Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review
Abstract
:1. Introduction
2. Developmental Programming of Diseases and Relative Mechanisms
3. Cardiovascular, Renal and Metabolic Disease
4. Respiratory Disease
5. Neuropsychiatric Conditions
6. Potential Preventive Measures, Interventions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Barker, D.J.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 1, 1077–1081. [Google Scholar] [CrossRef]
- Codagnone, M.G.; Spichak, S.; O’Mahony, S.M.; O’Leary, O.F.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biol. Psychiatry 2019, 85, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Siddeekm, B.; Mauduit, C.; Simeoni, U.; Benahmed, M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat. Res.-Rev. Mutat. Res. 2018, 778, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Chehade, H.; Simeoni, U.; Guignard, J.P.; Boubred, F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr. Pediatric Rev. 2018, 14, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Trotter, A.; Maier, L.; Grill, H.S.; Kohn, T.; Heckmann, M.; Pohlandt, F. Effects of Postnatal Estradiol and Progesterone Replacement in Extremely Preterm Infants. J. Clin. Endocrinol. Metab. 1999, 84, 4531–4535. [Google Scholar] [CrossRef]
- Trotter, A.; Bokelmann, B.; Sorgo, W.; Bechinger-Kornhuber, D.; Heinemann, H.; Schmucker, G.; Oesterle, M.; Kontop, B.; Brisch, K.H.; Pohlandt, F. Follow-Up Examination at the Age of 15 Months of Extremely Preterm Infants after Postnatal Estradiol and Progesterone Replacement. J. Clin. Endocrinol. Metab. 2001, 86, 601–603. [Google Scholar] [CrossRef]
- Malhotra, A.; Allison, B.J.; Castillo-Melendez, M.; Jenkin, G.; Polglase, G.R.; Miller, S.L. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front. Endocrinol. 2019, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iñiguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef]
- Zhang, S.; Regnault, T.R.; Barker, P.L.; Botting, K.J.; McMillen, I.C.; McMillan, C.M.; Roberts, C.T.; Morrison, J.L. Placental Adaptations in Growth Restriction. Nutrients 2015, 7, 360–389. [Google Scholar] [CrossRef] [Green Version]
- Nobile, S.; Marchionni, P.; Carnielli, V.P. Neonatal outcome of small for gestational age preterm infants. Eur. J. Nucl. Med. Mol. Imaging 2017, 176, 1083–1088. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; Lu, D.; Hammarström, L.; Cnattingius, S.; Fang, F. Small for gestational age and risk of childhood mortality: A Swedish population study. PLoS Med. 2018, 15, e1002717. [Google Scholar] [CrossRef] [Green Version]
- Lio, A.; Rosati, P.; Pastorino, R.; Cota, F.; Tana, M.; Tirone, C.; Aurilia, C.; Ricci, C.; Gambacorta, A.; Paladini, A.; et al. Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: An observational study. BMJ Open 2017, 7, e015232. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacos, E. An integrated approach to fetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 38, 48–58. [Google Scholar] [CrossRef]
- Loussert, L.; Vidal, F.; Parant, O.; Hamdi, S.M.; Vayssiere, C.; Guerby, P. Aspirin for prevention of preeclampsia and fetal growth restriction. Prenat. Diagn. 2020, 40, 519–527. [Google Scholar] [CrossRef]
- Indrio, F.; Martini, S.; Francavilla, R.; Corvaglia, L.; Cristofori, F.; Mastrolia, S.A.; Neu, J.; Rautava, S.; Spena, G.R.; Raimondi, F.; et al. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front. Pediatr. 2017, 5, 178. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Lin, H.-Y.; Wang, C.-H.; Su, B.-H.; Lin, C.-C. Association of preterm birth and small for gestational age with metabolic outcomes in children and adolescents: A population-based cohort study from Taiwan. Pediatr. Neonatol. 2018, 59, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Leunissen, R.W.; Kerkhof, G.F.; Stijnen, T.; Hokken-Koelega, A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA 2009, 301, 2234–2242. [Google Scholar] [CrossRef] [Green Version]
- Vaiserman, A.M. Early-life nutritional programming of longevity. J. Dev. Orig. Health Dis. 2014, 5, 325–338. [Google Scholar] [CrossRef]
- Li, C.; Cao, M.; Zhou, X. Role of epigenetics in parturition and preterm birth. Biol. Rev. 2021. [Google Scholar] [CrossRef]
- Preston, J.D.; Reynolds, L.J.; Pearson, K.J. Developmental Origins of Health Span and Life Span: A Mini-Review. Gerontology 2018, 64, 237–245. [Google Scholar] [CrossRef]
- O’Donnell, K.J.; Meaney, M.J. Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. Am. J. Psychiatry 2017, 174, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, S.; Fang, J.; Liu, Z.; Shang, X.; Guo, X.; Deng, F.; Guo, L. Association of exposure to fine particulate matter wave over the preconception and pregnancy periods with adverse birth outcomes: Results from the project ELEFANT. Environ. Res. 2021, 205, 112473. [Google Scholar] [CrossRef]
- Tauzin, L.; Rossi, P.; Grosse, C.; Boussuges, A.; Frances, Y.; Tsimaratos, M.; Simeoni, U. Increased systemic blood pressure and arterial stiffness in young adults born prematurely. J. Dev. Orig. Health Dis. 2014, 5, 448–452. [Google Scholar] [CrossRef]
- Carr, H.; Cnattingius, S.; Granath, F.; Ludvigsson, J.F.; Bonamy, A.-K.E. Preterm Birth and Risk of Heart Failure up to Early Adulthood. J. Am. Coll. Cardiol. 2017, 69, 2634–2642. [Google Scholar] [CrossRef]
- Chatmethakul, T.; Roghair, R.D. Risk of hypertension following perinatal adversity: IUGR and prematurity. J. Endocrinol. 2019, 242, T21–T32. [Google Scholar] [CrossRef] [Green Version]
- Brenner, B.M.; Chertow, G.M. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am. J. Kidney Dis. 1994, 23, 171–175. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Raman, B.; Bertagnolli, M.; Mohamed, A.; Williamson, W.; Pelado, J.L.; McCance, A.; Lapidaire, W.; Neubauer, S.; Leeson, P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J. Am. Coll. Cardiol. 2021, 78, 683–692. [Google Scholar] [CrossRef]
- Leeson, C.P.; Whincup, P.H.; Cook, D.G.; Donald, A.E.; Papacosta, O.; Lucas, A.; Deanfield, J.E. Flow-mediated dilation in 9- to 11-year-old children: The influence of intrauterine and childhood factors. Circulation 1997, 96, 2233–2238. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.; Gazelius, B.; Norman, M. Impaired acetylcholine-induced vascular relaxation in low birth weight infants: Implications for adult hypertension? Pediatric Res. 2000, 47, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martyn, C.N.; Greenwald, S.E. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 1997, 350, 953–955. [Google Scholar] [CrossRef]
- Bassareo, P.P.; Saba, L.; Puddu, M.; Fanos, V.; Mercuro, G. Impaired central arterial elasticity in young adults born with intrauterine growth restriction. Int. Angiol. 2017, 36, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Dodson, R.B.; Rozance, P.J.; Fleenor, B.S.; Petrash, C.C.; Shoemaker, L.G.; Hunter, K.S.; Ferguson, V.L. Increased arterial stiffness and extracellular matrix reorganization in intrauterine growth–restricted fetal sheep. Pediatr. Res. 2013, 73, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhardt, T.; Matter, C.M.; Lohmann, C.; Cai, H.; Lüscher, T.F.; Zisch, A.H.; Beinder, E. Decreased umbilical artery compliance and igf-I plasma levels in infants with intrauterine growth restriction—Implications for fetal programming of hypertension. Placenta 2009, 30, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Bassareo, P.P.; Fanos, V.; Puddu, M.; Demuru, P.; Cadeddu, F.; Balzarini, M.; Mercuro, G. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: A condition predictive of increased cardiovascular risk? J. Matern. Fetal. Neonatal. Med. 2010, 23 (Suppl. 3), 121–124. [Google Scholar] [CrossRef]
- Johansson, S.; Iliadou, A.; Bergvall, N.; Tuvemo, T.; Norman, M.; Cnattingius, S. Risk of High Blood Pressure among Young Men Increases with the Degree of Immaturity at Birth. Circulation 2005, 112, 3430–3436. [Google Scholar] [CrossRef] [Green Version]
- Duncan, A.F.; Heyne, R.J.; Morgan, J.S.; Ahmad, N.; Rosenfeld, C.R. Elevated systolic blood pressure in preterm very-low-birth-weight infants ≤3 years of life. Pediatr. Nephrol. 2011, 26, 1115–1121. [Google Scholar] [CrossRef]
- Pyhälä, R.; Räikkönen, K.; Feldt, K.; Andersson, S.; Hovi, P.; Eriksson, J.G.; Järvenpää, A.-L.; Kajantie, E. Blood pressure responses to psychosocial stress in young adults with very low birth weight: Helsinki study of very low birth weight adults. Pediatrics 2009, 123, 731–734. [Google Scholar] [CrossRef]
- Bagby, S.P. Maternal Nutrition, Low Nephron Number, and Hypertension in Later Life: Pathways of Nutritional Programming. J. Nutr. 2007, 137, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J.P.; Forsén, T.; Eriksson, J.G.; Osmond, C. Growth and living conditions in childhood and hypertension in adult life: A longitudinal study. J. Hypertens. 2002, 20, 1951–1956. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; McCarthy, A.; Hughes, R.; Tilling, K.; Davies, D.; Smith, G.D. Immediate postnatal growth is associated with blood pressure in young adulthood: The Barry Caerphilly Growth Study. Hypertension 2008, 52, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Osmond, C.; Winter, P.; Margetts, B.; Simmonds, S. Weight in infancy and death from ischaemic heart disease. Lancet 1989, 334, 577–580. [Google Scholar] [CrossRef]
- Eriksson, J.G.; Forsén, T.J.; Kajantie, E.; Osmond, C.; Barker, D.J. Childhood Growth and Hypertension in Later Life. Hypertension 2007, 49, 1415–1421. [Google Scholar] [CrossRef] [Green Version]
- Horta, B.L.; Loret de Mola, C.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and metaanalysis. Acta Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef]
- Lindberg, J.; Norman, M.; Westrup, B.; Domellöf, M.; Berglund, S.K. Lower systolic blood pressure at age 7 y in low-birth-weight children who received iron supplements in infancy: Results from a randomized controlled trial. Am. J. Clin. Nutr. 2017, 106, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Irving, R.J.; Belton, N.R.; A Elton, R.; Walker, B.R. Adult cardiovascular risk factors in premature babies. Lancet 2000, 355, 2135–2136. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Chomtho, S.; Fewtrell, M.S. Programming of body composition by early growth and nutrition. Proc. Nutr. Soc. 2007, 66, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm birth and risk of type 1 and type 2 diabetes: A national cohort study. Diabetologia 2020, 63, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Gregg, B.E.; Moore, P.C.; Demozay, D.; Hall, B.A.; Li, M.; Husain, A.; Wright, A.J.; Atkinson, M.A.; Rhodes, C.J. Formation of a human beta-cell population within pancreatic islets is set early in life. J. Clin. Endocrinol. Metab. 2012, 97, 3197–3206. [Google Scholar] [CrossRef]
- Bloomfield, F.H. Impact of prematurity for pancreatic islet and beta-cell development. J. Endocrinol. 2018, 238, R161–R171. [Google Scholar] [CrossRef]
- Kajantie, E.; Strang-Karlsson, S.; Hovi, P.; Wehkalampi, K.; Lahti, J.; Kaseva, N.; Järvenpää, A.-L.; Räikkönen, K.; Andersson, S.; Eriksson, J.G. Insulin Sensitivity and Secretory Response in Adults Born Preterm: The Helsinki Study of Very Low Birth Weight Adults. J. Clin. Endocrinol. Metab. 2015, 100, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofman, P.L.; Regan, F.; Jackson, W.; Jefferies, C.; Knight, D.B.; Robinson, E.M.; Cutfield, W.S. Premature Birth and Later Insulin Resistance. N. Engl. J. Med. 2004, 351, 2179–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathai, S.; Cutfield, W.S.; Derraik, J.G.B.; Dalziel, S.R.; Harding, J.E.; Robinson, E.; Biggs, J.; Jefferies, C.; Hofman, P.L. Insulin Sensitivity and b-Cell Function in Adults Born Preterm and Their Children. Diabetes 2012, 61, 2479–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, J.G.; Forsen, T.; Tuomilehto, J.; Osmond, C.; Barker, D.J. Early growth, adult income, and risk of stroke. Stroke 2000, 31, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Rich-Edwards, J.W.; Kleinman, K.; Michels, K.B.; Stampfer, M.J.; E Manson, J.; Rexrode, K.; Hibert, E.N.; Willett, W.C. Longitudinal study of birth weight and adult body mass index in predicting risk of coronary heart disease and stroke in women. BMJ 2005, 330, 1115. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Sundquist, J.; Sundquist, K. Stroke Risks in Adult Survivors of Preterm Birth: National Cohort and Cosibling Study. Stroke 2021, 52, 2609–2617. [Google Scholar] [CrossRef]
- Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2020, 395, 785–794. [Google Scholar] [CrossRef]
- Hughson, M.; Farris, A.B., III; Douglas-Denton, R.; Hoy, W.E.; Bertram, J.F. Glomerular number and size in autopsy kidneys: The relationship to birth weight. Kidney Int. 2003, 63, 2113–2122. [Google Scholar] [CrossRef] [Green Version]
- Luyckx, V.A.; Chevalier, R.L. Impact of early life development on later onset chronic kidney disease and hypertension and the role of evolutionary tradeoffs. Exp. Physiol. 2021, 1–5. [Google Scholar] [CrossRef]
- Brenner, B.M.; Garcia, D.L.; Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1988, 1, 335–347. [Google Scholar] [CrossRef]
- Bongartz, L.G.; Cramer, M.J.; Doevendans, P.A.; Joles, J.A.; Braam, B. The severe cardiorenal syndrome: Guyton revisited. Eur. Heart J. 2005, 26, 11–17. [Google Scholar] [CrossRef]
- Lelievre-Pegorier, M.; Merlet-Benichou, C. The number of nephrons in the mammalian kidney: Environmental influences play a determining role. Exp. Nephrol. 2000, 8, 63–65. [Google Scholar] [CrossRef]
- Boubred, F.; Saint-Faust, M.; Buffat, C.; Ligi, I.; Grandvuillemin, I.; Simeoni, U. Developmental Origins of Chronic Renal Disease: An Integrative Hypothesis. Int. J. Nephrol. 2013, 2013, 346067. [Google Scholar] [CrossRef] [Green Version]
- Fierro, J.L.; Passarella, M.; Lorch, S.A. Prematurity as an Independent Risk Factor for the Development of Pulmonary Disease. J. Pediatr. 2019, 213, 110–114. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jeong, J.E.; Chung, H.L.; Jang, Y.Y. Relationships between lung function and clinical findings in school-age survivors of preterm birth. Allergy, Asthma Respir. Dis. 2021, 9, 69–75. [Google Scholar] [CrossRef]
- Baraldi, E.; Filippone, M. Chronic Lung Disease after Premature Birth. N. Engl. J. Med. 2007, 357, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Brusasco, V.; Pellegrino, R. Invited Review: Complexity of factors modulating airway narrowing in vivo: Relevance to assessment of airway hyperresponsiveness. J. Appl. Physiol. 2003, 95, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Vollsæter, M.; Røksund, O.D.; Eide, G.E.; Markestad, T.; Halvorsen, T. Lung function after preterm birth: Development from mid-childhood to adulthood. Thorax 2013, 68, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Bolton, C.E.; Bush, A.; Hurst, J.R.; Kotecha, S.; McGarvey, L. Lung consequences in adults born prematurely. Thorax 2015, 70, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Kramer, B.W. Antenatal inflammation and lung injury: Prenatal origin of neonatal disease. J. Perinatol. 2008, 28, S21–S27. [Google Scholar] [CrossRef]
- Fawke, J.; Lum, S.; Kirkby, J.; Hennessy, E.; Marlow, N.; Rowell, V.; Thomas, S.; Stocks, J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure study. Am. J. Respir. Crit. Care Med. 2010, 182, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Morris, B.H.; Gard, C.C.; Kennedy, K.; Network, N.N.R. Rehospitalization of extremely low birth weight (ELBW) infants: Are there racial/ethnic disparities? J. Perinatol 2005, 25, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hintz, S.R.; Kendrick, D.E.; Vohr, B.R.; Poole, W.K.; Higgins, R.D.; National Institute of Child Health and Human Development (NICHD) Neonatal Research Network. Community supports after surviving extremely lowbirth-weight, extremely preterm birth: Special outpatient services in early childhood. Arch. Pediatr. Adolesc. Med. 2008, 162, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemm, H.H.; Vollsæter, M.; Røksund, O.D.; Eide, G.E.; Markestad, T.; Halvorsen, T. Exercise Capacity after Extremely Preterm Birth. Development from Adolescence to Adulthood. Ann. Am. Thorac. Soc. 2014, 11, 537–545. [Google Scholar] [CrossRef]
- Kong, L.; Nilsson, I.A.; Brismar, K.; Gissler, M.; Lavebratt, C. Associations of Different Types of Maternal Diabetes and Body Mass Index with Offspring Psychiatric Disorders. JAMA Netw. Open 2020, 3, e1920787. [Google Scholar] [CrossRef]
- e Silva, R.N.A.; Yu, Y.; Liew, Z.; Vested, A.; Sørensen, H.T.; Li, J. Associations of Maternal Diabetes during Pregnancy with Psychiatric Disorders in Offspring during the First 4 Decades of Life in a Population-Based Danish Birth Cohort. JAMA Netw. Open 2021, 4, e2128005. [Google Scholar] [CrossRef]
- Schmitt, J.; Romanos, M. Prenatal and Perinatal Risk Factors for Attention-Deficit/Hyperactivity Disorder. Arch. Pediatr. Adolesc. Med. 2012, 166, 1074–1075. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Winkleby, M.A.; Sundquist, K.; Sundquist, J. Preterm birth and psychiatric medication prescription in young adulthood: A Swedish national cohort study. Int. J. Epidemiol. 2010, 39, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
- Fanni, D.; Gerosa, C.; Rais, M.; Ravarino, A.; Van Eyken, P.; Fanos, V.; Faa, G. The role of neuropathological markers in the interpretation of neuropsychiatric disorders: Focus on fetal and perinatal programming. Neurosci. Lett. 2018, 669, 75–82. [Google Scholar] [CrossRef]
- Optimizing Gestational Weight Gain, Birth Weight and Other Perinatal Outcomes among Pregnant Women at Risk of Hypertension in Pregnancy by Regular Monitoring of Weight Gain and Blood Pressure: A Pilot Randomized Controlled Trial. ClinicalTrials.gov identifier (NCT number): NCT03858595. Available online: https://clinicaltrials.gov/ct2/show/NCT03858595?recrs=a&cond=low+birth+weight&draw=3&rank=48 (accessed on 1 December 2021).
- Air Pollution and Daily Mobility of Pregnant Women Identification of Critical Windows of Exposure (MOBIFEM). ClinicalTrials.gov identifier (NCT number): NCT04725734. Available online: https://clinicaltrials.gov/ct2/show/NCT04725734?recrs=a&cond=low+birth+weight&draw=3&rank=35 (accessed on 1 December 2021).
- Crovetto, F.; Crispi, F.; Casas, R.; Martín-Asuero, A.; Borràs, R.; Vieta, E.; Estruch, R.; Gratacós, E.; Paules, C.; Nakaki, A.; et al. Effects of Mediterranean Diet or Mindfulness-Based Stress Reduction on Prevention of Small-for-Gestational Age Birth Weights in Newborns Born to At-Risk Pregnant Individuals. JAMA 2021, 326, 2150–2160. [Google Scholar] [CrossRef]
- Heath, R.J.; Klevebro, S.; Wood, T.R. Maternal and Neonatal Polyunsaturated Fatty Acid Intake and Risk of Neurodevelopmental Impairment in Premature Infants. Int. J. Mol. Sci. 2022, 23, 700. [Google Scholar] [CrossRef]
- Petersen, A.B.; Ogunrinu, T.; Wallace, S.; Yun, J.; Belliard, J.C.; Singh, P.N. Implementation and Outcomes of a Maternal Smoking Cessation Program for a Multi-ethnic Cohort in California, USA, 2012–2019. J. Community Health 2021, 1–9. [Google Scholar] [CrossRef]
- van Hoorn, F.; de Wit, L.; van Rossem, L.; Jambroes, M.; Groenendaal, F.; Kwee, A.; Lamain-de Ruiter, M.; Franx, A.; van Rijn, B.B.; Koster, M.P.; et al. A prospective population-based multicentre study on the impact of maternal body mass index on adverse pregnancy outcomes: Focus on normal weight. PLoS ONE 2021, 16, e0257722. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Murray, D.M.; Kiely, M.E. Iron deficiency during the first 1000 days of life: Are we doing enough to protect the developing brain? Proc. Nutr. Soc. 2021. [Google Scholar] [CrossRef]
- Sentenac, M.; Benhammou, V.; Aden, U.; Ancel, P.-Y.; A Bakker, L.; Bakoy, H.; Barros, H.; Baumann, N.; Bilsteen, J.F.; Boerch, K.; et al. Maternal education and cognitive development in 15 European very-preterm birth cohorts from the RECAP Preterm platform. Int. J. Epidemiol. 2021, 50, 1824–1839. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, I. Effect of maternal zinc supplementation or zinc status on pregnancy complications and perinatal outcomes: An umbrella review of meta-analyses. Heliyon 2021, 7, e07540. [Google Scholar] [CrossRef]
- A Luyckx, V.; Perico, N.; Somaschini, M.; Manfellotto, D.; Valensise, H.; Cetin, I.; Simeoni, U.; Allegaert, K.; Vikse, B.E.; A Steegers, E.; et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet 2017, 390, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, N. Trial of Viagra for fetal growth restriction is halted after baby deaths. BMJ 2018, 362, k3247. [Google Scholar] [CrossRef]
- Spencer, R.; Ambler, G.; Brodszki, J.; Diemert, A.; Figueras, F.; Gratacós, E.; Hansson, S.R.; Hecher, K.; Huertas-Ceballos, A.; Marlow, N.; et al. EVERREST prospective study: A 6-year prospective study to define the clinical and biological characteristics of pregnancies affected by severe early onset fetal growth restriction. BMC Pregnancy Childbirth 2017, 17, 43. [Google Scholar] [CrossRef] [Green Version]
- Spiroski, A.M.; Oliver, M.H.; Jaquiery, A.L.; Prickett, T.C.R.; Espiner, E.A.; Harding, J.E.; Bloomfield, F.H. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1. J. Physiol. 2017, 596, 5925–5945. [Google Scholar] [CrossRef] [Green Version]
- Tare, M.; Parkington, H.C.; Wallace, E.; Sutherland, A.E.; Lim, R.; Yawno, T.; Coleman, H.A.; Jenkin, G.; Miller, S. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J. Physiol. 2014, 592, 2695–2709. [Google Scholar] [CrossRef] [Green Version]
- Somm, E.; Larvaron, P.; Van De Looij, Y.; Toulotte, A.; Chatagner, A.; Faure, M.; Métairon, S.; Mansourian, R.; Raymond, F.; Gruetter, R.; et al. Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism. Pediatr. Res. 2013, 75, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perinatal and 2 Year Neurodevelopmental Outcome in Late Preterm Fetal Compromise: The TRUFFLE 2 Randomised Trial. ISRCTN Registry: 76016200. Available online: https://njl-admin.nihr.ac.uk/document/download/2034820 (accessed on 1 December 2021).
- Manzoni, P.; Rinaldi, M.; Cattani, S.; Pugni, L.; Romeo, M.G.; Messner, H.; Stolfi, I.; Decembrino, L.; Laforgia, N.; Vagnarelli, F.; et al. Bovine Lactoferrin Supplementation for Prevention of Late-Onset Sepsis in Very Low-Birth-Weight NeonatesA Randomized Trial. JAMA 2009, 302, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Leeman, K.T.; Pessina, P.; Lee, J.-H.; Kim, C.F. Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Sci. Rep. 2019, 9, 6479. [Google Scholar] [CrossRef] [PubMed]
- Straus, S.E.; Tetroe, J.; Graham, I. Defining knowledge translation. Can. Med Assoc. J. 2009, 181, 3–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, N.; Isayama, T.; Saito, S.; Shah, P.S.; Santaguida, P.; Nakamura, T.; McDonald, S.D. Learning from strengths: Improving care by comparing perinatal approaches between Japan and Canada, and identifying future research priorities. J. Obstet. Gynaecol. Can. 2021, 43, 1388–1394.e1. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobile, S.; Di Sipio Morgia, C.; Vento, G. Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. J. Pers. Med. 2022, 12, 157. https://doi.org/10.3390/jpm12020157
Nobile S, Di Sipio Morgia C, Vento G. Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. Journal of Personalized Medicine. 2022; 12(2):157. https://doi.org/10.3390/jpm12020157
Chicago/Turabian StyleNobile, Stefano, Chiara Di Sipio Morgia, and Giovanni Vento. 2022. "Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review" Journal of Personalized Medicine 12, no. 2: 157. https://doi.org/10.3390/jpm12020157
APA StyleNobile, S., Di Sipio Morgia, C., & Vento, G. (2022). Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. Journal of Personalized Medicine, 12(2), 157. https://doi.org/10.3390/jpm12020157