gestational Diabetes in the Polish Population. Journal of Personalized Medicine. 2022; 12(2):243. https://doi.org/10.3390/jpm12020243
Chicago/Turabian StyleUstianowski, Przemysław, Damian Malinowski, Krzysztof Safranow, Violetta Dziedziejko, Maciej Tarnowski, and Andrzej Pawlik. 2022. "PPARG, TMEM163, UBE2E2, and WFS1 Gene Polymorphisms Are Not Significant Risk Factors for Gestational Diabetes in the Polish Population" Journal of Personalized Medicine 12, no. 2: 243. https://doi.org/10.3390/jpm12020243